
DM811
HEURISTICS AND LOCAL SEARCH ALGORITHMS

FOR COMBINATORIAL OPTIMZATION

Lecture 6

Local Search

Marco Chiarandini

slides based on
http://www.sls-book.net/
H. Hoos and T. Stützle, 2005

Outline

1. Local Search
Introduction
Components
Iterative Improvement
Neighborhoods Representations

2

The Single Machine Total Tardiness Problem

Given: a set of n jobs {J1, . . . , Jn} to be processed on a single machine
and for each job Ji a processing time pi, a weight wi and a due date di.

Task: Find a schedule that minimizes
the total weighted tardiness

∑n
i=1wi · Ti

where Ti = {Ci − di, 0} (Ci completion time of job Ji)

Example:
Job J1 J2 J3 J4 J5 J6
Processing Time 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 5 1 2

Sequence π = J3, J1, J5, J4, J1, J6

Job J3 J1 J5 J4 J1 J6
Ci 2 5 9 12 14 17
Ti 0 0 2 3 1 0
wi · Ti 0 0 2 15 3 0

3

Outline

1. Local Search
Introduction
Components
Iterative Improvement
Neighborhoods Representations

4

Local Search Paradigm

I search space = complete candidate solutions
I search step = modification of one or more solution components

I iteratively generate and evaluate candidate solutions
I decision problems: evaluation = test if solution
I optimization problems: evaluation = check objective function value

I evaluating candidate solutions is typically computationally much cheaper
than finding (optimal) solutions

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s ′ of s such that f(s ′) < f(s)
s := s ′

5

Local search — global view

c

s

I vertices: candidate solutions
(search positions)

I vertex labels: evaluation
function

I edges: connect “neighboring”
positions

I s: (optimal) solution

I c: current search position

6

Definitions: Local Search Algorithm (1)

Given a (combinatorial) optimization problem Π and one of its instances π:

I search space S(π)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array (sequence of all truth assignments
to propositional variables)

Note: solution set S ′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

I evaluation function f(π) : S(π) 7→ R
(e.g., for SAT: number of false clauses)

I neighborhood function, N (π) : S 7→ 2S(π)

(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

7

Definition: Local Search Algorithm (2)

I set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

I initialization function init : ∅ 7→ P(S(π)×M(π))
(specifies probability distribution over initial search positions and
memory states)

I step function step : S(π)×M(π) 7→ P(S(π)×M(π))
(maps each search position and memory state onto
probability distribution over subsequent, neighboring
search positions and memory states)

I termination predicate terminate : S(π)×M(π) 7→ P({>,⊥})
(determines the termination probability for each
search position and memory state)

8

procedure LS-Decision(π)

input: problem instance π ∈ Π
output: solution s ∈ S ′(π) or ∅
(s,m) := init(π);

while not terminate(π, s, m) do
(s,m) := step(π, s, m);

end

if s ∈ S ′(π) then
return s

else
return ∅

end
end LS-Decision

9

procedure LS-Minimization(π ′)
input: problem instance π ′ ∈ Π ′

output: solution s ∈ S ′(π ′) or ∅
(s,m) := init(π ′);
ŝ := s;
while not terminate(π ′, s, m) do

(s,m) := step(π ′, s, m);
if f(π ′, s) < f(π ′, ŝ) then
ŝ := s;

end
end
if ŝ ∈ S ′(π ′) then

return ŝ
else

return ∅
end

end LS-Minimization

10

Definition: Local Search Algorithm

For given problem instance π:

I search space S(π)

I solution set S ′(π) ⊆ S(π)

I neighborhood relation N (π) ⊆ S(π)× S(π)

I evaluation function f(π) : S 7→ R

I set of memory states M(π)

I initialization function init : ∅ 7→ P(S(π)×M(π))

I step function step : S(π)×M(π) 7→ P(S(π)×M(π))

I termination predicate terminate : S(π)×M(π) 7→ P({>,⊥})

11

Example: Uninformed random walk for SAT (1)

I search space S: set of all truth assignments to variables
in given formula F
(solution set S ′: set of all models of F)

I neighborhood relation N : 1-flip neighborhood, i.e., assignments are
neighbors under N iff they differ in
the truth value of exactly one variable

I evaluation function not used, or f(s) = 0 if model f(s) = 1 otherwise

I memory: not used, i.e., M := {0}

12

Example: Uninformed random walk for SAT (continued)

I initialization: uniform random choice from S, i.e.,
init(, {a ′,m}) := 1/|S| for all assignments a ′ and
memory states m

I step function: uniform random choice from current neighborhood, i.e.,
step({a,m}, {a ′,m}) := 1/|N(a)|
for all assignments a and memory states m,
where N(a) := {a ′ ∈ S | N (a, a ′)} is the set of
all neighbors of a.

I termination: when model is found, i.e.,
terminate({a,m}, {>}) := 1 if a is a model of F, and 0 otherwise.

13

Definition: LS Algorithm Components (continued)

Search Space
Defined by the solution representation:

I permutations
I linear (scheduling)
I circular (TSP)

I arrays (assignment problems: GCP)

I sets or lists (partition problems: Knapsack)

14

Definition: LS Algorithm Components (continued)

Neighborhood function
Also defined as: N : S× S→ {T, F} or N ⊆ S× S

I neighborhood (set) of candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}

I neighborhood size is |N(s)|

I neighborhood is symmetric if: s ′ ∈ N(s)⇒ s ∈ N(s ′)

I neighborhood graph of (S, f,N, π) is a directed vertex-weighted graph:
GN (π) := (V,A) with V = S(π) and (uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood ⇒ undirected graph)

I Solution j is reachable from solution i if neighborhood graph has a path
from i to j.

I strongly connected neighborhood graph
I weakly optimally connected neighborhood graph

15

A neighborhood function is also defined by means of an operator.

An operator ∆ is a collection of operator functions δ : S→ S such that

s ′ ∈ N(s) ⇐⇒ ∃ δ ∈ ∆, δ(s) = s ′

Definition
k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs
from s ′ in at most k solution components

Examples:

I 1-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

I 2-exchange neighborhood for TSP
(solution components = edges in given graph)

16

Definition: LS Algorithm Components (continued)

Note:

I Local search implements a walk through the neighborhood graph

I Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

I Memory state m can consist of multiple independent attributes, i.e.,
M(π) := M1 ×M2 × . . .×Ml(π).

I Local search algorithms are Markov processes:
behavior in any search state {s,m} depends only
on current position s and (limited) memory m.

17

Definition: LS Algorithm Components (continued)

Search step (or move):
pair of search positions s, s ′ for which
s ′ can be reached from s in one step, i.e., N (s, s ′) and
step({s,m}, {s ′,m ′}) > 0 for some memory states m,m ′ ∈M.

I Search trajectory: finite sequence of search positions < s0, s1, . . . , sk >
such that (si−1, si) is a search step
for any i ∈ {1, . . . , k} and the probability of initializing
the search at s0 is greater zero, i.e., init({s0,m}) > 0
for some memory state m ∈M.

I Search strategy: specified by init and step function; to some extent
independent of problem instance and
other components of LS algorithm.

I random
I based on evaluation function
I based on memory

18

Uninformed Random Picking
I N := S× S
I does not use memory and evaluation function
I init, step: uniform random choice from S,

i.e., for all s, s ′ ∈ S, init(s) := step({s}, {s ′}) := 1/|S|

Uninformed Random Walk
I does not use memory and evaluation function
I init: uniform random choice from S

I step: uniform random choice from current neighborhood, i.e., for all
s, s ′ ∈ S, step({s}, {s ′}) := 1/|N(s)| if N (s, s ′),
and 0 otherwise

Note: These uninformed LS strategies are quite ineffective,
but play a role in combination with more directed search strategies.

19

Definition: LS Algorithm Components (continued)

Evaluation (or cost) function:
I function f(π) : S(π) 7→ R that maps candidate solutions of

a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;

I used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
I Evaluation function: part of LS algorithm.
I Objective function: integral part of optimization problem.
I Some LS methods use evaluation functions different from given objective

function (e.g., dynamic local search).

20

Iterative Improvement

I does not use memory
I init: uniform random choice from S

I step: uniform random choice from improving neighbors,
i.e., step({s}, {s ′}) := 1/|I(s)| if s ′ ∈ I(s), and 0 otherwise,
where I(s) := {s ′ ∈ S | N (s, s ′)andf(s ′) < f(s)}

I terminates when no improving neighbor available
(to be revisited later)

I different variants through modifications of step function
(to be revisited later)

Note: II is also known as iterative descent or hill-climbing.

21

Example: Iterative Improvement for SAT

I search space S: set of all truth assignments to variables
in given formula F
(solution set S ′: set of all models of F)

I neighborhood relation N : 1-flip neighborhood
(as in Uninformed Random Walk for SAT)

I memory: not used, i.e., M := {0}

I initialization: uniform random choice from S, i.e., init(∅, {a ′}) := 1/|S|

for all assignments a ′

I evaluation function: f(a) := number of clauses in F
that are unsatisfied under assignment a
(Note: f(a) = 0 iff a is a model of F.)

I step function: uniform random choice from improving neighbors, i.e.,
step(a, a ′) := 1/#I(a) if s ′ ∈ I(a),
and 0 otherwise, where I(a) := {a ′ | N (a, a ′) ∧ f(a ′) < f(a)}

I termination: when no improving neighbor is available
i.e., terminate(a,>) := 1 if I(a) = ∅, and 0 otherwise.

22

Definition:

I Local minimum: search position without improving neighbors w.r.t.
given evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f(s) ≤ f(s ′) for all s ′ ∈ N(s).

I Strict local minimum: search position s ∈ S such that
f(s) < f(s ′) for all s ′ ∈ N(s).

I Local maxima and strict local maxima: defined analogously.

23

There might be more than one neighbor that have better cost.

Pivoting rule decides which to choose:

I Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbor,
i.e., randomly select from I∗(s) := {s ′ ∈ N(s) | f(s ′) = g∗},
where g∗ := min{f(s ′) | s ′ ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step.

I First Improvement: Evaluate neighbors in fixed order,
choose first improving step encountered.

Note: Can be much more efficient than Best Improvement; order of
evaluation can have significant impact on performance.

24

Iterative Improvement (2 OPT)

procedure TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)

output: a local optimum s ∈ S(π)

∆ = 0;
do

Improvement=FALSE;
for i = 1 to n− 2 do
if i = 1 then n ′ = n− 1 elsen ′ = n

for j = i+ 2 to n ′ do
∆ij = d(ci, cj) + d(ci+1, cj+1) − d(ci, ci+1) − d(cj, cj+1)

if ∆ij < 0 then
UpdateTour(s,i,j);
Improvement=TRUE;

end
end

until Improvement==TRUE;
end TSP-2opt-first

25

Example: Random-order first improvement for the TSP

I Given: TSP instance G with vertices v1, v2, . . . , vn.
I search space: Hamiltonian cycles in G;

use standard 2-exchange neighborhood

I Initialization:
search position := fixed canonical path < v1, v2, . . . , vn, v1 >

P := random permutation of {1, 2, . . . , n}

I Search steps: determined using first improvement
w.r.t. f(p) = weight of path p, evaluating neighbors
in order of P (does not change throughout search)

I Termination: when no improving search step possible
(local minimum)

26

Example: Random order first improvement for SAT

procedure URW-for-SAT(F,maxSteps)
input: propositional formula F, integer maxSteps
output: model of F or ∅
choose assignment ϕ of truth values to all variables in F

uniformly at random;
steps := 0;
while not((ϕ satisfies F) and (steps < maxSteps)) do

select x uniformly at random from {x ′|x ′ is a variable in F and
changing value of x ′ in ϕ decreases the number of unsatisfied clauses};
steps := steps+1;

end
if ϕ satisfies F then

return ϕ
else

return ∅
end

end URW-for-SAT

27

Solution Representations and Neighborhoods

Three different types of solution representations:
I Permutation

I linear permutation: Single Machine Total Weighted Tardiness Problem
I circular permutation: Traveling Salesman Problem

I Assignment: Graph Coloring Problem, SAT, CSP
I Set, Partition: Max Independent Set

A neighborhood function N : S→ S× S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S→ S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆|δ(s) = s ′

28

Permutations

Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
I πi is the element at position i
I posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

the permutation product π · π ′ is the composition (π · π ′)i = π ′(π(i))

For each π there exists a permutation such that π−1 · π = ι

∆N ⊂ Π

29

Neighborhood Operators for Linear Permutations

Swap operator
∆S = {δiS|1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δ

ij
X |1 ≤ i < j ≤ n}

δ
ij
X(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

Insert operator
∆I = {δ

ij
I |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δ
ij
I (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j

(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j

30

Neighborhood Operators for Circular Permutations

Reversal (2-edge-exchange)

∆R = {δ
ij
R |1 ≤ i < j ≤ n}

δ
ij
R (π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δ
ijk
B |1 ≤ i < j < k ≤ n}

δ
ij
B (π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δ
ij
SB|1 ≤ i < j ≤ n}

δ
ij
SB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

31

Neighborhood Operators for Assignments

An assignment can be represented as a mapping
σ : {X1 . . . Xn}→ {v : v ∈ D, |D| = k}:

σ = {Xi = vi, Xj = vj, . . .}

One-exchange operator

∆1E = {δil1E|1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ : σ ′(Xi) = vl and σ ′(Xj) = σ(Xj) ∀j 6= i

}
Two-exchange operator

∆2E = {δ
ij
2E|1 ≤ i < j ≤ n}

δ
ij
2E

{
σ : σ ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ ′(Xl) = σ(Xl) ∀l 6= i, j
}

32

Neighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s : {X}→ {C,C}

(it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E|v ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C

′
= C \ v}

One-deletion operator
∆1E = {δv1E|v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E|v ∈ C,u ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}

33

