DM811

HEURISTICS AND LOCAL SEARCH ALGORITHMS
FOR COMBINATORIAL OPTIMZATION

Lecture 2
Basics (continued)
Classical Techniques

Marco Chiarandini

Outline

1. Basic Notions in Algorithmics

2. Graphs

3. Solution Methods for Combinatorial Optimization

Overview

4. Generic Approaches to Combinatorial Optimization

Last Time

v

v

v

v

v

Terminology: Combinatorial Problems
Graph-vertex coloring

Problem solving according Polya

SAT problem

Basic Notions in Algoritmics

Outline

1. Basic Notions in Algorithmics

Basic Notions to Design and Analyze Algorithms

v

Notation and terminology

Machine models

v

Pseudo-code

v

v

Analysis of algorithms

» Computational complexity

Good Algorithms

We say that an algorithm A is

Efficient = good = polynomial time = polytime
iff
there exists p(n) such that T(A) = O(p(n))

There are problems for which no polytime algorithm is known. This course is
about those problems.

Complexity theory classifies problems

Computational Complexity

Equivalent Notions
Consider Decision Problems

» A problem TT is in P if 3 algorithm A that finds a solution in polynomial
time.

» in NP if 3 verification algorithm A(s, k) that verifies a binary certificate
(whether it is a solution to the problem) in polynomial time.

» Polynomial time reduction formally shows that one problem TT; is at
least as hard as another TT,, to within a polynomial factor. (there exists
a polynomial time transformation) TT, <p TTy = TI, is no more than a
polynomial harder than TT;.
» TTy is in N'P-complete if
1. Tl e NP
2. VT, e NP 1T, <p T4

» If TT; satisfies property 2, but not necessarily property 1, we say that it is
NP-hard:

Important concepts (continued):

» NP: Class of problems that can be solved in polynomial time by a
non-deterministic machine.

Note: non-deterministic # randomized; non-deterministic machines are
idealized models of computation that have
the ability to make perfect guesses.

» N'P-complete: Among the most difficult problems in N'P; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

» N'P-hard: At least as difficult as the most difficult problems in N'P, but
possibly not in AP (i.e., may have even worse complexity than
N'P-complete problems).

Many combinatorial problems are hard
but some problems can be solved efficiently

» Longest path problem is N'P-hard
but not shortest path problem

» SAT for 3-CNF is N"P-complete
but not 2-CNF (linear time algorithm)

» TSP is N'P-hard, the associated decision problem (for any solution
quality) is N'P-complete
but not the Euler tour problem

» TSP on Euclidean instances is N'P-hard
but not where all vertices lie on a circle.

An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/ viggo/problemlist/compendium.html

10

Application Scenarios

Practically solving hard combinatorial problems:

> Average-case vs worst-case complexity
(e.g. Simplex Algorithm for linear optimization);

» Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

» Randomized computation is often practically
(and possibly theoretically) more efficient;

» Asymptotic bounds vs true complexity:
constants matter!

11

Polynomial vs. exponential growth

{Harel 2000)
10%

10%
“]5()
192

1020

]ULS

A trillion|-

A billion

A million

/ SATISFIABILITY

m— exponential
polynomial

#

mber of
micrscconds
nee
Bang

Number of
Imicrosecunds
in one day

L+ Linear Programming,

Shortest path, etc.

Approximation Algorithms

Definition: Approximation Algorithms

An algorithm A is said to be a d-approximation algorithm if it runs in
polynomial time and for every problem instance 7t with optimal solution value
OPT(m)

minimization: % <6 &6>1
maximization: % >0 6<1

(& is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)

13

Definition: Polynomial approximation scheme

A family of approximation algorithms for a problem TT, {A.}¢, is called a
polynomial approximation scheme (PAS), if algorithm A, is a

(1 + €)-approximation algorithm and its running time is polynomial in the
size of the input for a fixed €

Definition: Fully polynomial approximation scheme

A family of approximation algorithms for a problem TT, {A¢}e, is called a fully
polynomial approximation scheme (FPAS), if algorithm A. is a

(1 + €)-approximation algorithm and its running time is polynomial in the
size of the input and 1/¢

14

Randomized Algorithms

Definition: Randomized Algorithms

Their running time depends on the random choices made.
Hence, the running time is a random variable.

In the case of randomized optimization heuristics
solution quality is also a random variable.

We distinguish:
» single-pass heuristics (denoted A*): have an embedded termination, for
example, upon reaching a certain state

(generalized optimization Las Vegas algorithms)

» asymptotic heuristics (denoted .A4*°): do not have an embedded
termination and they might improve their solution asymptotically

(both probabilistically approximately complete
and essentially incomplete)

15

Outline

2. Graphs

16

Graphs

Graphs are combinatorial structures useful to model several applications

Terminology:

>

vV v vy

G =(V,E), ECV XV, vertices, edges, n = |V|, m = |E|, digraphs,
undirected graphs, subgraph, induced subgraph

e = (u,v) € E, e incident on u and v; u,v adjacent, edge weight or cost
particular cases often omitted: self-loops, multiple parallel edges

degree, b, A, outdegree, indegree

path P =<vg,vy,...,vk >, (vo,v1) €E,..., (vk_1,Vvk) € E,

Representing Graphs

Operations:

>
>
>
>

access associated information
Navigation: access outgoing edges
Edge queries: given u and v is there an edge?

Update: add remove edges, vertices

How to choose?

Data Structures:

> it depends on the graphs and the

<WVvo,...,v1 > has length 2, < vg,v7,v2,vo > cycle, > Edge sequences application
> directed acyclic digraph) » if time and space not crucial no need to
. » Adjacency arrays .
» digraph strongly connected (Vu,v 3(uv)-path), strongly connected customize the structures
components . . > use interfaces that make easy to change
. : : » Adjacency lists
» G is a tree (3 path between any two vertices) <= G is connected and the data structure
has n — 1 .edges (:) Gis .connected and contains no cycles. > Adjacency matrix > libraries offer different choices (LEDA,
» parent, children, sibling, height, depth Java jdsl.graph)
17 18
Useful Graph Algorithms Outline
» Strongly connected components

Matching
Shortest Path
Minimum Spanning Tree

Max flow - Min cut

19

3. Solution Methods for Combinatorial Optimization

Overview

20

Methods and Algorithms

A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithmic model (or simply algorithm) is the instantiation of a method
on a certain problem TT.
The level of instantiation may vary:

» minimally instantiated (few details, algorithm template)

» lowly instantiated (which data structure to use)

» highly instantiated (programming tricks that give speedups)
>

maximally instantiated (details specific of a programming language and
computer architecture)

A Program is the formulation of an algorithm in a programming language.

21

Solution Methods

» Exact methods:
complete: guaranteed to eventually find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

v

Search algorithms (backtracking, branch and bound)
Dynamic programming

Constraint programming

Integer programming

Dedicated Algorithms

v vy VvVYyy

» Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/ “viggo/problemlist/compendium.html

» Heuristic (Approximate) methods:
incomplete: not guaranteed to find (optimal) solution,
and unable to prove that no solution exists
> Integer programming relaxations
» Randomized backtracking
» Heuristic algorithms

Outline

4. Generic Approaches to Combinatorial Optimization

23

Generic methods:

I'= Do not achieve same performance as specific algorithms

Iz Allow to save development time

24

