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We tacitly assume that the reader is familar with the continuity properties of the classical func-
tions defined on the R or intervals of R. However, let us recall that if U ⊆ R and f : U → R is a
function, then f is said to be continuous in a point x0 ∈ U , if

∀ε > 0 ∃δ > 0 ∀x ∈ U : |x− x0| < δ ⇒ |f(x)− f(x0)| < ε. (1.1)

Intuitively speaking, this means that when x gets close to x0, then f(x) gets close to f(x0). f is
said to be continuous if it is continuous in all points of U . If we write this with quantifiers, we
get:

∀ε > 0 ∀x ∈ U ∃δ > 0 ∀y ∈ U : |x− y| < δ ⇒ |f(x)− f(y)| < ε. (1.2)

It is always a bit dangerous to interchange quantifiers in a logical statement because the statement
changes radically. Let us anyway look on the following statement:

∀ε > 0 ∃δ > 0 ∀x ∈ U ∀y ∈ U : |x− y| < δ ⇒ |f(x)− f(y)| < ε. (1.3)

If we do a little text analysis of the two statements we see that in (1.2) the δ depends on ε and
x while in (1.3) the δ only depends on ε and thus works for all x, y ∈ X . The statement (1.3)
makes perfectly sence and gives rise to the following definition:

Definition 1.1 Let U ⊆ R. A function f : U → R is called uniformly continuous if it satisfies
(1.3)

The word “uniformly” is used because given ε > 0, one can use the same δ for all x, y ∈ X . The
next statement is really an example, but we formulate it as a proposition.

Proposition 1.2 Let f : [1,∞[→ R be defined by f(x) =
√
x for all 1 ≤ x < ∞. Then f is

uniformly continuous.

Proof: Let x, y ≥ 1 be arbitrary. Since f is differentiable, we can by the mean value theorem
find a ξ between x and y so that

f(x)− f(y) = f ′(ξ)(x− y).

Since ξ ≥ 1 and f ′(ξ) = 1
2
√

ξ
, we get that |f ′(ξ)| ≤ 1

2
and hence

|f(x)− f(y)| ≤ 1

2
|x− y|

1



which holds for all x, y ≥ 1. If now ε > 0 is arbitrary, we can choose a 0 < δ < 2ε and if
|x− y| < δ, then by the above:

|f(x)− f(y)| ≤ ε.

This shows that f is uniformly continuous. 2

We shall later prove that any continuous function defined on a closed and bounded interval of
R is uniformly continuous. Combining this with Proposition 1.2 we get that the square root
function is in fact uniformly continuous on [0,∞[. The next example shows that even very nice
continuous functions need not be uniformly continuous.

Example 1.3 let g : R → R be defind by g(x) = x2 for all x ∈ R. We claim that g is not
uniformly continuous. It is clearly enough to prove that g is not uniformly continuous on [0,∞].
To see this we put ε = 1 and let 0 < δ ≤ 1 be arbitrary. If x ≥ 0, we get

0 ≤ g(x+ δ)− g(x) = (x+ δ)2 − x2 = (2x+ δ)δ.

For all x > 1
2
(δ−1 − δ) we get that

g(x+ δ)− g(x) > 1

which shows that g is not uniformly continuous.
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