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Last Time

I Terminology: Combinatorial Problems

I Graph-vertex coloring

I Problem solving according Polya

I SAT problem

I Basic Notions in Algoritmics
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Basic Notions to Design and Analyze Algorithms

I Notation and terminology

I Machine models

I Pseudo-code

I Analysis of algorithms

I Computational complexity
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Good Algorithms

We say that an algorithm A is

Efficient = good = polynomial time = polytime
iff

there exists p(n) such that T(A) = O(p(n))

There are problems for which no polytime algorithm is known. This course is
about those problems.

Complexity theory classifies problems
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Computational Complexity

Equivalent Notions
Consider Decision Problems

I A problem Π is in P if ∃ algorithm A that finds a solution in polynomial
time.

I in NP if ∃ verification algorithm A(s, k) that verifies a binary certificate
(whether it is a solution to the problem) in polynomial time.

I Polynomial time reduction formally shows that one problem Π1 is at
least as hard as another Π2, to within a polynomial factor. (there exists
a polynomial time transformation) Π2 ≤P Π1 ⇒ Π2 is no more than a
polynomial harder than Π1.

I Π1 is in NP-complete if
1. Π1 ∈ NP
2. ∀Π2 ∈ NP Π2 ≤P Π1

I If Π1 satisfies property 2, but not necessarily property 1, we say that it is
NP-hard:
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Important concepts (continued):

I NP: Class of problems that can be solved in polynomial time by a
non-deterministic machine.
Note: non-deterministic 6= randomized; non-deterministic machines are
idealized models of computation that have
the ability to make perfect guesses.

I NP-complete: Among the most difficult problems in NP; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

I NP-hard: At least as difficult as the most difficult problems in NP, but
possibly not in NP (i.e., may have even worse complexity than
NP-complete problems).
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Many combinatorial problems are hard
but some problems can be solved efficiently

I Longest path problem is NP-hard
but not shortest path problem

I SAT for 3-CNF is NP-complete
but not 2-CNF (linear time algorithm)

I TSP is NP-hard, the associated decision problem (for any solution
quality) is NP-complete
but not the Euler tour problem

I TSP on Euclidean instances is NP-hard
but not where all vertices lie on a circle.
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An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/~viggo/problemlist/compendium.html
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Application Scenarios

Practically solving hard combinatorial problems:

I Average-case vs worst-case complexity
(e.g. Simplex Algorithm for linear optimization);

I Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

I Randomized computation is often practically
(and possibly theoretically) more efficient;

I Asymptotic bounds vs true complexity:
constants matter!
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Approximation Algorithms

Definition: Approximation Algorithms
An algorithm A is said to be a δ-approximation algorithm if it runs in
polynomial time and for every problem instance π with optimal solution value
OPT(π)

minimization: A(π)
OPT(π) ≤ δ δ ≥ 1

maximization: A(π)
OPT(π) ≥ δ δ ≤ 1

(δ is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)
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Definition: Polynomial approximation scheme
A family of approximation algorithms for a problem Π, {Aε}ε, is called a
polynomial approximation scheme (PAS), if algorithm Aε is a
(1+ ε)-approximation algorithm and its running time is polynomial in the
size of the input for a fixed ε

Definition: Fully polynomial approximation scheme
A family of approximation algorithms for a problem Π, {Aε}ε, is called a fully
polynomial approximation scheme (FPAS), if algorithm Aε is a
(1+ ε)-approximation algorithm and its running time is polynomial in the
size of the input and 1/ε
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Randomized Algorithms

Definition: Randomized Algorithms
Their running time depends on the random choices made.
Hence, the running time is a random variable.

In the case of randomized optimization heuristics
solution quality is also a random variable.

We distinguish:

I single-pass heuristics (denoted A⊥): have an embedded termination, for
example, upon reaching a certain state

(generalized optimization Las Vegas algorithms [B2])

I asymptotic heuristics (denoted A∞): do not have an embedded
termination and they might improve their solution asymptotically

(both probabilistically approximately complete
and essentially incomplete [B2])
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Graphs

Graphs are combinatorial structures useful to model several applications

Terminology:

I G = (V, E), E ⊆ V × V , vertices, edges, n = |V |,m = |E|, digraphs,
undirected graphs, subgraph, induced subgraph

I e = (u, v) ∈ E, e incident on u and v; u, v adjacent, edge weight or cost
I particular cases often omitted: self-loops, multiple parallel edges
I degree, δ, ∆, outdegree, indegree
I path P =< v0, v1, . . . , vk >, (v0, v1) ∈ E, . . . , (vk−1, vk) ∈ E,
< v0, . . . , v1 > has length 2, < v0, v1, v2, v0 > cycle,

I directed acyclic digraph
I digraph strongly connected (∀u, v ∃(uv)-path), strongly connected

components
I G is a tree (∃ path between any two vertices) ⇐⇒ G is connected and

has n− 1 edges ⇐⇒ G is connected and contains no cycles.
I parent, children, sibling, height, depth
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Representing Graphs

Operations:

I access associated information
I Navigation: access outgoing edges
I Edge queries: given u and v is there an edge?
I Update: add remove edges, vertices

Data Structures:

I Edge sequences

I Adjacency arrays

I Adjacency lists

I Adjacency matrix

How to choose?

I it depends on the graphs and the
application

I if time and space not crucial no need to
customize the structures

I use interfaces that make easy to change
the data structure

I libraries offer different choices (LEDA,
Java jdsl.graph)
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Useful Graph Algorithms

I Strongly connected components

I Matching

I Shortest Path

I Minimum Spanning Tree

I Max flow - Min cut
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Methods and Algorithms

A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithmic model (or simply algorithm) is the instantiation of a method
on a certain problem Π.
The level of instantiation may vary:

I minimally instantiated (few details, algorithm template)
I lowly instantiated (which data structure to use)
I highly instantiated (programming tricks that give speedups)
I maximally instantiated (details specific of a programming language and

computer architecture)

A Program is the formulation of an algorithm in a programming language.
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Solution Methods

I Exact methods:
complete: guaranteed to eventually find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

I Search algorithms (backtracking, branch and bound)
I Dynamic programming
I Constraint programming
I Integer programming
I Dedicated Algorithms

I Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/~viggo/problemlist/compendium.html

I Heuristic (Approximate) methods:
incomplete: not guaranteed to find (optimal) solution,
and unable to prove that no solution exists

I Integer programming relaxations
I Randomized backtracking
I Heuristic algorithms
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Generic methods:

U Do not achieve same performance as specific algorithms

D Allow to save development time
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