
DM811
HEURISTICS AND LOCAL SEARCH ALGORITHMS

FOR COMBINATORIAL OPTIMZATION

Lecture 3

General Methods and Search
Algorithms

Marco Chiarandini

Outline

1. Solution Methods for Combinatorial Optimization
Overview

2. Generic Approaches to Combinatorial Optimization

3. Complete Search Methods
General Search Methods and Constraint Programming

2

Outline

1. Solution Methods for Combinatorial Optimization
Overview

2. Generic Approaches to Combinatorial Optimization

3. Complete Search Methods
General Search Methods and Constraint Programming

3

Methods and Algorithms

A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithm (or algorithmic model) is a problem-specific template that
leaves some practical details unspecified.
The level of detail may vary:

I minimally instantiated (few details, algorithm template)
I lowly instantiated (which data structure to use)
I highly instantiated (programming tricks that give speedups)
I maximally instantiated (details specific of a programming language and

computer architecture)

A Program is the formulation of an algorithm in a programming language.

An algorithm can thus be regarded as a class of computer programs
(its implementations)

4



Solution Methods

I Exact methods:
complete: guaranteed to eventually find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

I Search algorithms (backtracking, branch and bound)
I Dynamic programming
I Constraint programming
I Integer programming
I Dedicated Algorithms

I Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/~viggo/problemlist/compendium.html

I Heuristic (Approximate) methods:
incomplete: not guaranteed to find (optimal) solution,
and unable to prove that no solution exists

I Integer programming relaxations
I Randomized backtracking
I Heuristic algorithms

5

Outline

1. Solution Methods for Combinatorial Optimization
Overview

2. Generic Approaches to Combinatorial Optimization

3. Complete Search Methods
General Search Methods and Constraint Programming

6

Problem specific methods:

I Dynamic programming (knapsack)

I Dedicated algorithms (shortest path)

Generic methods:

U Allow to save development time
D Do not achieve same performance as specific algorithms

I Integer Programming (knapsack)

I Search Methods and Constraint Programming
(constraint satisfaction problem)

Note: In this course we use Search Methods and Constraint Programming,
that are generic methods, to learn guidelines in the design of problem-specific
construction heuristics.

7

Knapsack

Knapsack
Given: a knapsack with maximum weight W and a set of n items
{1, 2, . . . , n}, with each item j associated to a profit pj and to a weight wj.

Task: Find the subset of items of maximal total profit and whose total
weight is not greater than W.

8



Bin Packing

One dimensional
Given: A set L = (a1, a2, . . . , an) of items, each with a size s(ai) ∈ (0, 1]
and an unlimited number of unit-capacity bins B1, B2, . . . , Bm.

Task: Pack all the items into a minimum number of unit-capacity bins
B1, B2, . . . , Bm.

Related: cutting stock

Three dimensional
Given: A set L = (a1, a2, . . . , an) of rectangular boxes, each with a width
wj, height hj and depth dj and an unlimited number of three-dimensional
bins B1, B2, . . . , Bm of width W, height H, and depth D.

Task: Pack all the boxes into a minimum number of bins, such that the
original orientation is respected (no rotation of the boxes is allowed)

9

Constraint Satisfaction Problem

I Input:

I a set of variables X1, X2, . . . , Xn

I each variable has a non-empty domain Di of possible values
I a set of constraints. Each constraint Ci involves some subset of the

variables and specifies the allowed combination of values for that subset.

[A constraint C on variables Xi and Xj, C(Xi, Xj), defines the subset of
the Cartesian product of variable domains Di ×Dj of the consistent
assignments of values to variables. A constraint C on variables Xi, Xj is
satisfied by a pair of values vi, vj if (vi, vj) ∈ C(Xi, Xj).]

I Task:

I find an assignment of values to all the variables {Xi = vi, Xj = vj, . . .}

I such that it is consistent, that is, it does not violate any constraint

If assignments are not all equally good but some are preferable this is
reflected in an objective function.

10

Outline

1. Solution Methods for Combinatorial Optimization
Overview

2. Generic Approaches to Combinatorial Optimization

3. Complete Search Methods
General Search Methods and Constraint Programming

11

Search Methods

I initial state: the empty assignment {} in which all variables are
unassigned

I successor function: a value can be assigned to any unassigned variable,
provided that it does not conflict with previously assigned variables

I goal test: the current assignment is complete
I path cost: a constant cost

Two search paradigms:
I search tree of depth n

I complete state formulation: local search

12



General Purpose Search Algorithms

Search algorithms
tree with branching factor at the top level nd

at the next level (n − 1)d.
The tree has n! · dn even if only dn possible complete assignments.

I CSP is commutative in the order of application of any given set of
action. (the order of the assignment does not influence)

I Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each node
in the search tree.

Backtracking search
depth first search that chooses one variable at a time and backtracks when a
variable has no legal values left to assign.

13

Backtrack Search

14

Backtrack Search

I No need to copy solutions all the times but rather extensions and undo
extensions

I Since CSP is standard then the alg is also standard and can use general
purpose algorithms for initial state, successor function and goal test.

I Backtracking is uninformed and complete. Other search algorithms may
use information in form of heuristics.

15

Uninformed Complete Tree Search

I Breadth-first search
I Depth-first search

16



Informed Complete Tree Search

I Informed search algorithm: exploit problem-specific knowledge
I Best-first search: node that “appears” to be the best selected for

expansion based on an evaluation function f(x)

I Implemented through a priority queue of nodes in ascending order of f

I See later discussion on A∗ search

17

General Purpose Backtracking Methods

1) Which variable should we assign next, and in what order should its
values be tried?

2) What are the implications of the current variable assignments for the
other unassigned variables?

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

In short, Constraint Programming is a logic programming that express rules
and constraints and exploits point 2).

In the general case, at point 1) we use heuristic rules. If we do not backtrack
(point 3) then we have a construction heuristic.

18

1) Which variable should we assign next,
and in what order should its values be tried?

I Select-Initial-Unassigned-Variable

I Select-Unassigned-Variable
I most constrained first = fail-first heuristic

= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)

I least constrained last

Eg.: max degree, farthest, earliest due date, etc.

I Order-Domain-Values
I greedy
I least constraining value heuristic

(leaves maximum flexibility for subsequent variable assignments)
I maximal regret

implements a kind of look ahead

NB: If we search for all the solutions or a solution does not exists, then the
ordering does not matter.

19

Constraint Programming (1)

Types of Variables and Values

I Discrete variables with finite domain:
complete enumeration is O(dn)

I Discrete variables with infinite domains:
Impossible by complete enumeration.
Instead a constraint language (constraint logic programming and
constraint reasoning)
Eg, project planning.

Sj + pj ≤ Sk

NB: if only linear constraints, then integer linear programming

I variables with continuous domains
NB: if only linear constraints or convex functions then mathematical
programming

20



Constraint Programming (3)

Types of constraints

I Unary constraints

I Binary constraints (constraint graph)

I Higher order (constraint hypergraph)
Eg, Alldiff() Atmost()
Every higher order constraint can be reconduced to binary
(you may need auxiliary constraints)

I Preference constraints
cost on individual variable assignments

22

2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints
I Implicit in Select-Unassigned-Variable

I Forward checking (coupled with MRV)

I Constraint propagation
I arc consistency: force all (directed) arcs uv to be consistent: ∃ a value in

D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (MAC, Maintaining Arc Consistency)

Applied repeatedly

I k-consistency: if for any set of k − 1 variables, and for any consistent
assignment to those variables, a consistent value can always be assigned
to any k-th variable.

determining the appropriate level of consistency checking is mostly an
empirical science.

23

Arc Consistency Algorithm: AC-3

24

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
I chronological backtracking, the most recent decision point is revisited
I backjumping, backtracks to the most recent variable in the conflict set

(set of previously assigned variables connected to X by constraints).

every branch pruned by backjumping is also pruned by forward checking

idea remains: backtrack to reasons of failure.

25



An Empirical Comparison

Median number of consistency checks

26


