
DM811
HEURISTICS AND LOCAL SEARCH ALGORITHMS

FOR COMBINATORIAL OPTIMZATION

Lecture 2

Basics (continued)
Classical Techniques

Marco Chiarandini

Outline

1. Basic Notions in Algorithmics

2. Graphs

3. Solution Methods for Combinatorial Optimization
Overview

4. Generic Approaches to Combinatorial Optimization

2

Last Time

I Terminology: Combinatorial Problems

I Graph-vertex coloring

I Problem solving according Polya

I SAT problem

I Basic Notions in Algoritmics

3

Outline

1. Basic Notions in Algorithmics

2. Graphs

3. Solution Methods for Combinatorial Optimization
Overview

4. Generic Approaches to Combinatorial Optimization

4

Basic Notions to Design and Analyze Algorithms

I Notation and terminology

I Machine models

I Pseudo-code

I Analysis of algorithms

I Computational complexity

5

Good Algorithms

We say that an algorithm A is

Efficient = good = polynomial time = polytime
iff

there exists p(n) such that T(A) = O(p(n))

There are problems for which no polytime algorithm is known. This course is
about those problems.

Complexity theory classifies problems

6

Computational Complexity

Equivalent Notions
Consider Decision Problems

I A problem Π is in P if ∃ algorithm A that finds a solution in polynomial
time.

I in NP if ∃ verification algorithm A(s, k) that verifies a binary certificate
(whether it is a solution to the problem) in polynomial time.

I Polynomial time reduction formally shows that one problem Π1 is at
least as hard as another Π2, to within a polynomial factor. (there exists
a polynomial time transformation) Π2 ≤P Π1 ⇒ Π2 is no more than a
polynomial harder than Π1.

I Π1 is in NP-complete if
1. Π1 ∈ NP
2. ∀Π2 ∈ NP Π2 ≤P Π1

I If Π1 satisfies property 2, but not necessarily property 1, we say that it is
NP-hard:

7

Important concepts (continued):

I NP: Class of problems that can be solved in polynomial time by a
non-deterministic machine.
Note: non-deterministic 6= randomized; non-deterministic machines are
idealized models of computation that have
the ability to make perfect guesses.

I NP-complete: Among the most difficult problems in NP; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

I NP-hard: At least as difficult as the most difficult problems in NP, but
possibly not in NP (i.e., may have even worse complexity than
NP-complete problems).

8

Many combinatorial problems are hard
but some problems can be solved efficiently

I Longest path problem is NP-hard
but not shortest path problem

I SAT for 3-CNF is NP-complete
but not 2-CNF (linear time algorithm)

I TSP is NP-hard, the associated decision problem (for any solution
quality) is NP-complete
but not the Euler tour problem

I TSP on Euclidean instances is NP-hard
but not where all vertices lie on a circle.

9

An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/~viggo/problemlist/compendium.html

10

Application Scenarios

Practically solving hard combinatorial problems:

I Average-case vs worst-case complexity
(e.g. Simplex Algorithm for linear optimization);

I Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

I Randomized computation is often practically
(and possibly theoretically) more efficient;

I Asymptotic bounds vs true complexity:
constants matter!

11

Approximation Algorithms

Definition: Approximation Algorithms
An algorithm A is said to be a δ-approximation algorithm if it runs in
polynomial time and for every problem instance π with optimal solution value
OPT(π)

minimization: A(π)
OPT(π) ≤ δ δ ≥ 1

maximization: A(π)
OPT(π) ≥ δ δ ≤ 1

(δ is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)

13

Definition: Polynomial approximation scheme
A family of approximation algorithms for a problem Π, {Aε}ε, is called a
polynomial approximation scheme (PAS), if algorithm Aε is a
(1+ ε)-approximation algorithm and its running time is polynomial in the
size of the input for a fixed ε

Definition: Fully polynomial approximation scheme
A family of approximation algorithms for a problem Π, {Aε}ε, is called a fully
polynomial approximation scheme (FPAS), if algorithm Aε is a
(1+ ε)-approximation algorithm and its running time is polynomial in the
size of the input and 1/ε

14

Randomized Algorithms

Definition: Randomized Algorithms
Their running time depends on the random choices made.
Hence, the running time is a random variable.

In the case of randomized optimization heuristics
solution quality is also a random variable.

We distinguish:

I single-pass heuristics (denoted A⊥): have an embedded termination, for
example, upon reaching a certain state

(generalized optimization Las Vegas algorithms [B2])

I asymptotic heuristics (denoted A∞): do not have an embedded
termination and they might improve their solution asymptotically

(both probabilistically approximately complete
and essentially incomplete [B2])

15

Outline

1. Basic Notions in Algorithmics

2. Graphs

3. Solution Methods for Combinatorial Optimization
Overview

4. Generic Approaches to Combinatorial Optimization

16

Graphs

Graphs are combinatorial structures useful to model several applications

Terminology:

I G = (V, E), E ⊆ V × V , vertices, edges, n = |V |,m = |E|, digraphs,
undirected graphs, subgraph, induced subgraph

I e = (u, v) ∈ E, e incident on u and v; u, v adjacent, edge weight or cost
I particular cases often omitted: self-loops, multiple parallel edges
I degree, δ, ∆, outdegree, indegree
I path P =< v0, v1, . . . , vk >, (v0, v1) ∈ E, . . . , (vk−1, vk) ∈ E,
< v0, . . . , v1 > has length 2, < v0, v1, v2, v0 > cycle,

I directed acyclic digraph
I digraph strongly connected (∀u, v ∃(uv)-path), strongly connected

components
I G is a tree (∃ path between any two vertices) ⇐⇒ G is connected and

has n− 1 edges ⇐⇒ G is connected and contains no cycles.
I parent, children, sibling, height, depth

17

Representing Graphs

Operations:

I access associated information
I Navigation: access outgoing edges
I Edge queries: given u and v is there an edge?
I Update: add remove edges, vertices

Data Structures:

I Edge sequences

I Adjacency arrays

I Adjacency lists

I Adjacency matrix

How to choose?

I it depends on the graphs and the
application

I if time and space not crucial no need to
customize the structures

I use interfaces that make easy to change
the data structure

I libraries offer different choices (LEDA,
Java jdsl.graph)

18

Useful Graph Algorithms

I Strongly connected components

I Matching

I Shortest Path

I Minimum Spanning Tree

I Max flow - Min cut

19

Outline

1. Basic Notions in Algorithmics

2. Graphs

3. Solution Methods for Combinatorial Optimization
Overview

4. Generic Approaches to Combinatorial Optimization

20

Methods and Algorithms

A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithmic model (or simply algorithm) is the instantiation of a method
on a certain problem Π.
The level of instantiation may vary:

I minimally instantiated (few details, algorithm template)
I lowly instantiated (which data structure to use)
I highly instantiated (programming tricks that give speedups)
I maximally instantiated (details specific of a programming language and

computer architecture)

A Program is the formulation of an algorithm in a programming language.

21

Solution Methods

I Exact methods:
complete: guaranteed to eventually find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

I Search algorithms (backtracking, branch and bound)
I Dynamic programming
I Constraint programming
I Integer programming
I Dedicated Algorithms

I Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/~viggo/problemlist/compendium.html

I Heuristic (Approximate) methods:
incomplete: not guaranteed to find (optimal) solution,
and unable to prove that no solution exists

I Integer programming relaxations
I Randomized backtracking
I Heuristic algorithms

22

Outline

1. Basic Notions in Algorithmics

2. Graphs

3. Solution Methods for Combinatorial Optimization
Overview

4. Generic Approaches to Combinatorial Optimization

23

Generic methods:

U Do not achieve same performance as specific algorithms

D Allow to save development time

24

