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1 Notation

In these notes we shall in general use standard notation. For every n € N B,, denotes the
Borel algebra on R™ and if (2, F, P) is a probability space, X : Q2 — R" a random variable,
then we let X (P) denote the distribution measure (the image measure) on R" of X, e.g.

X(P)(A) = P(X~1(A)) for allA € B,. (1.1)

If n € N, we let (-,-) denote the canonical inner product on R". Hence for all x =
(x1,Ta,...,2,) € R" og alle y = (y1,¥2,- .., Yn) € R" we have

(z,y) = Z%‘w (1.2)

All vector spaces which occur in these notes are assumed to be real unless otherwise stated.

2 The main results

Let (Q,F,P) be a probability space and let (F;):>o be an increasing family of sub-o-
algebras so that JF; contains all sets of measure 0 for all ¢t > 0. We start with the following
easy result.

Theorem 2.1 Let (B;) be a one—dimensional normalized Beownian motion, adapted to
(F) and so that By — By is independent of F for all 0 < s < t (this ensures that (By) is a
martingale with respect to (F;)). Then (B —t) is a martingale with respect to (Fy).

Proof: If 0 < s < t, then B? = (B; — B,)*> + B? + 2B,(B; — B,) and hence
E(B? | F,) = E((B, — B,)* | F,) + B + 2B, E((B, — By) | Fs) = (t — 5) + B?

where we have used that B; — B, and hence also (B; — B,)? are independent of F,. O

The main result of this note is to prove that the converse is also true for continuous
processes, namely:



Theorem 2.2 Let (X;) be a continous process adapted to (F;) so that Xo =0 and
(1) (X3:) is a martingale with respect to (F).
(ii) (X? —t) is a martingale with respect to (Fy).

Then (X3) is a (normalized) Brownian motion.

Before we can prove it, we need yet another theorem which is a bit like Ito’s formula and
a lemma.

Theorem 2.3 Let (X;) be as in Theorem 2.2 and let f € C(R?) so that f, f and f" are
bounded. For all 0 < s <t we have

B(FC0) | 7) = X+ 5 [ B | 7). (2:3)

Proof: Let IT = (¢;)}_, be a partition of the interval [s, ] so that s =tp,t; <ty <---,<
t, = t. By Taylor’s formula we get

f(X) = ) + Z F(X) — (X)) (2.4)
X+ 3 P ) (X — X )+ 5 3D (X, X+ R
k=1 k=1
Taking conditional expectations on each side we obtain:
E(f(X2) | Fo) +ZE P X )Xy = Xy ) | Foer) | F) +
S BB (X )(Xs, = X | B ) | B+ B | F) = (X)) +
k=1

%Z "X ) | Fo)(te — trmr) + E(Bu | F). (2.5)

Using the continuity of the (X}) it can be shown that Ry — 0 in Lo(P), when the length
IIT| of IT tends to 0. Hence also E(Ry | Fs) — 0 in Ly(P)as |II| — 0. Since the function
u— E(f"(X,) | Fs)) is continuous a.s., we get that

ZE I"( X ) | Fo)(te — trs —>/ W) | Fs)du as. (2.6)

when |II| — 0 and since f” is bounded, the bounded convergence theorem gives that the
convergence in (2.6) is also in Ly(P). Combining the above we get formula (2.3). O

We also need



Lemma 2.4 Letn € N, let Y; : Q@ — R, 1 < j < n be stochastic variables, and put
Y = (Y1,Ys,---,Y,) : Q@ — R™. Further, let ¢y, denote the characteristic function of Y}
for1 < j <n and ¢y the characteristic function of Y. Then Yy, Ys, ..., Y, are independent
if and only if

Oy (1,29, ..., Tp) = H(byj(a:’j) (2.7)
j=1

for all (xq,xs,...,2,) € R™.

Proof: It follows from the definition of independence that Yi,Y5,...,Y,, are independent
if and only if Y'(P) = ®}_,Y;(P) Noting that the right hand side of (2.7) is the character-
istic function of ®}_,Y;(P), the statement of the lemma follows from the above and the
uniqueness theorem for characteristic functions [2, Theorem 2.3]. O

Proof of Theorem 2.2: The main part of the proof will be to prove that for all 0 < s <t
we have the formula

E(exp(iu(X; — Xy)) | Fs) = exp(—%uZ(t —s)) forallueR. (2.8)

To prove (2.8) fix an s with 0 < s < 00, a u € R and apply Theorem 2.3 to the function
f(z) = exp(iux) for all z € R. For all s <t we then obtain:

t
E(exp(iuX,) | F,) = exp(iuX,) — %uQ / E(exp(iuX,) | Fs)dv

or

Elexp(iu(X, — Xy)) | Fs) =1— %Uz/ E(exp(iu(X, — Xy)) | Fs)dv. (2.9)

Since the integrand on the right side of (2.9) is continuous, the left hand side is differentiable
with respect to ¢ and

 Blexp(iu(X, — X)) | F2) = — 5w’ Blexp(in(X, — X.) | 7).

This shows that on [s,00[ E(exp(iu(X; — X)) | Fs) is the solution to the differential

equation
1
g(t) = —5ug(t)

with the initial condition g(s) = 1. Hence
1
E(exp(iu(X; — X)) | Fs) = exp(—§u2(t —s)) forall0<s<t

and equation (2.8) is established.



Let now 0 < s < t. By (2.8) the characteristic function of X; — X, is given by:
. , 1
E(exp(iu(X; — X5)) = E(E(exp(iu(X; — X)) | Fs)) = exp(—§u2(t —9))

and hence by [2, Theorem 2.11] X; — X is normally distributed with mean 0 and variance
t—s.

Let now 0 = to < tl < t2 < - < tn < 00 and put Y = (th,XtQ —th,...,th _th—l)
If ¢y denotes the characteristic function of Z, then we get for all u = (uy, ug, ..., u,) € R:
dy(u) =exp(i <u,Y >) = E(][expiu(Xy, — X, ,)) = (2.10)
k=1
n 1 n—1
E(] [ expliun(Xy, — Xe1)) | Fo) = exp( =5ty (tn — ta1)) E(] [ exp(iun(X,, — Xi, )
k=1 k=1

Continuing in this way we obtain:

1 n
by ( Hexp —§uk tr — tr—1) HE (exp(iug( Xy, — Xt )
k=1 k=1

which together with Lemma 2.4 shows that X;,, Xi, — X4, ..., X, —X;,_, are independent.

Thus we have proved that (X;) is a normalized Brownian motion. O

In many cases where Theorem 2.2 is used F; is for each ¢ the o-algebra generated by
{Xs]0<s <t} and the sets of measure 0. However, the theorem is often applied to cases
where the F;’s are bigger.

We end this note by showing that the continuity assumption in Theorem 2.2 can not be
omitted. Let us give the following definition:

Definition 2.5 An (F;)-adapted process (Ny)is called a Poisson process with intensity 1
if No =0 a.s. and for 0 < s < t, Ny — Ny s independent of Fy and Poisson distributed
with parameter t — s.

Hence if (IV;) is a Poisson process with intensity 1, then Ny — Ny takes values in NU {0}
forall 0 < s <t and

P(N,— Ny =k) = (t ;'S)k exp(—(t —s)) forall ke NU{0}

It follows e.g. from [1, Problem 3.2, page 11 ff] that such a process (N;) exists.

Easy calculations show that E(N, — N;) =t — s = V(N; — N;). The process (M;), where
M; = Ny —t for all t € [0,00], is called the compensated Poisson process with intensity 1.
Note that (M;) is not continuous. We have:



Theorem 2.6 If (M;) is a compensated Poisson process with intensity 1, then it satisfies
the conditions (i) and (ii) in Theorem 2.2.

Proof: Let 0 < s < t. Since M; — M, is independent of F,, we get
E(M; | Fs) = Ms+ E(M; — M) = M;.
Since M? = M? + (M; — M — s)* + 2M(M; — M,), we also get

E(M? | Fy) = M2 + B((M, — M,) | F) + 2ME(M, — M, | F5) = (t — s) + M2.
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