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1. Experimental Algorithmics
Definitions
Performance Measures

Contents and Goals

Goals of this part of the course (to be continued in DM812):
Provide a view of issues in Experimental Algorithmics

» Exploratory data analysis

» Presenting results in a concise way with graphs and tables
» Organizational issues and Experimental Design

» Basics of inferential statistics

» Sequential statistical testing: a methodology for tuning

The goal of Experimental Algorithmics is not only producing a sound analysis
but also adding an important tool to the development of a good solver for a
given problem.

Experimental Algorithmics is an important part in the algorithm production
cycle, which is referred to as Algorithm Engineering




Experimental Algorithmics

Mathematical Model
(Algorithm)

Simulation Program

In empirical studies we consider simulation programs which are the
implementation of a mathematical model (the algorithm)
[McGeoch, 1996]

Algorithmic models of programs can vary according to their level of
instantiation:
» minimally instantiated (algorithmic framework), e.g., simulated annealing
» mildly instantiated: includes implementation strategies (data structures)

» highly instantiated: includes details specific to a particular programming
language or computer architecture

Experimental Algorithmics

Goals

» Defining standard methodologies

» Comparing relative performance of algorithms so as to identify the best
ones for a given application

» Characterizing the behavior of algorithms

» Identifying algorithm separators, i.e., families of problem instances for
which the performance differ

» Providing new insights in algorithm design

Fairness principle: being completely fair is perhaps impossible but try to
remove any possible bias

» possibly all algorithms must be implemented with the same style, with
the same language and sharing common subprocedures and data
structures

> the code must be optimized, e.g., using the best possible data structures

» running times must be comparable, e.g., by running experiments on the
same computational environment (or redistributing them randomly)

Definitions

For each general problem TT (e.g., TSP, GCP) we denote by Cry a set (or
class) of instances and by 7t € Cyy a single instance.

The object of analysis are SLS algorithms, i.e., randomized search heuristics
(with no guarantee of optimality).

» single-pass heuristics (denoted .A7): have an embedded termination, for
example, upon reaching a certain state

Eg, Construction heuristics, iterative improvement

> asymptotic heuristics (denoted .A*): do not have an embedded
termination and they might improve their solution asymptotically




Definitions

The most typical scenario considered

Asymptotic heuristics with time (or iteration) limit decided a priori
The algorithm A% is halted when time expires.

Randomized case: A*® on 7 returns
a solution of cost X, where X is a
random variable.

Deterministic case: A® on 7
returns a solution of cost x.

The performance of A® on 7 is a

scalar y = x. The performance of A* on 7t is the

univariate Y = X.

[This is not the only relevant scenario: to be refined later]
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Random Variables and Probability

Statistics deals with random (or stochastic) variables.

A variable is called random if, prior to observation, its outcome cannot be
predicted with certainty.

The uncertainty is described by a probability distribution.

Discrete variables Continuous variables

Probability distribution: Probability density function (pdf):

pi = Plx = vi] f — V)
dv

Cumulative Distribution Function (CDF):

Cumulative Distribution Function (CDF)

Fv) =Pl <y =Y b Flv) = J f(v)dv

Mean Mean
L=EXI =) xpi

Variance

o> =E[X—p?1=) (x—w’pi

w=EX] = J xf(x)dx
Variance

o = EI(X— ) = [ (x — P f(x) dx

Generalization

On a specific instance, the random variable Y that defines the performance
measure of an algorithm is described by its probability distribution/density
function

Pr(Y =y|m)

It is often more interesting to generalize the performance
on a class of instances Cyy, that is,

Pr(Y=y,Cn) = )_Pr(Y =y |n)Pr(n)
nell
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Sampling

In experiments,

1. we sample the population of instances and

2. we sample the performance of the algorithm on each sampled instance

If on an instance 7t we run the algorithm v times then we have r replicates of
the performance measure Y, denoted Y7,...,Y;, which are independent and
identically distributed (i.i.d.), i.e.

Pr(yr, ..., yelm) = [ [ Pry; | 7)

j=1

Pr(y]""‘yr): Z PT(y]v"')yT|T[)PT(7T)‘
nteCpy
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Instance Selection

In real-life applications a simulation of p(7t) can be obtained by
historical data.

In simulation studies instances may be:

real world instances

random variants of real world-instances

vV v v

online libraries

» randomly generated instances

They may be grouped in classes according to some features whose impact
may be worth studying:

type (for features that might impact performance)
size (for scaling studies)

hardness (focus on hard instances)

vV v v Y

application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability p(7) = ¢
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Statistical Methods

The analysis of performance is based on finite-sized sampled data.
Statistics provides the methods and the mathematical basis to
» describe, summarizing, the data (descriptive statistics)

» make inference on those data (inferential statistics)

Statistics helps to

» guarantee reproducibility

> make results reliable
(are the observed results enough to justify the claims?)

> extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e.,
engineering), statistics helps to take correct design decisions decisions with
the least amount of experimentation
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Objectives of the Experiments
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Component-Based Analysis Nos oo
» Standard statistical methods: Ho-¢ A
experimental designs, test ) S b
hypothesis and estimation T ) S b
Ng.1{ - rememmed]
Characterization: T e ’

Interpolation: fitting models to data
Extrapolation: building models of
data, explaining phenomena

Uniform random graphs
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1000

+

» Standard statistical methods: linear f +

. . 100 p=0.9
and non linear regression
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>

Measures and Transformations

On a single instance

Computational effort indicators

» number of elementary operations/algorithmic iterations
(e.g., search steps, objective function evaluations, number of visited
nodes in the search tree, consistency checks, etc.)

» total CPU time consumed by the process
(sum of user and system times returned by getrusage)

Solution quality indicators

v

value returned by the cost function

v

error from optimum /reference value

[UB—LB| __ |UB—LB]
gap —ym O —usB

ranks

v

v
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Measures and Transformations

On a class of instances

Computational effort indicators

» no transformation if the interest is in studying scaling
» standardization if a fixed time limit is used

» geometric mean (used for a set of numbers whose values are meant to
be multiplied together or are exponential in nature),

» otherwise, better to group homogeneously the instances

Solution quality indicators
Different instances implies different scales = need for an invariant measure

(However, many other measures can be taken both on the algorithms and on
the instances [McGeoch, 1996])
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Measures and Transformations

On a class of instances
Solution quality indicators

» Distance or error from a reference value
(assume minimization case):

e1(x,m) = M standard score

0(/\71)
x(7t) — x°Pt ()
x(7t) — x°P(7)
Xworst(n) — xopt (7’()

er(x,m) = relative error

e3(x,m) = invariant [Zemel, 1981]

» optimal value computed exactly or known by instance construction
> surrogate value such bounds or best known values

» Rank (no need for standardization but loss of information)
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Outline

2. Exploratory Data Analysis
Sample Statistics
Scenarios of Analysis
Guidelines for Presenting Data
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Summary Measures for Sampled Data

Measures to describe or characterize a population
» Measure of central tendency, location
» Measure of dispersion

One such a quantity is

> a parameter if it refers to the population (Greek letters)

» a statistics if it is an estimation of a population parameter from the
sample (Latin letters)
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Measures of central tendency

> Arithmetic Average (Sample mean)

Measure of dispersion

— X.
X = 2x » Sample range
n
» Quantile: value above or below which lie a fractional part of the data R =%n—x1
(used in nonparametric statistics) _
) » Sample variance
» Median
1 _
_ 2 _ X2
M =%xmi1)2 S —n_1Z(X1 X)
> Quartile _y
Q » Standard deviation
Q1 =X(n+1)/4 Qs =X3(n+1)/4
s =Vs?
» g-quantile
g of data lies below and 1 — g lies above > Inter-quartile range
» Mode IQR =Q3 —Qq
value of relatively great concentration of data
(Unimodal vs Multimodal distributions)
24 25
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> x<-runif(10,0,1)

mean(x), median(x), quantile(x), quantile(x,0.25)

range(x), var(x), sd(x), IQR(x)
> fivenum(x)

#(minimum, lower-hinge, median, upper-hinge, maximum)
[1] 0.18672 0.26682 0.28927 0.69359 0.92343

> summary (x)

> aggregate(x,list(factors) ,median)

> boxplot (x)
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Scenarios

A. Single-pass heuristics
B. Asymptotic heuristics:
Two approaches:

1. Univariate

1.1 Time as an external parameter decided a priori
1.2 Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Scenario A

Single-pass heuristics

Deterministic case: A on class C;; Randomized case: A™ on class Cpy
returns a solution of cost x with returns a solution of cost X with
computational effort t (e.g., running  computational effort T, where X and

time).

T are random variables.

The performance of A™ on class Cr;  The performancg of A7 on class Cpy
is the vector § = (x, t). is the bivariate Y = (X, T).
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Example

Scenario:

> 3 heuristics A7, A3, A; on

class Cyy.
DSATUR ROS
> homogeneous instances or RUE
need for data transformation.

125 I
> 1 or r runs per instance
120 I

» Interest: inspecting solution
cost and running time to
observe and compare the level
of approximation and the
speed. 105

cost

115 . L

110 -

Sy

Tools: time

» Scatter plots of solution-cost
and run-time
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Multi-Criteria Decision Making

Needed some definitions on dominance relations

In Pareto sense, for points in R?

X! < %2
531 H 522

weakly dominates xz < xiz foralli=1,...,n
incomparable neither X' < %2 nor ¥ < X!




Scenario B

Asymptotic heuristics
There are two approaches:

1.1. Time as an external parameter decided a priori.
The algorithm is halted when time expires.

Deterministic case: A on class
Cr returns a solution of cost x.

The performance of A* on class Cpy
is the scalar y = x.

Randomized case: A*® on class Cpy
returns a solution of cost X, where X
is a random variable.

The performance of A% on class Cpy
is the univariate Y = X.
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Example

Scenario:

> 3 heuristics A, AS°, AS° on class Cyy.
(Or 3 heuristics A, A3, A on class Cry without interest in
computation time because negligible or comparable)

> homogeneous instances (no data transformation) or heterogeneous (data
transformation)

> 1 or T runs per instance
> a priori time limit imposed

> Interest: inspecting solution cost

Tools:
» Histograms (summary measures: mean or median or mode?)
» Boxplots

» Empirical cumulative distribution functions (ECDFs)
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On a class of instances

X=X
Standard error: ——
Jo

TS3 - o [ D] ..... 1o

R IR NI
ml e
T T T T T T T
-3 -2 -1 o0 1 2 3

x —x(©p0)

Invariant error; ———
x(worst) _y (opt)

x —x(©pY)

x(opt)

o [ N
I

TS1

Relative error:

o A T OO I [y s B ey

TS2 - »

TS1

0.1 0.2 0.3 0.4

TS2

TS1
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1.0
0.8
0.6
0.4 —
0.2
0.0 T

1.0
0.8
0.6
0.4 —
0.2
0.0

Stochastic Dominance

Definition: Algorithm A; probabilistically dominates algorithm A, on a
problem instance, iff its CDF is always "below" that of A;, i.e.:

Fi(x) < Fa(x), Vx € X

F(X)

F(x)
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R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.

> load("TS.class-G.dataR")
G[1:5,]
alg inst run sol time.last.imp tot.iter parz.iter exit.iter exit.time opt

\

1 TS1 G-1000-0.5-30-1.1.col 1 59 9.900619 5955 442 5955 10.02463 30
2 TS1 G-1000-0.5-30-1.1.col 2 64 9.736608 3880 130 3958 10.00062 30
3 TS1 G-1000-0.5-30-1.1.col 3 64 9.908618 4877 49 4877 10.03263 30
4 TS1 G-1000-0.5-30-1.1.col 4 68 9.948622 6996 409 6996 10.07663 30
5 TS1 G-1000-0.5-30-1.1.col 5 63 9.912620 3986 52 3986 10.04063 30
>

>

library(lattice)
> bwplot(alg ~ sol | inst,data=G)

If we want to make an aggregate analysis we have the following choices:

» maintain the raw data,

v

transform data in standard error,

» transform the data in relative error,

» transform the data in an invariant error,
>

transform the data in ranks.
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Maintain the raw data
R functions:

> par (mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
> #original data
> boxplot(sol~alg,data=G,horizontal=TRUE,main="0Original data")
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Transform data in standard error
R functions:

> #standard error

> T1 <- split(G$sol,list(G$inst))

> T2 <- lapply(T1,scale,center=TRUE,scale=TRUE)

> T3 <- unsplit(T2,list(G$inst))

> T4 <- split(T3,list(G$alg))

> T5 <- stack(T4)

> boxplot(values~ind,data=T5,horizontal=TRUE,main=expression(paste("Standard
error: ",frac(x-bar(x),sqrt(sigma)))))

> Ecdf (T5$values,group=T5$ind,main=expression(paste("Standard error:

", frac(x-bar(x),sqrt(sigma)))))

> #standard error

> G$scale <- 0

> split(G$scale, G$inst) <- lapply(split(G$sol, G$inst), scale,center=TRUE,
scale=TRUE)
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Transform the data in relative error
R functions:

> #relative error

> G$err2 <- (G$sol-G$opt)/G$opt

> boxplot(err2~alg,data=G,horizontal=TRUE,main=expression(paste("Relative
error: ",frac(x-x~(opt),x"(opt)))))

> Ecdf (G$err2, group=G$alg,main=expression(paste("Relative error: ",frac(x-x
~(opt) ,x~ (opt)))))
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Transform the data in an invariant error
We use as surrogate of xV°7st the median solution returned by the simplest
algorithm for the graph coloring, that is, the ROS heuristic.

#error 3

load("ROS.class-G.dataR")

F1 <- aggregate(F$sol,list(inst=F$inst) ,median)

F2 <- split(F1$x,list(F1$inst))

G$ref <- sapply(G$inst,function(x) F2[[x]])

G$err3 <- (G$sol-G$opt)/(G$ref-G$opt)

boxplot (err3~alg,data=G,horizontal=TRUE,main=expression(paste("Invariant
error: ",frac(x-x~(opt),x”~(worst)-x~(opt)))))

> Ecdf (G$err3, group=G$alg,main=expression(paste("Invariant error: ",frac(x-x

~(opt) ,x~ (worst) -x~(opt)))))

V V.V V V VYV
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Transform the data in ranks

> #rank

> T2 <- lapply(T1,rank)

> T3 <- unsplit(T2,list(G$inst))

> T4 <- split(T3,list(G$alg))

> T5b <- stack(T4)

> boxplot(values~ind,data=T5b,horizontal=TRUE,main="Ranks")
> Ecdf (T5b$values, group=T5b$ind,main="Ranks")

Scenario B

Asymptotic heuristics
There are two approaches:

1.2. Solution quality as an external parameter decided a priori. The algorithm
is halted when quality is reached.

Deterministic case: A™ on class Randomized case: A*™ on class Cyy

Cry finds a solution in running time t. finds a solution in running time T,
where T is a random variable.

The performance of A* on class Cry

is the scalar y = t. The performance of A*® on class Cy

is the univariate Y = T.
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Dealing with Censored Data

> Heuristics A™ stopped before completion or A® truncated (always the
case)

» Interest: determining whether a prefixed goal (optimal/feasible) has
been reached

The computational effort to attain the goal can be specified by a cumulative
distribution function F(t) = P(T < t) with T in [0, 0c0).

If in a run 1 we stop the algorithm at time L; then we have a Type | right
censoring, that is, we know either

> 1} if T} < Li
» or T; > L.

Hence, for each run i we need to record min(T;, L;) and the indicator variable
for observed optimal/feasible solution attainment, 6; = I(T; < L;).
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Example

> An exact vs an heuristic algorithm for the
2-edge-connectivity augmentation problem.

» Interest: time to find the optimum on different instances.

Scenario B

Asymptotic heuristics
There are two approaches:

2. Cost dependent on running time:

Uncensored:
" Deterministic case: A* on 7 Randomized case: A® on 7
' . Heurisic F(t) = # runs <t returns a current best solution x at produces a monotone stochastic
08 — Exact n each observation in ty,...,ty. process in solution cost X(t) with
. any element dependent on the
_ 06 The performance of A on 7t is rgdecessors P
., Censored: the profile indicated by the vector P '
' g=1{x(t1),...,x(ti)}. The performance of A® on 7 is
# runs < t o
02 Ft) = 1———— the multivariate
n at
¥ = (X(t1), X(t2), ..., X(t)).
10 20 50 100 200 500 2000
Time to find the optimum
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The performance is described by multivariate random variables of the kind
Example Y ={Y(t1),Y(t2),..., Y(L)}.

Scenario:
> 3 heuristics A, AS, AS on instance .
> single instance hence no data transformation.
> T runs

> Interest: inspecting solution cost over running time to determine
whether the comparison varies over time intervals

Tools:

» Quality profiles
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Sampled data are of the form Y, = {Yi(t1),Yi(t2),...,Yi(t) ), i=1,...,10
(10 runs per algorithm on one instance)

Novelty Tabu Search
100 5

80

cost
©
o
<
f0j
7

70

o 0 0 0 0

0 200 400 600 800 1000 12000 200 400 600 800 1000 1200
time

48




The performance is described by multivariate random variables of the kind
Y={Y(t1),Y(t2),..., (L)}

Sampled data are of the form Y, = {Yi(t1),Yi(t2),...,Yi(tx), i=1,...,10

(10 runs per algorithm on one instance)

Tabu Search
- 100

|
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]

1
17
g
I
i3

1

1

0

0

R I IS RS P s ~ 90

Novelty
100 — 2 -

= L R
90 ﬁlﬁﬁ ‘ :

80

Colors

oo

T T

T

70 4

The performance is described by multivariate random variables of the kind
Y={Y(t1),Y(t2),..., Y(Ik)}

Sampled data are of the form Y, = {Yi(ty),Yi(t2),...,Yi(t)}, i=1,...,10
(10 runs per algorithm on one instance)

100
Novelty _—
Tabu Search ——
90 | T,
L The median
g 80 behavior of the
two algorithms
70
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Time occasion
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Exploratory Data Analysis Making Plots

Explore your data:

» make plots: histograms, boxplots, empirical cumulative distribution
functions, correlation/scatter plots

» look at the numerical data and interpret them in practical terms:
computation times, distance from optimum

» look for patterns

All the above both at a single instance level and at an aggregate level.
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http://algo2.iti.uni-karlsruhe.de/sanders/courses/bergen/bergenPresenting.pdf

[Sanders, 2002]

» Should the experimental setup from the exploratory phase be redesigned to
increase conciseness or accuracy?

» What parameters should be varied? What variables should be measured?
» How are parameters chosen that cannot be varied?

» Can tables be converted into curves, bar charts, scatter plots or any other
useful graphics?

» Should tables be added in an appendix?

» Should a 3D-plot be replaced by collections of 2D-curves?
> Can we reduce the number of curves to be displayed?

» How many figures are needed?

» Should the x-axis be transformed to magnify interesting subranges?
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» Should the x-axis have a logarithmic scale? If so, do the x-values used
for measuring have the same basis as the tick marks?

» Is the range of x-values adequate?

» Do we have measurements for the right x-values, i.e., nowhere too dense
or too sparse?

» Should the y-axis be transformed to make the interesting part of the
data more visible?

» Should the y-axis have a logarithmic scale?

» Is it misleading to start the y-range at the smallest measured value?
(if not too much space wasted start from 0)

» Clip the range of y-values to exclude useless parts of curves?
» Can we use banking to 45°7

» Are all curves sufficiently well separated?

» Can noise be reduced using more accurate measurements?

» Are error bars needed? If so, what should they indicate? Remember that
measurement errors are usually not random variables.
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» Connect points belonging to the same curve.

» Only use splines for connecting points if interpolation is sensible.
» Do not connect points belonging to unrelated problem instances.
» Use different point and line styles for different curves.

» Use the same styles for corresponding curves in different graphs.

» Place labels defining point and line styles in the right order and without
concealing the curves.

» Give axis units

» Captions should make figures self contained.

» Give enough information to make experiments reproducible.

» Golden ratio rule: make the graph wider than higher [Tufte 1983].
» Rule of 7: show at most 7 curves (omit those clearly irrelevant).

» Avoid: explaining axes, connecting unrelated points by lines, cryptic
abbreviations, microscopic lettering, pie charts
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3. Examples
Results Task 1
Results Task 2
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Last year competition

Graph Coloring Problem

Task 1: submit a construction heuristic
Set of instances A: 4 instances

Task 2: submit an algorithm derived from the use of a metaheuristic for

construction heuristics

Time limit for each single run: 90 seconds

Set of instances B: 15 instances

Task 3: a peak performance algorithm

Time limit for each single run: 360 seconds
Set of instance C: The instances in the set are generated in order to
admit different kind of colorings, ranging from equi-partite classes to

highly variable classes.
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Comparative Analysis

View of raw data within each instance
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View of raw data aggregated for the 4 instances

Original data

240284 —
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30
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View of raw data ranked within instances and aggregated for the 4 instances
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Trade off Solution-Quality vs Run-Time
The trade off computation time vs sol quality. Raw data.

The trade off computation time vs sol quality. Raw data.
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Linear regression in log-log plots = polynomial growth Comparative visualization
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Experimental Setup

Numerical data

) » 15 new flat instances created
Size 071275 181180 191076 230183 240284 250684 270383 )
200 0.008 0.00267 0.00267 0.5787 0.00533 0.42933 0.01333 Type # instances Upper bound
400 | 0.05067 0.01333 0.01067 4.5443  0.024 0.98667 0.05067 flat-1000-50-0-7.col 5 50
800 0.36002 0.05067 0.04 37.68 0.13868 3.2313 0.2

- -60-0-7

1600 2.7175 0.20268 0.16801 313.27 0.85339 11.709 0.96267 flat-1000-60-0-7.col 5 60
3200 | 19711 0.84805 0.66937 26748  6.1524 42287  4.0413 flat-1000-76-0-7.col 5 76
Size | DSATUR RLF ROS » each algorithm run once on each of the 15 new instances
200 0 0.01067 0.00267
ggg g'ggg g'ggzgi 8'8222 » fairness principle: same computational resources to all algorithms
1600 | 0.13601  4.2563 011467 = 90 seconds on Intel(R) Celeron(R) CPU 2.40GHz, 1GB RAM
3200 0.5627  31.519  0.46936 (120 seconds for 230183)

v

restart ROS heuristic used as reference algorithm

restart RLF and DSATUR also included

v
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Results Results
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Results Results
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Outline

4. Organizational Issues

74

Notes on Experimental Environment

Some organizational hints:

» run a script (bash, perl, python, php) that calls different programs, one
for each algorithm to test, on different instances.

» when launched each program writes the search profile in a file (log file or
output file).

Read instance. Time: 0.016001

begin try 1

best 0 col 22 time 0.004000 iter O par_iter O
best 3 col 21 time 0.004000 iter O par_iter 0O
best 1 col 21 time 0.004000 iter O par_iter O
best 0 col 21 time 0.004000 iter 1 par_iter 1
best 6 col 20 time 0.004000 iter 3 par_iter 1
best 4 col 20 time 0.004000 iter 4 par_iter 2
best 2 col 20 time 0.004000 iter 6 par_iter 4
exit iter 7 time 1.000062

end try 1

> run a script (bash, perl, python, php) that parses the output files above
and put it in a file with the format similar to:

alg instance run sol time
ROS 1le450_15a.col 3 21 0.00267
ROS 1le450_15b.col 3 21 0

ROS 1e450_15d.col 3 31 0.00267
RLF 1le450_15a.col 3 17 0.00533
RLF 1le450_15b.col 3 16 0.008

> load the data in R and make all kind of analysis.
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Program Profiling

» Check the correctness of your solutions many times

» Plot the development of

> best visited solution quality
» current solution quality

over time and compare with other features of the algorithm.

» Profile time consumption per program components
under Linux: gprof
1. add flag -pg in compilation

2. run the program
3. gprof program-file > a.txt
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