DM811

HEURISTICS AND LOCAL SEARCH ALGORITHMS
FOR COMBINATORIAL OPTIMZATION

Lecture 6

Local Search

Marco Chiarandini

slides based on
http://www.sls-book.net/
H. Hoos and T. Stiitzle, 2005

Outline

1. Local Search
Introduction
Components
Iterative Improvement
Neighborhoods Representations

N

The Single Machine Total Tardiness Problem

Given: a set of n jobs {J7,...,]n} to be processed on a single machine
and for each job J; a processing time p;, a weight w; and a due date d;.

Task: Find a schedule that minimizes
the total weighted tardiness Y I ; w;i - Ty
where T; = {C; — di, 0} (C; completion time of job J;)

Example:
Job Ji T2 I3 Ja Js Je
Processing Tme 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 5 1 2
Sequence 7 = J3,]J1,]5,J4,]1,76

Job Js v Js Ja J1 Js

Ci 2 5 9 12 14 17

T; o 0 2 3 1 o0

Outline

1. Local Search
Introduction
Components
Iterative Improvement
Neighborhoods Representations

Local Search Paradigm

search space = complete candidate solutions

search step = modification of one or more solution components

iteratively generate and evaluate candidate solutions

» decision problems: evaluation = test if solution

» optimization problems: evaluation = check objective function value
evaluating candidate solutions is typically computationally much cheaper
than finding (optimal) solutions

Iterative Improvement (I1):

determine initial candidate solution s
while s has better neighbors do
L choose a neighbor s’ of s such that f(s’) < f(s)
s:=s’

Local search — global view

. . > vertices: candidate solutions
(search positions)

» vertex labels: evaluation
function

> edges: connect “neighboring”
positions

» s: (optimal) solution

» c: current search position

Definitions: Local Search Algorithm (1)

Given a (combinatorial) optimization problem TT and one of its instances 7t:

» search space S(m)

specified by candidate solution representation:

discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array (sequence of all truth assignments

to propositional variables)

Note: solution set S’(7t) C S(m)
(e.g., for SAT: models of given formula)

evaluation function f(m) : S(w) = R
(e.g., for SAT: number of false clauses)

neighborhood function, N (7) : S +— 25(7)
(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

Definition: Local Search Algorithm (2)

set of memory states M ()
(may consist of a single state, for LS algorithms that
do not use memory)

initialization function init : () — P(S(m) x M(m))
(specifies probability distribution over initial search positions and
memory states)

step function step : S(7t) x M(7) — P(S(m) x M(m))
(maps each search position and memory state onto
probability distribution over subsequent, neighboring
search positions and memory states)

termination predicate terminate : S(71) x M(m) — P({T, L})
(determines the termination probability for each
search position and memory state)

procedure LS-Decision()
input: problem instance 1t € Tl
output: solution s € S’ () or ()

(s,m) := init(m);

while not terminate(7, s,m) do
(s,m) := step(m, s,m);
end

if s € S’(m) then
return s
else
return ()
end
end LS-Decision

procedure LS-Minimization(mt")
input: problem instance m’' € 11’
output: solutions € S’(m’) or
(s, m) := init(m’);
S:=s;
while not terminate(7t’, s, m) do
(s, m) := step(n’, s,m);
if f(rt',s) < f(nt’,) then
S:=s;
end
end
if s € S’(n’) then
return §
else
return ()
end
end LS-Minimization

10

Definition: Local Search Algorithm

For given problem instance 7t
» search space S(m)
» solution set S’(7t) C S(m)
» neighborhood relation A/(7t) C S(7t) x S(m)
» evaluation function f(7t): S — R
> set of memory states M ()
» initialization function init : () — P(S(7) x M(m))
» step function step : S(71) x M(7t) — P(S(7t) x M(m))

» termination predicate terminate : S(7t) x M(m) — P({T,L})

11

Example: Uninformed random walk for SAT

» search space S: set of all truth assignments to variables
in given formula F
(solution set S’: set of all models of F)

» neighborhood relation N: 1-flip neighborhood, i.e., assignments are
neighbors under N\ iff they differ in
the truth value of exactly one variable

» evaluation function not used, or f(s) = 0 if model f(s) = 1 otherwise

» memory: not used, i.e., M := {0}

12

Example: Uninformed random walk for SAT (continued)

» initialization: uniform random choice from S, i.e,,
init(,{a’,m}) := 1/|S| for all assignments a’ and
memory states m

» step function: uniform random choice from current neighborhood, i.e.,
step({a, m},{a’, m}) := 1/|N(a)]
for all assignments a and memory states m,
where N(a):={a’ € S| N(a,a’)} is the set of
all neighbors of a.

» termination: when model is found, i.e.,
terminate({a, m},{T}):=1if a is a model of F, and 0 otherwise.

13

Definition: LS Algorithm Components (continued)

Search Space

Defined by the solution representation:

> permutations

> linear (scheduling)
» circular (TSP)

» arrays (assignment problems: GCP)

> sets or lists (partition problems: Knapsack)

14

Definition: LS Algorithm Components (continued)

Neighborhood function
Also defined as: A':SxS = {TFlor N CS xS

» neighborhood (set) of candidate solution s: N(s):={s’ € S| N (s,s’)}
» neighborhood size is N(s)]
» neighborhood is symmetric if: s’ € N(s) = s € N(s’)

» neighborhood graph of (S, f, N,) is a directed vertex-weighted graph:
Gy (m) :=(V,A) with V =S(n) and (uv) € A & v e N(u)
(if symmetric neighborhood = undirected graph)

» Solution j is reachable from solution 1 if neighborhood graph has a path
from 1 to j.

» strongly connected neighborhood graph

» weakly optimally connected neighborhood graph

15

A neighborhood function is also defined by means of an operator.

An operator A is a collection of operator functions & : S — S such that
s"eEN(s) & 3IscAd(s)=s’

Definition

k-exchange neighborhood: candidate solutions s, s’ are neighbors iff s differs
from s’ in at most k solution components

Examples:

» l-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

» 2-exchange neighborhood for TSP
(solution components = edges in given graph)

16

Definition: LS Algorithm Components (continued)

Note:

» Local search implements a walk through the neighborhood graph

» Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

» Memory state m can consist of multiple independent attributes, i.e.,
M(Tlf) = M] X Mz X ... X Muﬂ).

» Local search algorithms are Markov processes:
behavior in any search state {s, m} depends only
on current position s and (limited) memory m.

17

Definition: LS Algorithm Components (continued)

Search step (or move):

pair of search positions s, s’ for which

s’ can be reached from s in one step, i.e., N(s,s’) and
step({s, m},{s’, m’}) > 0 for some memory states m, m’ € M.

» Search trajectory: finite sequence of search positions < sg,$1,...,S5k >
such that (si_1, si) is a search step
for any i € {1,...,k} and the probability of initializing
the search at sq is greater zero, i.e., init({spo, m}) >0
for some memory state m € M.

» Search strategy: specified by init and step function; to some extent
independent of problem instance and
other components of LS algorithm.
» random
» based on evaluation function
> based on memory

18

Uninformed Random Picking
» N:=SxS

» does not use memory and evaluation function

» init,step: uniform random choice from §,
ie., forall s,s’ €S, init(s) := step({s},{s’}) := 1/|S|

Uninformed Random Walk

» does not use memory and evaluation function
» init: uniform random choice from S

» step: uniform random choice from current neighborhood, i.e., for all
s,s’ €8, step({s},{s’}) :=1/IN(s)| if N(s,s’),
and 0 otherwise

Note: These uninformed LS strategies are quite ineffective,
but play a role in combination with more directed search strategies.

19

Definition: LS Algorithm Components (continued)

Evaluation (or cost) function:

» function f(7t) : S(7t) — R that maps candidate solutions of
a given problem instance 7t onto real numbers,
such that global optima correspond to solutions of 7;

» used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:

» Evaluation function: part of LS algorithm.
» Objective function: integral part of optimization problem.

» Some LS methods use evaluation functions different from given objective
function (e.g., dynamic local search).

20

Iterative Improvement

» does not use memory
» init: uniform random choice from S

» step: uniform random choice from improving neighbors,
ie., step({s},{s’}) ;== 1//1(s)] if s’ € I(s), and O otherwise,
where I(s) :={s’ € S| N(s,s’)andf(s’) < f(s)}

> terminates when no improving neighbor available
(to be revisited later)

» different variants through modifications of step function
(to be revisited later)

Note: Il is also known as iterative descent or hill-climbing.

21

Example: Iterative Improvement for SAT

» search space S: set of all truth assignments to variables
in given formula F
(solution set S’: set of all models of F)

» neighborhood relation N: 1-flip neighborhood
(as in Uninformed Random Walk for SAT)

» memory: not used, i.e., M := {0}

» initialization: uniform random choice from S, i.e., init(0,{a’}) := 1/|S]
for all assignments a’

» evaluation function: f(a) := number of clauses in F

that are unsatisfied under assignment a
(Note: f(a) =0 iff a is a model of F.)

» step function: uniform random choice from improving neighbors, i.e.,
step(a,a’) :=1/#I(a) if s’ € I(a),
and 0 otherwise, where I(a) :={a’ | M(a,a’) Af(a’) < f(a)}

» termination: when no improving neighbor is available
i.e., terminate(a, T):=1if I(a) = 0, and 0 otherwise.

Definition:

» Local minimum: search position without improving neighbors w.r.t.
given evaluation function f and neighborhood N,
i.e., position s € S such that f(s) < f(s’) for all s” € N(s).

» Strict local minimum: search position s € S such that
f(s) < f(s’) for all s’ € N(s).

» Local maxima and strict local maxima: defined analogously.

23

There might be more than one neighbor that have better cost.

Pivoting rule decides which to choose:

» Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbor,
i.e., randomly select from I*(s) :={s’ € N(s) | f(s’) = g*},
where g* := min{f(s’) | s’ € N(s)}.

Note: Requires evaluation of all neighbors in each step.

» First Improvement: Evaluate neighbors in fixed order,
choose first improving step encountered.

Note: Can be much more efficient than Best Improvement; order of
evaluation can have significant impact on performance.

24

Iterative Improvement (2 OPT)

procedure TSP-2opt-first(s)

input: an initial candidate tour s € S(€)

output: a local optimum s € S(mt)

A=0;

do
Improvement=FALSE;
fori=1ton—2do
ifi=1thenn’'=n—1elsen’=n

forj=i+2ton’ do

Ay = d(ci,¢5) + d(civr,¢541) — d(ci, cigr) — dlej, ci1)

if Aij <0 then
UpdateTour(s,i,j);
Improvement=TRUE;
end
end

until Improvement==TRUE;
end TSP-2opt-first

25

Example: Random-order first improvement for the TSP

» Given: TSP instance G with vertices vi,v2,...,vn.

> search space: Hamiltonian cycles in G;
use standard 2-exchange neighborhood

» Initialization:

search position := fixed canonical path < vi,v2,...,vn,vi >
P := random permutation of {1,2,...,n}

» Search steps: determined using first improvement
w.r.t. f(p) = weight of path p, evaluating neighbors
in order of P (does not change throughout search)

» Termination: when no improving search step possible
(local minimum)

26

Example: Random order first improvement for SAT

procedure URW-for-SAT (F,maxSteps)
input: propositional formula F, integer maxSteps
output: model of F or ()

choose assignment ¢ of truth values to all variables in F
uniformly at random;

steps := 0;

while not((¢ satisfies F) and (steps < maxSteps)) do
select x uniformly at random from {x’|x’ is a variable in F and
changing value of x’ in ¢ decreases the number of unsatisfied clauses};
steps := steps+1,;

end

if @ satisfies F then
return @

else
return ()

end

end URW-for-SAT

27

Solution Representations and Neighborhoods

Three different types of solution representations:
» Permutation

> linear permutation: Single Machine Total Weighted Tardiness Problem
» circular permutation: Traveling Salesman Problem

» Assignment: Graph Coloring Problem, SAT, CSP
» Set, Partition: Max Independent Set

A neighborhood function A/ : S — S x S is also defined through an operator.
An operator A is a collection of operator functions & : S — S such that

s"eN(s) & JdbcAB(s)=s'

28

Permutations

IT(n) indicates the set all permutations of the numbers {1,2,... ,n}
(1,2...,n) is the identity permutation L.

If teTl(n) and 1 <1i<mn then:
» 71; is the element at position 1

» posx(i) is the position of element 1

Alternatively, a permutation is a bijective function 7t(1) = 7;
the permutation product 7t- 71’ is the composition (7t 7t'); = 7t/(7t(1))

For each 7t there exists a permutation such that t=' - 7w =1

An CTT

29

Neighborhood Operators for Linear Permutations

Swap operator .
As =881 <i<n)

S5 (71 . T 1 .. T0n) = (707 .. TG T . . . TOn)
Interchange operator -
Ax ={6[1 <i<j<n}
S (70) = (701 oo . TG TG T« TG T TG4 - T)

Insert operator -
Ar={81<i<n,1<j<nj#i

5”(7‘[) _ (7‘[1 TR TG4 - TG T TG 4 ...7Tn) 1<j
I (701 . TGTOTG g e T T .. Tl) 1>

30

Neighborhood Operators for Circular Permutations

Reversal (2-edge-exchange)
Ag = {81 <i<j<mn}

5?(717) = (7T1 TR T . TG ...T[n)

Block moves (3-edge-exchange)
Ag =801 <i<j<k<n)

§g (1) = (709 .. G170 .. TOCT . TG Thg 1 -« - Tl)

Short block move (Or-edge-exchange)
Asp ={8dgl1 <i<j<m)

83 (70) = (701 oo . TG TG TG 1 TG4 27T . TG 1 TG4 3 .. . Tl)

31

Neighborhood Operators for Assignments

An assignment can be represented as a mapping
o:{X;... Xpn} = {v:veD, D=k}

O'Z{Xi:Vi,Xj :Vj,...}

One-exchange operator

Are ={8{f1<i<n,1<1<K
81k (0) = {o:0'(X;) =vi and 0'(Xj) = o(X;) Vj #1i}
Two-exchange operator

Axe = {651 <i<j<n}

85 {0: 0’ (Xe) = a(X;), o'(X;) = o(Xi) and o’(X1) = o(X1) VI #1,j}

32

Neighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s : {X} — {C, C}
(it can also be represented by a bit string)

One-addition operator B
A]E = {6\])1:_‘\) c C}

Ve(s)={s:C"=CuUv and c'=C\v}

One-deletion operator
Mg = {6\])E‘V € C}

Ve(s)={s:C"=C\v and Cc'=Cuv

Swap operator B
Ae :{5¥E|\) € C,LL € C}

Ve(s)={s:C"=CuUu\v and C'=Cuv\u

33

