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Building an experimental environment

You will need these files for your project:

I The code that implements the algorithm. (Several versions.)
I The input:

Instances for the algorithm, parameters to guide the algorithm,
instructions for reporting.

I The output:
The result, the performance measurements, perhaps animation data.

I The journal:
A record of your experiments and findings.

I Analysis tools:
statistics, data analysis, visualization, report.

How will you organize them? How will you make them work together?
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Example

Input and reporting controls on command line

mssh -i instance.in -o output.sol -l run.log > data.out

Output on stdout self-describing

#stat instance.in 30 90
seed: 9897868
Parameter1: 30
Parameter2: A
Read instance. Time: 0.016001
begin try 1
best 0 col 22 time 0.004000 iter 0 par_iter 0
best 3 col 21 time 0.004000 iter 0 par_iter 0
best 1 col 21 time 0.004000 iter 0 par_iter 0
best 0 col 21 time 0.004000 iter 1 par_iter 1
best 6 col 20 time 0.004000 iter 3 par_iter 1
best 4 col 20 time 0.004000 iter 4 par_iter 2
best 2 col 20 time 0.004000 iter 6 par_iter 4
exit iter 7 time 1.000062
end try 1
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Example

If one program that implements many heuristics

I re-compile for new versions but take old versions with a journal in
archive.

I use command line parameters to choose among the heuristics

I C: getopt, getopt_long, opag (option parser generator)
Java: package org.apache.commons.cli

mssh -i instance.in -o output.sol -l run.log --solver 2-opt > data.out

I use identifying labels in naming file outputs
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Example

I So far: one run per instance. Multiple runs, multiple instances and
multiple algorithms è unix script (eg, bash one line program, perl, php)

I Data analysis: Select line identifier from output file, combine, send to
grasp scripts.
Example
grep #stat | cut -f 2 -d " "

I Data in form of matrix or data frame goes directly into R imported by
read.table(), untouched by human hands
alg instance run sol time
ROS le450_15a.col 3 21 0.00267
ROS le450_15b.col 3 21 0
ROS le450_15d.col 3 31 0.00267
RLF le450_15a.col 3 17 0.00533
RLF le450_15b.col 3 16 0.008
...

I Visualization: Select animation commands from output file, send to
animation tool.
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Program Profiling

I Check the correctness of your solutions many times

I Plot the development of
I best visited solution quality
I current solution quality

over time and compare with other features of the algorithm.
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Code Optimization

I Profile time consumption per program components

I under Linux: gprof
1. add flag -pg in compilation
2. run the program
3. gprof gmon.out > a.txt

I Java VM profilers (plugin for eclipse)

− Can’t control / isolate components of interest.
− All profilers will affect runtime.
− Library function calls not shown.
− Timing is not so accurate (based on interval counts), especially for quick

functions. Function times rarely add up to whole.
− Doesn’t work with multithreaded, multicore programs.
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Where do speedups come from?

Where can maximum speedup be achieved?
How much speedup should you expect?
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Code Tuning

I Caution: proceed carefully! Let the optimizing compiler do its work!

I Expression Rules: Recode for smaller instruction counts.

I Loop and procedure rules: Recode to avoid loop or procedure call
overhead.

I Hidden costs of high-level languages

I String comparisons in C: proportional to length of the string, not
constant

I Object construction / de-allocation: very expensive

I Matrix access: row-major order 6= column-major order

I Exploit algebraic identities

I Avoid unnecessary computations inside the loops
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Where Speedups Come From?

McGeoch reports conventional wisdom, based on studies in the literature.

I Concurrency is tricky: bad -7x to good 500x
I Classic algorithms: to 1trillion and beyond
I Data-aware: up to 100x
I Memory-aware: up to 20x
I Algorithm tricks: up to 200x
I Code tuning: up to 10x
I Change platforms: up to 10x
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Code Tuning)

Kernighan and Pike, The Practice of Programming (Chapter 7
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Shirazi, Java Performance Tuning, O’Reilly

McCluskey, Thirty ways to improve the performance of your Java
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