
DM811
HEURISTICS AND LOCAL SEARCH ALGORITHMS

FOR COMBINATORIAL OPTIMZATION

Lecture 14

Experimental Analysis

Marco Chiarandini

slides partly based on
McGeoch’s lectures
at the summer school in Lipari, 2008

Outline

1. Developing an Experimental Environment

2. Program Optimization

2

Outline

1. Developing an Experimental Environment

2. Program Optimization

3

Building an experimental environment

You will need these files for your project:

I The code that implements the algorithm. (Several versions.)
I The input:

Instances for the algorithm, parameters to guide the algorithm,
instructions for reporting.

I The output:
The result, the performance measurements, perhaps animation data.

I The journal:
A record of your experiments and findings.

I Analysis tools:
statistics, data analysis, visualization, report.

How will you organize them? How will you make them work together?

4



Example

Input and reporting controls on command line

mssh -i instance.in -o output.sol -l run.log > data.out

Output on stdout self-describing

#stat instance.in 30 90
seed: 9897868
Parameter1: 30
Parameter2: A
Read instance. Time: 0.016001
begin try 1
best 0 col 22 time 0.004000 iter 0 par_iter 0
best 3 col 21 time 0.004000 iter 0 par_iter 0
best 1 col 21 time 0.004000 iter 0 par_iter 0
best 0 col 21 time 0.004000 iter 1 par_iter 1
best 6 col 20 time 0.004000 iter 3 par_iter 1
best 4 col 20 time 0.004000 iter 4 par_iter 2
best 2 col 20 time 0.004000 iter 6 par_iter 4
exit iter 7 time 1.000062
end try 1

5

Example

If one program that implements many heuristics

I re-compile for new versions but take old versions with a journal in
archive.

I use command line parameters to choose among the heuristics

I C: getopt, getopt_long, opag (option parser generator)
Java: package org.apache.commons.cli

mssh -i instance.in -o output.sol -l run.log --solver 2-opt > data.out

I use identifying labels in naming file outputs

6

Example

I So far: one run per instance. Multiple runs, multiple instances and
multiple algorithms è unix script (eg, bash one line program, perl, php)

I Data analysis: Select line identifier from output file, combine, send to
grasp scripts.
Example
grep #stat | cut -f 2 -d " "

I Data in form of matrix or data frame goes directly into R imported by
read.table(), untouched by human hands
alg instance run sol time
ROS le450_15a.col 3 21 0.00267
ROS le450_15b.col 3 21 0
ROS le450_15d.col 3 31 0.00267
RLF le450_15a.col 3 17 0.00533
RLF le450_15b.col 3 16 0.008
...

I Visualization: Select animation commands from output file, send to
animation tool.

7

Outline

1. Developing an Experimental Environment

2. Program Optimization

8



Program Profiling

I Check the correctness of your solutions many times

I Plot the development of
I best visited solution quality
I current solution quality

over time and compare with other features of the algorithm.

9

Code Optimization

I Profile time consumption per program components

I under Linux: gprof
1. add flag -pg in compilation
2. run the program
3. gprof gmon.out > a.txt

I Java VM profilers (plugin for eclipse)

− Can’t control / isolate components of interest.
− All profilers will affect runtime.
− Library function calls not shown.
− Timing is not so accurate (based on interval counts), especially for quick

functions. Function times rarely add up to whole.
− Doesn’t work with multithreaded, multicore programs.

10

Where do speedups come from?

Where can maximum speedup be achieved?
How much speedup should you expect?

11

Code Tuning

I Caution: proceed carefully! Let the optimizing compiler do its work!

I Expression Rules: Recode for smaller instruction counts.

I Loop and procedure rules: Recode to avoid loop or procedure call
overhead.

I Hidden costs of high-level languages

I String comparisons in C: proportional to length of the string, not
constant

I Object construction / de-allocation: very expensive

I Matrix access: row-major order 6= column-major order

I Exploit algebraic identities

I Avoid unnecessary computations inside the loops
12



Where Speedups Come From?

McGeoch reports conventional wisdom, based on studies in the literature.

I Concurrency is tricky: bad -7x to good 500x
I Classic algorithms: to 1trillion and beyond
I Data-aware: up to 100x
I Memory-aware: up to 20x
I Algorithm tricks: up to 200x
I Code tuning: up to 10x
I Change platforms: up to 10x

13

Relevant Literature

Bentley, Writing Efficient Programs; Programming Pearls (Chapter 8
Code Tuning)

Kernighan and Pike, The Practice of Programming (Chapter 7
Performance).
Shirazi, Java Performance Tuning, O’Reilly

McCluskey, Thirty ways to improve the performance of your Java
program. Manuscript and website: www.glenmcci.com/jperf

Randal E. Bryant e David R. O’Hallaron: Computer Systems: A
Programmer’s Perspective, Prentice Hall, 2003, (Chapter 5)

14


