DM811

HEURISTICS AND LOCAL SEARCH ALGORITHMS
FOR COMBINATORIAL OPTIMZATION

Lecture 2
Basics (continued)
Classical Techniques

Marco Chiarandini

Outline

1. Basic Notions in Algorithmics

2. Graphs

3. Solution Methods for Combinatorial Optimization

Overview

4. Generic Approaches to Combinatorial Optimization

Last Time

v

v

v

v

v

Terminology: Combinatorial Problems
Graph-vertex coloring

Problem solving according Polya

SAT problem

Basic Notions in Algoritmics

Outline

1. Basic Notions in Algorithmics




Basic Notions to Design and Analyze Algorithms
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Notation and terminology

Machine models
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Analysis of algorithms

» Computational complexity

Good Algorithms

We say that an algorithm A is

Efficient = good = polynomial time = polytime
iff
there exists p(n) such that T(A) = O(p(n))

There are problems for which no polytime algorithm is known. This course is
about those problems.

Complexity theory classifies problems

Computational Complexity

Equivalent Notions
Consider Decision Problems

» A problem TT is in P if 3 algorithm A that finds a solution in polynomial
time.

» in NP if 3 verification algorithm A(s, k) that verifies a binary certificate
(whether it is a solution to the problem) in polynomial time.

» Polynomial time reduction formally shows that one problem TT; is at
least as hard as another TT,, to within a polynomial factor. (there exists
a polynomial time transformation) TT, <p TTy = TI, is no more than a
polynomial harder than TT;.
» TTy is in N'P-complete if
1. Tl e NP
2. VT, e NP 1T, <p T4

» If TT; satisfies property 2, but not necessarily property 1, we say that it is
NP-hard:

Important concepts (continued):

» NP: Class of problems that can be solved in polynomial time by a
non-deterministic machine.

Note: non-deterministic # randomized; non-deterministic machines are
idealized models of computation that have
the ability to make perfect guesses.

» N'P-complete: Among the most difficult problems in N'P; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

» N'P-hard: At least as difficult as the most difficult problems in N'P, but
possibly not in AP (i.e., may have even worse complexity than
N'P-complete problems).




Many combinatorial problems are hard
but some problems can be solved efficiently

» Longest path problem is N'P-hard
but not shortest path problem

» SAT for 3-CNF is N"P-complete
but not 2-CNF (linear time algorithm)

» TSP is N'P-hard, the associated decision problem (for any solution
quality) is N'P-complete
but not the Euler tour problem

» TSP on Euclidean instances is N'P-hard
but not where all vertices lie on a circle.

An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/ viggo/problemlist/compendium.html
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Application Scenarios

Practically solving hard combinatorial problems:

> Average-case vs worst-case complexity
(e.g. Simplex Algorithm for linear optimization);

» Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

» Randomized computation is often practically
(and possibly theoretically) more efficient;

» Asymptotic bounds vs true complexity:
constants matter!
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Polynomial vs. exponential growth
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Approximation Algorithms

Definition: Approximation Algorithms

An algorithm A is said to be a d-approximation algorithm if it runs in
polynomial time and for every problem instance 7t with optimal solution value
OPT(m)

minimization: % <6 &6>1
maximization: % >0 6<1

(& is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)
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Definition: Polynomial approximation scheme

A family of approximation algorithms for a problem TT, {A.}¢, is called a
polynomial approximation scheme (PAS), if algorithm A, is a

(1 + €)-approximation algorithm and its running time is polynomial in the
size of the input for a fixed €

Definition: Fully polynomial approximation scheme

A family of approximation algorithms for a problem TT, {A¢}e, is called a fully
polynomial approximation scheme (FPAS), if algorithm A. is a

(1 + €)-approximation algorithm and its running time is polynomial in the
size of the input and 1/¢
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Randomized Algorithms

Definition: Randomized Algorithms

Their running time depends on the random choices made.
Hence, the running time is a random variable.

In the case of randomized optimization heuristics
solution quality is also a random variable.

We distinguish:
» single-pass heuristics (denoted A*): have an embedded termination, for
example, upon reaching a certain state

(generalized optimization Las Vegas algorithms )

» asymptotic heuristics (denoted .A4*°): do not have an embedded
termination and they might improve their solution asymptotically

(both probabilistically approximately complete
and essentially incomplete )
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2. Graphs
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Graphs

Graphs are combinatorial structures useful to model several applications

Terminology:

>

vV v vy

G =(V,E), ECV XV, vertices, edges, n = |V|, m = |E|, digraphs,
undirected graphs, subgraph, induced subgraph

e = (u,v) € E, e incident on u and v; u,v adjacent, edge weight or cost
particular cases often omitted: self-loops, multiple parallel edges

degree, b, A, outdegree, indegree

path P =<vg,vy,...,vk >, (vo,v1) €E,..., (vk_1,Vvk) € E,

Representing Graphs

Operations:

>
>
>
>

access associated information
Navigation: access outgoing edges
Edge queries: given u and v is there an edge?

Update: add remove edges, vertices

How to choose?

Data Structures:

> it depends on the graphs and the

<WVvo,...,v1 > has length 2, < vg,v7,v2,vo > cycle, > Edge sequences application
> directed acyclic digraph ) » if time and space not crucial no need to
. » Adjacency arrays .
» digraph strongly connected (Vu,v 3(uv)-path), strongly connected customize the structures
components . . > use interfaces that make easy to change
. : : » Adjacency lists
» G is a tree (3 path between any two vertices) <= G is connected and the data structure
has n — 1 .edges (:) Gis .connected and contains no cycles. > Adjacency matrix > libraries offer different choices (LEDA,
» parent, children, sibling, height, depth Java jdsl.graph)
17 18
Useful Graph Algorithms Outline
» Strongly connected components

Matching
Shortest Path
Minimum Spanning Tree

Max flow - Min cut
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3. Solution Methods for Combinatorial Optimization

Overview

20




Methods and Algorithms

A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithmic model (or simply algorithm) is the instantiation of a method
on a certain problem TT.
The level of instantiation may vary:

» minimally instantiated (few details, algorithm template)

» lowly instantiated (which data structure to use)

» highly instantiated (programming tricks that give speedups)
>

maximally instantiated (details specific of a programming language and
computer architecture)

A Program is the formulation of an algorithm in a programming language.
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Solution Methods

» Exact methods:
complete: guaranteed to eventually find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

v

Search algorithms (backtracking, branch and bound)
Dynamic programming

Constraint programming

Integer programming

Dedicated Algorithms

v vy VvVYyy

» Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/ “viggo/problemlist/compendium.html

» Heuristic (Approximate) methods:
incomplete: not guaranteed to find (optimal) solution,
and unable to prove that no solution exists
> Integer programming relaxations
» Randomized backtracking
» Heuristic algorithms
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4. Generic Approaches to Combinatorial Optimization
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Generic methods:

I'= Do not achieve same performance as specific algorithms

Iz Allow to save development time
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