
DM811
HEURISTICS AND LOCAL SEARCH ALGORITHMS

FOR COMBINATORIAL OPTIMZATION

Lecture 5

Construction Heuristics

Marco Chiarandini

Outline

1. Complete Search Methods
A∗ best-first search

2. Incomplete Search Methods

3. Other Tree Search Based Incomplete Methods
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

4. Construction Heuristics for the Traveling Salesman Problem

5. Preprocessing Rules

6. Software Development

2

Outline

1. Complete Search Methods
A∗ best-first search

2. Incomplete Search Methods

3. Other Tree Search Based Incomplete Methods
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

4. Construction Heuristics for the Traveling Salesman Problem

5. Preprocessing Rules

6. Software Development

3

Last Time

I Generic Methods
(Branch and bound, Dynamic Programming,
Linear Programming, Integer Programming)

I Search Methods and Constraint Programming

4

Informed Complete Tree Search

A∗ search
I The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.

I It is optimal if h(x) is an
I admissible heuristic: never overestimates the cost to reach the goal
I consistent: h(n) ≤ c(n, a, n ′) + h(n ′)

5

A∗ best-first search

6

A∗ search
Possible choices for admissible heuristic functions

I optimal solution to an easily solvable relaxed problem
I optimal solution to an easily solvable subproblem
I learning from experience by gathering statistics on state features
I preferred heuristics functions with higher values (provided they do not

overestimate)
I if several heuristics available h1, h2, . . . , hm and not clear which is the

best then:

h(x) = max{h1(x), . . . , hm(x)}

7

A∗ search
Drawbacks

I Time complexity: In the worst case, the number of nodes expanded is
exponential, but it is polynomial when the heuristic function h meets the
following condition:

|h(x) − h∗(x)| ≤ O(logh∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.

I Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A∗ (IDA∗),
memory-bounded A∗ (MA∗) and simplified memory bounded A∗ (SMA∗)
and recursive best-first search (RBFS)

8

Outline

1. Complete Search Methods
A∗ best-first search

2. Incomplete Search Methods

3. Other Tree Search Based Incomplete Methods
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

4. Construction Heuristics for the Traveling Salesman Problem

5. Preprocessing Rules

6. Software Development

9

Incomplete Search Paradigm

Heuristic: a common-sense rule (or set of rules) intended to increase the
probability of solving some problem

Construction heuristics
They are closely related to tree search techniques but correspond to a single
path from root to leaf

I search space = partial candidate solutions
I search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
while s is not a complete solution do

choose a solution component c
add the solution component to s

10

Systematic search is often better suited when ...
I proofs of insolubility or optimality are required;
I time constraints are not critical;
I problem-specific knowledge can be exploited.

Heuristics are often better suited when ...
I non linear constraints and non linear objective function;
I reasonably good solutions are required within a short time;
I problem-specific knowledge is rather limited.

Complementarity:
Local and systematic search can be fruitfully combined, e.g., by using local
search for finding solutions whose optimality is proved using systematic
search.

11

Best-first search (aka greedy)

12

Best-first search (aka greedy)

12

Greedy algorithms
I Strategy: always make the choice that is best at the moment.
I They are not generally guaranteed to find globally optimal solutions

(but sometimes they do: Minimum Spanning Tree, Single Source
Shortest Path, etc.)

13

Bounded backtrack

14

Credit-based search

I Key idea: important decisions are
at the top of the tree

I Credit = backtracking steps
I Credit distribution: one half at

the best child the other divided
among the other children.

I When credits run out follow
deterministic best-search

I In addition: allow limited
backtracking steps (eg, 5) at the
bottom

I Control parameters: initial credit,
the distribution of credit among
the children, and the amount of
local backtracking at the bottom.

15

Limited Discrepancy Search (LDS)

I Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

I Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

I Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

I Control parameter: the number of
discrepancies

16

Barrier Search

I Extension of LDS

I Key idea: we may encounter
several, independent problems in
our heuristic choice. Each of
these problems can be overcome
locally with a limited amount of
backtracking.

I At each barrier start LDS-based
backtracking

17

N-Queens problem
Input: A chessboard of size N×N
Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

http://en.wikipedia.org/wiki/Eight_queens_puzzle

Examples of application of incomplete search methods:
http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_
search/main.htm

18

N2 Queens – queen graph
coloring problem
Input: A chessboard of size N×N
Question: Given such a chessboard, is
it possible to place N sets of N queens
on the board so that no two queens of
the same set are in the same row,
column, or diagonal?

The answer is yes ⇐⇒ the graph has coloring number N.
The graph is N-colourable whenever N mod 6 is 1 or 5 (but the condition is
only sufficient and not necessary)

http://users.encs.concordia.ca/~chvatal/queengraphs.html

19

Randomization in Tree Search Methods

I Dynamical selection of solution components
in construction or choice points in backtracking.

I Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

I Randomization can also be used in incomplete search

20

Outline

1. Complete Search Methods
A∗ best-first search

2. Incomplete Search Methods

3. Other Tree Search Based Incomplete Methods
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

4. Construction Heuristics for the Traveling Salesman Problem

5. Preprocessing Rules

6. Software Development

21

Rollout/Pilot Method

Derived from A∗

I Each candidate solution is a collection of m components
s = (s1, s2, . . . , sm).

I Master process add components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

I At the k-th iteration the master process evaluates seemly feasible
components to add based on a look-ahead strategy based on heuristic
algorithms.

I The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

I Sub-heuristics are combined in H(Sk+1) by
I weighted sum
I minimal value

22

Speed-ups:

I halt whenever cost of current partial solution exceeds current upper
bound

I evaluate only a fraction of possible components

23

Beam Search

Possible extension of tree based construction heuristics:
I maintains a set B of bw (beam width) partial candidate solutions

I at each iteration extend each solution from B in fw (filter width)
possible ways

I rank each bw× fw candidate solutions and take the best bw partial
solutions

I complete candidate solutions obtained by B are maintained in Bf

I Stop when no partial solution in B is to be extend

24

Iterated Greedy

Key idea: use greedy construction

I alternation of Construction and Deconstruction phases
I an acceptance criterion decides whether the search continues from the

new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

25

Extension: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to
exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create
troubles.

Squeaky Wheel
I Constructor: greedy algorithm on a sequence of problem elements.
I Analyzer: assign a penalty to problem elements that contribute to flaws

in the current solution.
I Prioritizer: uses the penalties to modify the previous sequence of problem

elements. Elements with high penalty are moved toward the front.

Hybridize with subsidiary perturbative search

Example: on the SMTWTP

26

Greedy Randomized Adaptive Search Procedure (GRASP)

Key Idea: Combine randomized constructive search with subsequent
perturbative search.

Motivation:

I Candidate solutions obtained from construction heuristics can often be
substantially improved by perturbative search.

I Perturbative search methods typically often require substantially fewer
steps to reach high-quality solutions
when initialized using greedy constructive search rather than
random picking.

I By iterating cycles of constructive + perturbative search, further
performance improvements can be achieved.

27

Greedy Randomized “Adaptive” Search Procedure (GRASP):
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary greedy randomized constructive search
||b perform subsidiary perturbative search on s

Note:

I Randomization in constructive search ensures that a large number of
good starting points for subsidiary perturbative search is obtained.

I Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
given partial candidate solution r may depend on
solution components present in r.

I Variants of GRASP without perturbative search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with perturbative search.

28

Restricted candidate lists (RCLs)

I Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

I RCLs are constructed in each step using a heuristic function h.

I RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

I RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

29

Example: GRASP for SAT [Resende and Feo, 1996]

I Given: CNF formula F over variables x1, . . . , xn

I Subsidiary constructive search:

I start from empty variable assignment

I in each step, add one atomic assignment (i.e., assignment of
a truth value to a currently unassigned variable)

I heuristic function h(i, v) := number of clauses that
become satisfied as a consequence of assigning xi := v

I RCLs based on cardinality restriction (contain fixed number k
of atomic assignments with largest heuristic values)

I Subsidiary perturbative search:

I iterative best improvement using 1-flip neighborhood

I terminates when model has been found or given number of
steps has been exceeded

30

GRASP has been applied to many combinatorial problems, including:

I SAT, MAX-SAT
I various scheduling problems

Extensions and improvements of GRASP:

I reactive GRASP (e.g., dynamic adaptation of α
during search)

31

Adaptive Iterated Construction Search

Key Idea: Alternate construction and perturbative local search phases as in
GRASP, exploiting experience gained during the search process.

Realisation:

I Associate weights with possible decisions made during constructive
search.

I Initialize all weights to some small value τ0 at beginning of search
process.

I After every cycle (= constructive + perturbative local search phase),
update weights based on solution quality and solution components of
current candidate solution.

32

Adaptive Iterated Construction Search (AICS):
initialise weights
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary randomized constructive search
|||| perform subsidiary local search on s
||b adapt weights based on s

33

Subsidiary constructive search:

I The solution component to be added in each step of constructive search
is based on weights and
heuristic function h.

I h can be standard heuristic function as, e.g., used by
greedy construction heuristics, GRASP or tree search.

I It is often useful to design solution component selection in constructive
search such that any solution component may be chosen (at least with
some small probability) irrespective of
its weight and heuristic value.

34

Subsidiary perturbative local search:

I As in GRASP, perturbative local search phase is typically important for
achieving good performance.

I Can be based on Iterative Improvement or more advanced LS method
(the latter often results in better performance).

I Tradeoff between computation time used in construction phase vs local
search phase (typically optimized empirically, depends on problem
domain).

35

Weight updating mechanism:

I Typical mechanism: increase weights of all solution components
contained in candidate solution obtained from local search.

I Can also use aspects of search history; e.g., current incumbent candidate
solution can be used as basis for
weight update for additional intensification.

36

Example: A simple AICS algorithm for the TSP (1)

(Based on Ant System for the TSP [Dorigo et al., 1991].)

I Search space and solution set as usual (all Hamiltonian cycles in given
graph G).

I Associate weight τij with each edge (i, j) in G.

I Use heuristic values ηij := 1/w((i, j)).

I Initialize all weights to a small value τ0 (parameter).

I Constructive search starts with randomly chosen vertex
and iteratively extends partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]β∑

l∈N ′(i)[τil]
α · [ηij]β

37

Example: A simple AICS algorithm for the TSP (2)

I Subsidiary local search = iterative improvement based on standard
2-exchange neighborhood (until local minimum
is reached).

I Weight update according to

τij := (1− ρ) · τij + ∆(i, j, s ′)

where ∆(i, j, s ′) := 1/f(s ′), if edge (i, j) is contained in
the cycle represented by s ′, and 0 otherwise.

I Criterion for weight increase is based on intuition that edges contained in
short round trips should be preferably used in subsequent constructions.

38

Multilevel Refinement

Key idea: make the problem recursively less refined creating a hierarchy of
approximations of the original problem.

I an initial solution is found on the original problem or at a refined level
I solutions are iteratively refined at each level
I use of projection operators to transfer the solution from one level to

another

Multilevel Refinement
while Termination criterion is not satisfied do

coarse the problem π0 into πi, i = 0, . . . , k successive non degenerate
problems
i = k

determine an initial candidate solution for πk
repeat

i = i− 1
extend the solution found in πi+1 to πi
use subsidiary perturbative search to refine the solution on πi

until i ≥ 0 ;
39

Example: Multilevel Refinement for TSP

Coarsen: fix some edges and contract vertices
Solve: matching

(always match vertices with the nearest unmatched neighbors)
Extend: uncontract vertices
Refine: LK heuristic

40

Note
I crucial point: the solution to each refined problem must contain a

solution of the original problem (even if it is a poor solution)

Applications to

I Graph Partitioning
I Traveling Salesman
I Graph Coloring

41

Outline

1. Complete Search Methods
A∗ best-first search

2. Incomplete Search Methods

3. Other Tree Search Based Incomplete Methods
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

4. Construction Heuristics for the Traveling Salesman Problem

5. Preprocessing Rules

6. Software Development

42

Construction Heuristics

Construction heuristics specific for TSP
I Heuristics that Grow Fragments

I Nearest neighborhood heuristics
I Double-Ended Nearest Neighbor heuristic
I Multiple Fragment heuristic (aka, greedy heuristic)

I Heuristics that Grow Tours
I Nearest Addition
I Farthest Addition
I Random Addition
I Clarke-Wright savings heuristic

I Nearest Insertion
I Farthest Insertion
I Random Insertion

I Heuristics based on Trees
I Minimum span tree heuristic
I Christofides’ heuristics
I Fast recursive partitioning heuristic

43

Construction Heuristics for TSP

44

Construction Heuristics for TSP

45

Construction Heuristics for TSP

46

Construction Heuristics for TSP

47

Construction Heuristics for TSP

48

Construction Heuristics for TSP

49

Construction Heuristics for TSP

50

Outline

1. Complete Search Methods
A∗ best-first search

2. Incomplete Search Methods

3. Other Tree Search Based Incomplete Methods
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

4. Construction Heuristics for the Traveling Salesman Problem

5. Preprocessing Rules

6. Software Development

51

Preprocessing Rules

Polynomial simplifications

SAT (CNF formulae)

I elimination of duplicates
I elimination tautological clauses
I elimination subsumed clauses
I elimination clauses with pure literals
I elimination unit clauses and unit propagation

k-coloring
I Remove under-constrained nodes
I Remove subsumed nodes
I Merge nodes that must have the same color

52

Outline

1. Complete Search Methods
A∗ best-first search

2. Incomplete Search Methods

3. Other Tree Search Based Incomplete Methods
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

4. Construction Heuristics for the Traveling Salesman Problem

5. Preprocessing Rules

6. Software Development

53

Software Development: Extreme Programming & Scrum

Planning
Release planning creates the schedule // Make frequent small releases //
The project is divided into iterations

Designing
Simplicity // No functionality is added early // Refactor: eliminate unused
functionality and redundancy

Coding
Code must be written to agreed standards // Code the unit test first // All
production code is pair programmed // Leave optimization till last // No
overtime

Testing
All code must have unit tests // All code must pass all unit tests before it
can be released // When a bug is found tests are created

54

