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Introduction

These notes contain the theorems thast were proved in a different way than the corresponding
theorems in the book or were proved in more details in an essential way.

1 Conditional expectations

Let us start with the following two results on Hilbert spaces:

Theorem 1.1 Let M ⊆ H be a closed subspace. Then there exists an orthogonal projection P
with P (H) = M .

Proof: The projection theorem gives that H = M ⊕M⊥. Hence if z ∈ H , we can in a unique
way write z = x + y with x ∈ M and y ∈ M⊥ (the uniqueness follows from Theorem 4.4 (ii)
of the notes). If we put Pz = x, P is well defined and the uniqueness of the decomposition of
a vector as a sum of something from M and M⊥ also gives that P is linear. It is now easy to see
that P is an orthogonal projection with P (H) = M and P−1(0) = M⊥. 2

Theorem 1.2 A linear projection P : H → H is an orthogonal projection if and only if
(Px, y) = (x, Py) for all x, y ∈ H .

Proof: Let us first assume that P is an orthogonal projection. If x, y ∈ H , then we get

(Px, y) = (Px, Py + (y − Py)) = (Px, Py)

and
(x, Py) = (Px+ (x− Px), Py) = (Px, Py).

Assume next that (Px, y) = (x, Py) for all x, y ∈ H . If x ∈ P (H) and y ∈ P−1(0) are arbitrary,
Px = x and we therefore get that

(x, y) = (Px, y) = (x, Py) = (x, 0) = 0,
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so that x and y are orthogonal 2

In the sequal we let (Ω,F , P ) be a probability space and let G be a sub–σ–algebra of A. We
have the following definition:

Definition 1.3 Let Y ∈ L1(P ). A stochastic variable Z ∈ L1(Ω,G, P ) is called a conditional
expectation of Y given G if ∫

A

Y dP =

∫
A

ZDP for all A ∈ G (1.1)

We shall write Z = E(Y | G).

We shall later see that E(Y | G) exists for all Y ∈ L1(P ). Her we note that

Proposition 1.4 Let Y ∈ L1(P ). If Z1, Z2 ∈ L1(Ω,G, P ) both satisfy (1.1), then Z1 = Z2 a.s.
In other words, if E(Y | G) exists, it is uniquely determined a.s.

Proof: SinceZ1 andZ2 are G–measurable, the setA = (Z1 > Z2) is G–measurable and therefore
it follows from (1.1) that. ∫

A

(Z1 − Z2)dP = 0

and since the integrand is stricly possitive on A, this can only happen if P (A) = 0. In a similar
manner we can get that P (Z2 > Z1) = 0 so that Z1 = Z2 a.s 2

In the following we consider the the real Hilbert spaces L2(Ω,F , P ) and L2(Ω,G, P ). W recall
that the inner product in L2(Ω,F , P ) is given by

(f, g) =

∫
Ω

fgdP for all f, g ∈ L2(Ω,F , P ).

We also observe that

L2(Ω,G, P ) = {f ∈ L2(Ω,F , P ) | f is G–measurable}.

We shall need the following lemma:

Lemma 1.5 L2(Ω,G, P ) is a closed subspace of L2(Ω,F , P ).

Proof: It is clear from the above that L2(Ω,G, P ) is a subspace so we only need to prove that it
is closed. Hence let f ∈ L2(Ω,F , P ) and let (fn) ⊆ L2(Ω,G, P ) with fn → f in L2(Ω,F , P ).
Fom measure theory it follows that there is a subsequence (fnk

) so that fnk
→ f a.e. Since all

the fnk
’s are G–measurable, it follows that also f is G–measurable and hence f ∈ L2(Ω,G, P ) 2

We are now able to prove the existence of conditional expectations and we start with the L2–case.
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Theorem 1.6 If Y ∈ L2(Ω,F , P ), then the condtional expectation E(Y | G) exists. Further
E(Y | G) ∈ L2(Ω,G, P ) and ∫

Ω

Y XdP =

∫
Ω

E(Y | G)XdP

for all X ∈ L2(Ω,G, P ).

Proof: Let P be the orthogonal projection of L2(Ω,F , P ) onto L2(Ω,G, P ) and put sæt Z =
P(Y ). If A ∈ G, then 1A ∈ L2(Ω,G, P ) and hence P(1A) = 1A. Comparing this with Theorem
1.2 we get: ∫

A

ZdP = (P(Y ), 1A) = (Y,P(1A)) = (Y, 1A) =

∫
A

Y dP,

which shows that Z is a version of the conditional expectation E(Y | G). If X ∈ L2(Ω,G, P ),
then P(X) = X and again it follows from Theorem 1.2 that∫

Ω

ZXdP = (P(Y ), X) = (Y,P(X)) = (Y,X) =

∫
Ω

Y XdP.

2

Theorem 1.7 If Y ≥ 0 is an stochastic variable, then E(Y | G) exists as a G–measurable
stochastic variable with values in [0,∞].

If Y ∈ L1(Ω,F , P ), thenE(Y | G) exists as an element of L1(Ω,G, P ) and ifX ∈ L∞(Ω,G, P ),
then ∫

Ω

E(Y | G)XdP =

∫
Ω

Y XdP. (1.2)

Proof: Let Y ≥ 0 be F–measurable. There exists an increasing sequence (Yn) of simple func-
tions with Yn ≥ 0 for all n ∈ N so that Yn ↑ Y . Da Yn ∈ L2(Ω,F , P ) for alle n, Zn = E(Yn | G)
exists for all n and since Yn+1 − Yn ≥ 0 for all n, it easily follows that Zn+1 − Zn ≥ 0 a.s. for
all n. Hence Zn ≤ Zn+1 n.s. We can therefore define

Z(ω) = lim
n
Zn(ω) for almost all ω ∈ Ω.

If A ∈ G is arbitrary, the monotone convergence theorem gives∫
A

ZdP = lim
n

∫
A

ZndP =

∫
A

YndP =

∫
A

Y dP,

which shows that Z is a version ofE(Y | G).

Hvis Y ∈ L1(Ω,F , P ) is arbitrary, we write Y = Y + − Y − and observe that since |Y | =
Y + + Y −, we have ∫

Ω

(E(Y + | G) + E(Y − | G)dP =

∫
Ω

|Y |dP <∞
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which implies that E(Y + | G) <∞ a.s. and E(Y − | G),∞ a.s. It now easily follows that if we
put Z = E(Y + | G)− E(Y − | G), then Z is a version of the conditional expectation E(Y | G).

Let finally Y ∈ L1(Ω,F , P ) and X ∈ L∞(Ω,G, P ). It is clearly enough to prove (1.2) when
Y ≥ 0 so let us assume that. As above we choose a sequence (Yn) f simple functions so that
Yn ↑ Y and conclude as before that E(Yn | G) ↑ E(Y | G) a.s. Since Yn ∈ L2(Ω,F , P ) for all
n ∈ N and X ∈ L2(Ω,G, P ), we get from Theorem 1.6 that∫

Ω

YnXdP =

∫
Ω

E(Yn | G)XdP for all n ∈ N,

and we also have the inequalities:

|E(Yn | G)X| ≤ E(Y | G)|X| ∈ L1(Ω,G, P )

and
|YnX| ≤ Y |X|

so that applying the majorized convergence theorem twice we get∫
Ω

E(Y | G)XdP = lim
n

∫
Ω

E(Yn | G)XdP =

lim
n

∫
Ω

YnXdP =

∫
Ω

Y XdP.

This proves equation (1.2) 2

We now wish to prove some comvergence theorems for conditional expectatations similar to
those for usual expectations. We start with

Theorem 1.8 (Monotone convergence) Let (Xn) be a sequence of stochastic variables so that
0 ≤ Xn ≤ Xn+1 a.s. for all n ∈ N and put X = limnXn. Then E(X | G) = limnE(Xn | G).

Proof: You will note that the proof is implicitely given in the beginning of the previous theorem.

Since 0 ≤ Xn ≤ Xn+1 a.s., we get that 0 ≤ E(Xn | G) ≤ E(Xn+1 | G) a.s. for all n ∈ N so let
Z = limnE(Xn | G) which is clearly G–measurable. To finish the proof we have to show that
Z = E(X | G) a.s. Hence let A ∈ G be arbitrary. By the monotone convergence theorem for
integrals and the definition of conditional expectations we get that∫

A

XdP = lim
n

∫
A

XndP =

lim
n

∫
A

E(Xn | G)dP =

∫
A

ZdP

which shows that Z = E(X | G) a.s. 2

The next result corresponds to Fatous Lemma.
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Theorem 1.9 (Fatous Lemma) Let (Xn) be a sequence of s.v’s so that Xn ≥ 0 a.s. Then

E(lim inf
n

Xn | G) ≤ lim inf
n

E(Xn | G).

Proof: For every n ∈ N we put

Yn = inf{Xm | n ≤ m}

and note that 0 ≤ Yn ≤ Yn+1 and Yn ≤ Xn for all n ∈ N. By definition of lim inf we get that
lim infnXn = limn Yn a.s. and therefore by the Monotone Convergence Theorem we get

E(lim inf
n

Xn | G) = limE(Yn | G) ≤

lim inf
n

E(Xn | G)

which gives the result. 2

We shall need the following inequality which is actually a special case of Jensen’s inequality
below.

Lemma 1.10 If X ∈ L1(P ), then |E(X | G)| ≤ E(|X| | G) a.s.

Proof: Since X ≤ |X| and −X ≤ |X| a.s. we get that E(X | G) ≤ E(|X| | G) and
−E(X | G) ≤ E(|X| | G) a.s. Hence |E(X | G)| ≤ E(|X| | G) a.s. 2

The next theorem corresponds to the Dominated Convergence Theorem.

Theorem 1.11 (The dominated Convergence Theorem) Let (Xn) ⊆ L1(P ) and Y ∈ L1(P )
so that |Xn| ≤ Y a.s. If X is an s.v. so that Xn → X a.s., then E(Xn | G)→ E(X | G) a.s. and
in L1(P ).

Proof: We first note that the usual dominated convergence theorem for integrals gives that X ∈
L1(P ) and that Xn → X in L1(P ). Noting that the triangle inequality gives that
0 ≤ 2Y − |X −Xn| a.s and that

lim inf(2Y − |X −Xn|) = lim(2Y − |X −Xn|) = 2Y a.s.,

an application of Fatou’s Lemma gives

E(2Y | G)) ≤ lim inf E(2Y − |X −Xn| | G) =

E(2Y | G) + lim inf(−E(|X −Xn| | G)) = E(2Y | G)− lim supE(|X −Xn| | G).

Deducting 2E(Y | G) on both sides we get that lim supE(|X −Xn| | G) ≤ 0, but then
0 ≤ lim inf E(|X −Xn| | G) ≤ lim supE(|X −Xn| | G) ≤ 0 and hence

|E(X −Xn) | G)| ≤ E(|X −Xn| | G)→ 0 a.s..
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Since Ω ∈ G we get from the above∫
Ω

|E(X | G)− E(Xn | G)|dP ≤
∫

Ω

E(|X −Xn| | G)dP =∫
Ω

|X −Xn|dP → 0,

which shows that E(Xn | G)→ E(X | G) in L1(P ). 2

We recall that a function φ : R→ R is called convex if φ((1−t)x+ty) ≤ (1−t)φ(x)+tφ(y) for
all x, y ∈ R and all t ∈ [0, 1]. Geometrically this means that that the point ((1− t)x+ ty, φ((1−
t)x+ ty)) ∈ R2 lies below the line segment between the points (x, φ(x)) and (y, φ(y)); in other
words, the set {(x, z) ∈ R2 | φ(x) ≤ z} is a convex subset of the plane. It follows easily from
this description that if u, v, w ∈ R with u < v < w, then

φ(v)− φ(u)

v − u
≤ φ(w)− φ(v)

w − v
(1.3)

and hence the left hand term increases with u. We put

D−(v) = lim
u↑v

φ(v)− φ(u)

v − u
≤ φ(w)− φ(v)

w − v
. (1.4)

In particular the limit D−(v) is finite and since v − u → 0 for u ↑ v, this implies that φ(v) −
φ(u)→ 0. Hence φ is continuous from the left. A similar argument letting w ↓ v shows that φ is
continuous from the right. A geometrical proof of the continuity of φ can be found in W. Rudin,
Real and complex analysis. Since it is enough to take the limit in (1.4) along a sequence (un)
with un ↑ v, we see that D− is the pointwise limit of a sequence of continuous functions so that
D− is Borel measurable We can now prove Jensen’s inequality:

Theorem 1.12 Let φ : R→ R be a convex function and let X ∈ L1(P ). If φ(X) ∈ L1(P ), then

φ(E(X | G)) ≤ E(φ(X) | G)

Proof: The inequality

φ(x)− φ(v) ≥ D−(v)(x− v) for alle x, v ∈ R (1.5)

can be seen as follows: If v < x, then we put w = x in (1.4) and if x < v, we put u = x in (1.4).
If we put

β = D−(E(X | G)),

then β isG–measurable and from (1.5) we get

φ(X)− φ(E(X | G) ≥ β(X − E(X | G)). (1.6)
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If β is bounded and φ(E(X | G)) ∈ L1(P ), we can take the conditional expectation in (1.6) and
get:

E(φ(X) | G)− φ(E(X | G)) ≥ β(E(X | G)− E(X | G)) = 0, (1.7)

which gives the result in this special case. However, since β need not be bounded and
φ(E(X | G)) need not be in L1(P ), we must continue. For every n ∈ N we put vi

Dn = {ω ∈ Ω | |E(X | G)| ≤ n},
and note that Dn ∈ G. Since φ is continuous, it is bounded on the interval [−n, n] and since D−φ
is non–decreasing, it is also bounded on the interval [−n, n]. Hence both 1Dnβ and
1Dnφ(E(X | G)) are bounded. If we multiply (1.6) with 1Dn and take conditional expectation,
we get:

1Dn(E(φ(X) | G)− φ(E(X | G))) ≥ 1Dnβ(E(X | G)− E(X | G)) = 0. (1.8)

We observe that Dn ↑ Ω for n→∞ and hence if we let n→∞ i (1.8) we get:

E(φ(X) | G)− φ(E(X | G)) ≥ 0

which finishes the proof. 2

The following very useful result is known as the Doob–Dynkin Lemma.

Theorem 1.13 Let X and Y be s.v.’s. Y is σ(X)–measurable if and only if there exists a Borel
function g : R→ R so that Y = g(X).

Proof: It is clear that if g : R → R is a Borel function, then g(X) is σ(X)–measurable so it is
the other direction which is the important one.

Hence assume that Y is σ(X)–measurable. We first assume that Y = 1A with A ∈ σ(X). Then
there is a Borel set B ⊆ R with A = X−1(B) and it is then clear that Y = 1A = 1X−1(B) =
1B(X). This shows that we can choose g = 1B in this case.

If Y is a simple function, say Y =
∑n

k=1 ak1Ak
where ak ∈ R for all 1 ≤ k ≤ n and Ak ∈ σ(X)

for all 1 ≤ k ≤ n with Ak ∩ Aj = ∅ for k 6= j, then we can find Borel sets Bk ⊆ R so
that Ak = X−1(Bk) for all 1 ≤ k ≤ n. It is now clear that if we put g =

∑n
k=1 ak1Bk

, then
Y = g(X).

Next we let Y ≥ 0. We can then find a sequence (Yk) of simple σ(X)– measurable functions
with 0 ≤ Yk ≤ Yk+1 for all k ∈ N so that Y = limk Yk. By the above we can to each k find a
Borel function gk so that Yk = gk(X) for all k ∈ N. For each n ∈ N we put
hn = max{gk | 1 ≤ k ≤ n}. Since the Yn’s are increasing we get that for all ω ∈ Ω we have
gk(X(ω)) = Yk(ω) ≤ Yn(ω) = gn(X(ω) for all 1 ≤ k ≤ n so that hn(X(ω)) = gn(X(ω)).
Since by definition the hn’s are increasing we can put g = limn hn. If now ω ∈ Ω, then

Y (ω) = lim
n
gn(X(ω)) = lim

n
hn(X(ω)) = g(X(ω)).

If Y is arbitrary, we write Y = Y +− Y − and apply the above on Y + and Y − to get the result. 2
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2 Martingales

As before we have a fixed probability space (Ω,F , P ). To ease our notation in the future we
make the following two definitions.

Definition 2.1 Let(Fn)n≥0 be a sequence of sub–σ–algebras of F . If Fn ⊆ Fn+1 for all n ≥ 0,
then we call (Fn) a filtration of F .

Definition 2.2 Let (Fn) be a filtration of F . A sequence (Xn) of stochastic variables is called
an (Fn)–adapted stochastic process if Xn is Fn–measurable for all n ≥ 0.

If it is clear which filtration is used in the definition, we shall just talk about a stochastic process.

If (Xn) is an arbitrary sequence of s.v.’s, we can consider the filtration (σ(X0, X1, · · · , Xn))
adapted to which (Xn) becomes a stochastic process. This is the filtration which is mostly used
in the book. It is called (Xn)’s own filtration.

Let in the following (Fn) be a fixed filtration of F .

In the book martingales, submartingales, and supermartingales adapted to (Fn) are defined and
please note that if (Xn) is an (Fn)–martingale, then it is also a martingale in its own filtration.
Similar results hold for submartingales and supermartingales.

A motivation for the theory of martingales.

Assume we go down to the casino in Odense and play a game. If we invest 1 kr and win, we get
our stake back and win 1 kr. If we loose, we have lost our stake, that is we have lost 1 kr. The
probability to win is p where 0 ≤ p ≤ 1. The individual games are independent of each other.
Hence we get a sequence (Xn) of independent stochastic variables with P (Xn = 1) = p and
P (Xn = −1) = 1− p for all n ∈ N. It is readily verified that E(Xn) = 2p− 1. For every n ∈ N
we let Sn =

∑n
k=1Xk and Fn = σ(X1, X2, . . . , Xn). Since Xn+1 is independent of Fn for all n,

E(Xn+1 | Fn) = E(Xn+1) = 2p− 1 and hence we get

E(Sn+1 | Fn) = Sn + E(Xn+1) = Sn + 2p− 1. (2.1)

This shows that (Sn) is a submartingale if p > 1
2
, a martingale if p = 1

2
, and a supermartingale if

p < 1
2
.

Let us now consider the possibility to improve our result by making a strategy by looking on the
results of the first n−1 games and then decide what stakes to make in the n’th game. To formalize
this we assume that we when we start, we have X0 kr to our disposal, and X0 is constant. We
further assume that for every n ∈ N we have an Fn−1–measurable function gn : Ω → [0,∞[
(we put F0 = {∅,Ω}), that is gn is the stake we want to do in the n′th game, based on our
knowledge of the first n− 1 games. It follows from an n–dimensional version of Theorem 1.13
that for every n ∈ N there is a Borel measurable function φn :]0,∞[×{−1, 1}n−1 → [0,∞[
so that gn = φn(X0, X1, X2, · · · , Xn−1). Note that we also allow gn(ω) = 0 which means that
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we do not take part in the n’th game. Since everyone has limited ressources for disposal, it is
reasonable to assume that all the gn’s are bounded. We now put

Un = X0 +
n∑
k=1

gkXk for alle n ≥ 0

which gives the result of the first n games

Since gn is bounded for every n, gnXn ∈ L1(P ) and since gn er Fn−1–measurable we get
E(gnXn | Fn−1) = gnE(Xn | Fn−1) = (2p− 1)gn for all n ∈ N and hence

E(Un | Fn−1) = Un−1 + (2p− 1)gn.

This shows that (Un) is a submartingale if p > 1
2
, a martingale if p = 1

2
, and a supermartingale

if p < 1
2
. Note that in the case of a submartingale or supermartingale we have a strict inequality

for those ω’s for which gn(ω) > 0.

This means that we cannot change the result using a strategy as above! Note also that that the
result does not depend on the upper bounds of the (gn)’s. The boundedness of the gn’s was only
used to conclude that gnXn is integrable.

It also follows from the results in the book that a strategy using stopping times does not help. 2

The next proposition provides an important example of a martingale and should be compared to
the motivation just given.

Proposition 2.3 Let (Xn)n≥0 ⊆ L1(P ) be a sequence of independent stochastic variables with
E(Xk) = 0 for all k ≥ 0, put Sn =

∑n
k=0 Xk, and Fn = σ(X0, X1, · · · , Xn) for all n ≥ 0.

Then (Sn) is a martingale.

Proof: Let n ≥ 0 be arbitrary and write Sn+1 = Sn +Xn+1. We then get:

E(Sn+1 | Fn) = Sn + E(Xn+1 | Fn) = Sn,

where we in the last equality have used that since Xn+1 is independent of Fn,
E(Xn+1 | Fn) = E(Xn+1) = 0 2

We also have:

Proposition 2.4 Let X ∈ L1(P ) and define Xn = E(X | Fn) for all n ≥ 0. Then (Xn) is a
martingale.

Proof: If n ≥ 0 is given, then

E(Xn+1 | Fn) = E(E(X | Fn+1) | Fn)

E(X | Fn) = Xn

2
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The next definition concerns stopping times. Please note the slight difference between our defi-
nition and the one in the book.

Definition 2.5 A function τ : Ω → N ∪ {0} ∪ {∞} is called a stopping time (adapted to (Fn))
if (τ = n) ∈ Fn for all 0 ≤ n <∞.

In the sequel we shall adopt the convention that inf ∅ =∞.

The next propostion provides an important example of a stopping time.

Proposition 2.6 Let (Xn) be a stochastic process (adapted to (Fn)) and let A ⊆ R be a Borel
set. If we define

τ(ω) = inf{n ≥ 0 | Xn /∈ A} for all ω ∈ Ω,

then τ is a stopping time.

Proof: Note that by the above convention τ(ω) =∞ if Xn(ω) ∈ A for all 0 ≤ n <∞!

Let now 0 ≤ n < ∞ be arbitrary. We have to show that (τ = n) ∈ Fn. Noting that if ω ∈ Ω,
then τ(ω) = n if and only if Xk(ω) ∈ A for all k < n and Xn(ω) /∈ A we immediately get

(τ = n) = ∩n−1
k=0X

−1(A) ∩ (Ω\X−1
n (A)),

from where it follows that (τ = n) ∈ Fn 2

If X = (Xn) is a stochastic process and τ is a finite stopping time, then as in the book we define
the stochastic variable Xτ by

Xτ (ω) = Xτ(ω)(ω) for all ω ∈ Ω

In the book it is not shown that Xτ is measurable so this we do here.

Lemma 2.7 Let X = (Xn) be a stochastic process and let τ be a finite stopping time. Then Xτ

is measurable, i.e a stochastic variable.

Proof: Let B ∈ R be an arbitrary Borel set. Since τ is finite, we get that Ω = ∪∞n=0(τ = n) and
hence

X−1
τ (B) = ∪∞n=0((τ = n) ∩X−1

τ (B)) = ∪∞n=1((τ = n) ∩X−1
n (B) ∈ F

which shows that Xτ is measurable. 2

As in the book we now want to study upcrossings in order to prove Doob’s upcrossing inequal-
ity which is Theorem 26.4 in the book. This result is the main tool to prove the martingale
convergence theorem. As a motivation we start by defining upcrossings for a sequence of real
numbers.
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We recall that if A ⊆ N is non–empty, then A has a first element minA. If A ⊆ N, we therefore
define minA as usual if A 6= ∅ and put minA = ∞ if A = ∅. Let (xn)∞n=0 ⊆ R be a sequence
and a, b ∈ R with a < b. Inductively we define tallene:

s1 = min{n ≥ 0 | xn < a} t1 = min{n > s1 | xn > b}

and for k ≥ 2

sk = min{n > tk−1 | xn < a} tk = min{n > sk | xn > b}.

Definition 2.8 The number of upcrossings from a to b of the sequence (xn) is defined to be∞ if
tk <∞ for all k ∈ N og to be k, if tk <∞ and tk+1 =∞.

Try in a coordinate system to put the n’s on the x–axis, place the interval [a, b] on the y–axis, and
from each n you go xn up the y–axis.

We have the following:

Lemma 2.9 The sequence (xn) is convergent in [−∞,∞] if and only if the number of upcross-
ings from a to b af (xn) is finite for all rational numbers a, b with a < b

Proof: Let us first assume that xn → x ∈ [−∞,∞] and let a, b ∈ Q with a < b. Then either
x > a or x < b. In the first case there is an n0 so that xn > a for all n ≥ n0. If we choose k
with tk ≥ n0, then sk+1 = ∞ and hence the number of upcrossings will be less than or equal to
k. The case where x < b can be treated in a similar manner.

Let us now assume that (xn) divergent. Then −∞ ≤ lim inf xn < lim supxn ≤ ∞ and since Q
is dense in R, we can find a, b ∈ Q with lim inf xn < a < b < lim supxn. From the definition of
lim inf and lim sup we get the following inequalities for all k ∈ N

inf{xn | n ≥ k} < a

sup{xn | n ≥ k} > b.

From these it follows immediately that xn > b for for infinitely many n and that xn < a for
infinitely many n and this of course gives that the number of upcrossings from a to b is infinite.
2

Let now X = (Xn)n≥0 be an (Fn)–adapted stochastic process and a, b ∈ R with a < b be given.
For a given ω ∈ Ω we wish to estimate the number of upcrossings from a to b of (Xn(ω)). In
analogy with the above we define T0 = 0 and :

S1(ω) = min{n ≥ 0 | Xn(ω) < a}
T1(ω) = min{n > S1(ω) | Xn(ω) > b},

and inductively for k ≥ 2:

Sk(ω) = min{n > Tk−1(ω) | Xn(ω) < a}
Tk(ω) = min{n > Sk(ω) | Xn(ω) > b}.

The next lemma shows that we really have stopping times.
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Lemma 2.10 Sk og Tk are stopping times for all k ∈ N.

Proof: The proof is by induction. Let n ∈ N. For k = 1 we find:

(S1 = 0) = (X0 < a) ∈ F0

(S1 = n) = ∩n−1
m=0(Xm ≥ a) ∩ (Xn < a) ∈ Fn.

Note that (besides T0) S1 is the only one which can take the value 0. Further we get

(T1 = n) = ∪n−1
m=0(S1 = m,Xm+1, · · · , Xn−1 ≤ b,Xn > b) ∈ Fn.

Let now k ≥ 2 and assumed that we have proved that (Sj)
k−1
j=1 and (Tj)

k−1
j=1 are stopping times.

We then get:

(Sk = n) = ∪n−1
m=1(Tk−1 = m,Xm+1, Xm+2, · · · , Xn−1 ≥ a,Xn < a) ∈ Fn,

so that Sk is a stopping time and we continue with:

(Tk = n) = ∪n−1
m=1(Sk = m,Xm+1, · · · , Xn−1 ≤ b,Xn > b) ∈ Fn

which shows that Tk is a stopping time. 2

We have the following

Definition 2.11 Let n ∈ N, og lad a, b ∈ R with a < b. The number of upcrossings Un[a, b](ω)
of (Xn(ω) until the time n is defined to be k if Tk(ω) ≤ n and Tk+1(ω) > n.

Note that Un[a, b](ω) = 0 if and only if T1(ω) > n.

The following small result is missing in the book.

Theorem 2.12 If n, a og b are as in Definition 2.11, then Un[a, b] is a measurable function.

Proof: We consider first the case UN [a, b] = 0 and get

(Un[a, b] = 0) = (T1 > n) ∈ Fn ⊆ F

since T1 is a stopping time. For k ≥ 1 we get:

(Un[a, b] = k) = (Tk ≤ n) ∩ (Tk+1 > n) ∈ Fn ⊆ F

since Tk and Tk+1 are stopping times. This shows that Un[a, b] is measurable. 2

We can now formulate and prove the book’s Theorem 26.4. Our proof is roughly the same as in
the book, but we do it in more detail.

Theorem 2.13 Lad n, a og b be as before and let (Xn) be a submartingale (with respect to
(Fn)). Then

E(Un[a, b]) ≤ (b− a)−1E[(Xn − a)+] (2.2)

12



Proof: Put Yn = (Xn − a)+. Since the function φ(x) = (x − a)+ for all x ∈ R is convex and
increasing, we know from Jensen’s inequality (Exercise 6) that (Yn) is a submartingale. Since by
definition Sn+1 > n, we get that

Yn = YS1∧n +
n∑
i=1

(YSi+1∧n − YSi∧n) = (2.3)

YS1∧n +
n∑
i=1

(YTi∧n − YSi∧n) +
n∑
i=1

(YSi+1∧n − YTi∧n). (2.4)

Let now ω ∈ Ω so that Un[a, b](ω) = k ∈ N. Then Tk(ω) ≤ n and Tk+1(ω) > n and therefore
we have:

n∑
i=1

(YTi∧n − YSi∧n)(ω) =
k∑
i=1

(YTi − YSi
)(ω) + (Yn − YSk+1∧n)(ω) ≥ (2.5)

k(b− a) + (Yn − YSk+1∧n(ω)) (2.6)

where whe have used that YTi(ω) − YSi
(ω) ≥ (b − a) for all 1 ≤ i ≤ k. If Sk+1(ω) ≥ n,

then the last term in the last inequality of (2.5) is 0, and if Sk+1(ω) < n, then YSk+1∧n(ω) =
(XSk+1

(ω) − a)+ = 0 in which case the term becomes Yn(ω) ≥ 0. Hence we can remove the
last term in the equation and get that the left hand side is greater than or equal to (b− a)k. Since
YS1∧n ≥ 0, we get all in all

(b− a)k ≤ Yn −
n∑
i=1

(YSi+1∧n − YTi∧n) (2.7)

or written in another way

(b− a)Un[a, b](ω) ≤ Yn(ω)−
n∑
i=1

(YSi+1∧n − YTi∧n)(ω) (2.8)

We also have to verify (2.8) in case Un[a, b](ω) = 0, but in that case the left hand side reduces to
0 while the left hand side reduces to Yn(ω) ≥ 0, because already T1(ω) > n. Hence (2.8) holds
for all ω ∈ Ω. Since it follows from the book’s Theorem 24.6 that E(YSi+1∧n − YTi∧n) ≥ 0 for
all n ∈ N, we get by taking expectation in (2.8) that

(b− a)E(Un[a, b]) ≤ E(Yn)

which was what we wanted. 2

We can now show the important

Theorem 2.14 Let (Xn) be a submartingale so that supnE(|Xn|) < ∞. Then there is an
X ∈ L1(P ) so that Xn → X n.s.

13



Proof: Put K = supnE(|Xn|). If a, b ∈ R with a < b, it is clear that the sequence (Un[a, b]) is
increasing so we put

U∞[a, b] = lim
n
Un[a, b].

Remembering how upcrossings are counted, it also follows that U∞[a, b] is the number of up-
crossings from a to b. By Theorem 2.13 and the monotone convergence theorem it follows that

E(U∞[a, b]) = lim
n
E(Un[a, b]) ≤ (b− a)−1(K + |a|),

and hence U∞[a, b] <∞ a.s. If we put

A = ∩(U∞[a, b] <∞ | a, b ∈ Q, a < b),

then P (A) = 1. If ω ∈ A, it follows that the number of upcrossings from a to b of the sequence
(Xn(ω)) is finite for all a, b ∈ Q, a < b, and therefore that sequence is convergent. We define

X(ω) = lim
n
Xn(ω) for all ω ∈ A,

and hence X is a random variable defined almost everywhere and with values in [−∞,∞].
However., the Fatous lemma gives us that

E(|X|) ≤ lim inf E(|Xn|) ≤ K,

which shows that |X| <∞ a.s. and that X ∈ L1(P ). 2

One should note that it does not follow that (Xn) converges to X in L1(P ). We shall in the next
sections discuss what conditions should be put on the Xn’s in order to achieve that.

Let us end this section with Doob’s decomposition theorem.

Theorem 2.15 Let (Xn) be an (Fn)–adapted process. Then (Xn) has a Doob decomposition

Xn = X0 +Mn + An for all n ≥ 0,

where (Mn) is a martingale with M0 = 0 and (An) with A0 = 0 is a predictable process, which
means that An is Fn−1–measurable for all n ≥ 1. (Mn) and (AN) are uniquely determined up
to “almost surely”.

(Xn) is a submartingale if and only if An ≤ An+1 a.s. for all n ≥ 0.

Proof: Assume (Mn) and (An) satisfy the assumptions in the theorem. Then for all n ≥ 1 we
have

E(Xn −Xn−1 | Fn−1) = E(Mn −Mn−1 | Fn−1) +

E(An − An−1 | Fn−1) = An − An−1

14



which shows that

An =
n∑
k=1

E(Xk −Xk−1 | Fk−1) (2.9)

and of course
Mn = Xn −X0 − An. (2.10)

This shows that (An) and (Mn) are uniquely determined. To prove the existence we define An
as in (2.9) and put A0 = 0 and Mn as in (2.10). Clearly Xn = X0 + Mn + An for all n ≥ 0.
It follows directly from (2.9) that An is Fn−1–measurable for all n ≥ 1 so we need to show that
(Mn) defined by (2.10) is a martingale. For n ≥ 0 we get

E(Mn | Fn−1) = E(Xn | Fn−1)−X0 − E(An | Fn−1) =

E(Xn | Fn−1) +X0 + An = E(Xn | Fn−1)−X0 −
n∑
k=1

E(Xk −Xk−1 | Fn−1) =

Xn−1 −X0 − An−1 = Mn−1,

which shows that (Mn) is a martingale.

If (Xn) is a submartingale, then each term in the definition of (An) is non–negative and therefore
(An) is almost surely increasing. On the other hand, if (An) is increasing, then for all n ≥ 1 we
get

E(X | Fn) = X0 +Mn−1 + An ≥ X0 +Mn−1 + An−1 = Xn−1,

which shows that (Xn) is a submartingale. 2

3 L2–martingales

We start with a simple result from general Hilbert space theory. We recall that if H is a Hilbert
space with inner product (·, ·), then a sequence (xn) ⊆ H is called an orthogonal sequence if
(xn, xm) = 0 for all n 6= m. We have

Proposition 3.1 Let H be a Hilbert space and (xn) ⊆ H be an orthogonal sequence. Then∑∞
k=1 xk converges in H if and only if

∑∞
k=1 ‖xk‖2 <∞. If this is the case, then

‖
∑∞

k=1 xk‖2 =
∑∞

k=1 ‖xk‖2.

Proof: For every n ∈ N we put sn =
∑n

k=1 xk and un =
∑n

k=1 ‖xk‖2. By the Pythagoras
Theorem we get for all n < m:

‖sm − sn‖2 = ‖
m∑

k=n+1

xk‖2 =
n∑
k=1

‖xk‖2 = um − un,

which shows that (sn) is a Cauchy sequence in H if and only if (un) is a Cauchy sequence in R.
Since H is complete, we get the result.
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If we know the convergence, then for all ≥ 1 we get

‖sn‖2 =
n∑
k=1

‖xk‖2

and if we let n→∞, we get the desired formula. 2

We recall that the real L2(P ) is a Hilbert space with the inner product

(f, g) =

∫
Ω

fgdP for all f, g ∈ L2(P ).

We also recall that from our construction of conditional expectations it follows that E(· | Fn) is
the orthogonal projection of L2(P ) onto the subspace L2(Ω,Fn, P ) for all n ≥ 0.

If (Mn) ⊆ L2(P ) is a martingale, then for every n ≥ 1 we get that E(Mn −Mn−1 | Fn−1) = 0,
and this means that Mn − Mn−1 is orthogonal to L2(Ω,Fn−1, P ). Hence it follows that the
sequence (Mn −Mn−1) is an orthogonal sequence in L2(P ). Therefore we get for all n ≥ 1

‖Mn‖2
2 = ‖M0‖2

2 +
n∑
k=1

‖Mk −Mk−1‖2
2. (3.1)

This observation gives rise to the following convergence theorem for L2–martingales.

Theorem 3.2 Let (Mn) ⊆ L2(P ) be a martingale. (Mn) is bounded in L2(P ) if and only∑∞
k=1 ‖Mk −Mk−1‖2

2 <∞.

When this is the case, there is an M∞ ∈ L2(P ) so that Mn →M∞ a.s. and in L2(P ). Moreover,
for all n ≥ 0 we have that E(M∞ | Fn) = Mn.

Proof: It is clear from (3.1) that (Mn) is bounded in L2(P ) if and only if
∑∞

k=1 ‖Mk−Mk−1‖2
2 <

∞.

If this series converges, we can write Mn = M0 +
∑n

k=1(Mk −Mk−1) and use Proposition 3.1
to get that (Mn) converges in L2(P ). We put

M∞ = limnMn in L2(P )

Since E(|Mn|) = ‖Mn‖1 ≤ ‖Mn‖2 for all n, we have that (Mn) is also bounded in L1(P ) and
hence the martingale convergence theorem gives, that there is a Y ∈ L1(P ) so that Mn → Y
a.s., but then of course M∞ = Y a.s.

Exercise 5 gives that for every k ∈ N E(· | Fk) is a continuous operation on L2(P ), and since
Mn → M∞ in L2(P ), we get that E(Mn | Fk) → E(M∞ | Fk), but for n ≥ k we have
E(Mn | Fk) = Mk and hence E(M∞ | Fk) = Mk. 2

Let us give an application of this convergence theorem.
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Theorem 3.3 Let (Xk) ⊆ L2(P ) be a sequence of independent random variables so that
E(Xk) = 0 for all k ∈ N. Put σ2

k = E(X2
K) for all k ∈ N.

(i)
∑∞

k=1 σ
2
k <∞ if and only if

∑∞
k=1 Xk converges in L2(P ). In that case the latter sum also

converges almost surely.

(ii) Assume that there exists a constant K > 0 so that |Xk| ≤ K a.s. If
∑∞

k=1 Xk converges
a.s., then

∑∞
k=1 σ

2
k <∞.

Proof: For every n ∈ N we put Mn =
∑n

k=1Xk and An =
∑n

k=1 σ
2
k. Further we let

Fn = σ(X1, X2, · · · , Xn) and put for convenience M0 = 0, A0 = 0, and F0 = {Ω, ∅}.

We know from earlier results and exercises that (Mn) is a martingale.

Since E((Mn −Mn−1)2) = σ2
n (i) follows directly from Theorem 3.2.

(ii) For every n ≥ 0 we put Nn = M2
n − An and wish to prove that (Nn) is a martingale. The

argument for this is similar to the one given in Exercise 7. Since Xk is independent of Fk−1 we
get

E((Mk −Mk−1)2 | Fk−1) = E(X2
k | Fk−1) = E(X2

k) = σ2
k,

and therefore

σ2
k = E(M2

k | Fk−1) +M2
k−1 + 2E(MkMk−1 | Fk−1) =

E(M2
k | Fk−1)−M2

k−1.

If we add Ak−1 on both side of this equation and reorganize the terms, we get
E(Nk | Fk−1) = Nk−1 which shows that (Nn) is a martingale. If c ∈ N is arbitrary and we
define τ = inf{n | |Mn| > c}, then τ is a stopping time by Proposition 2.6 and it follows from
the book’s Theorem 24.6 or Exercise 18, that (Nτ∧n) is a martingale. In particular

E(M2
τ∧n)− E(Aτ∧n) = E(N0) = 0. (3.2)

Since ((τ ∧ n)− 1 < τ , |M(τ∧n)−1| ≤ c and therefore

|Mτ∧n| ≤ |Xτ∧n|+ |M(τ∧n−1| ≤ K + c,

whence from (3.2) we obtain

E(Aτ∧n) = E(M2
τ∧n) ≤ (K + c)2 for all n ∈ N. (3.3)

Since
∑∞

k=1 Xk converges almost surely, we get that the sequence (Mn(ω)) is bounded for almost
all ω; in order words that

P (∪∞c=1 ∩∞n=1 (|Mn| ≤ c)) = 1.

This implies that there exists a c so that

P (τ =∞) = P (∩∞n=1|Mn| ≤ c) > 0.
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Actually we can get that probability so close to 1 as we wish, by choosing c big enough. (3.3)
now gives:

P (τ =∞)An ≤ E(Aτ∧n) ≤ (K + c)2 for all n ∈ N

and hence
An ≤ P (τ =∞)−1(K + c)2 for all n ∈ N,

but then
∑∞

k=1 σ
2
k ≤ P (τ =∞)−1(K + c)2 <∞. 2

4 Uniformly integrable martingales

In this section we shall see what is needed for a martingale to converge in L1(P ).

We recall the following definition (See also the book, page 105):

Definition 4.1 A subsetH ⊆ L1(P ) is called uniformly integrable if

lim
x→∞

( sup
X∈H

∫
(|X|≥x)

|X|dP ) = 0. (4.1)

The first proposition is rather obvious.

Proposition 4.2 IfH ⊆ L1(P ) is uniformly integrable, thenH is a bounded subset of L1(P ).

Proof: SinceH is uniformly integrable, we can find an x0 > 0 so that∫
(|X|≥x0)

|X|dP ≤ 1 for all X ∈ H,

but then for all X ∈ H we have

‖X‖1 =

∫
Ω

|X|dP =

∫
(|X|≥x0)

|X|dP +

∫
(|X|<x0)

|X|dP ≤

1 + x0P (|X| < x0) ≤ 1 + x0.

This shows thatH is bounded in L1(P ). 2

We will now find some criteria for uniform integrability. One could hope that the other direction
of Proposition 4.2 is also true but this is clearly false. Indeed e.g. the unit ball of L1(0, 1) is
bounded by definition, but clearly not uniformly integrable. However, we have

Theorem 4.3 Let 1 < p ≤ ∞. If H is a bounded subset of Lp(P ), then H is uniformly inte-
grable.
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Proof: Let first p =∞. By definition there is a K ≥ 0 so that |X| ≤ K a.e. for all X ∈ H, but
then P (|X| ≥ x) = 0 for all x > K and all X ∈ H. This clearly lead to uniform integrability.

Let now 1 < p < ∞. By definition there is a K ≥ 0 so that ‖X‖pp ≤ K. Note that if v, x ∈ R
with 0 < x ≤ v, then ( v

x
)p−1 ≥ 1 and multiplying with v on both sides we get that v ≤ x1−pvp.

Using this simple inequality we get the following for all X ∈ H and all x > 0∫
(|X|≥x)

|X|dP ≤ x1−p
∫

(|X|≥x)

|X|pdP ≤ x1−pK. (4.2)

Let now ε > 0 be arbitrary. Since x1−p → 0 for x → ∞, we can find an x0 > 0 so that
x1−pK ≤ ε for all x ≥ x0. For such x we get from (4.2) that for all x ∈ H we have∫

(|X|≥x)

|X|dP ≤ ε

which shows the uniform integrability ofH. 2

We also need

Theorem 4.4 If X ∈ L1(P ), then the family {E(X | G) | G a sub–σ–algebra of F} is uni-
formly integrable.

Proof: Let ε > 0 and choose δ > 0 so that

∀A ∈ F : P (A) < δ ⇒
∫
A

|X|dP < ε (4.3)

and let x > δ−1E(|X|) be arbitrary.

If G is any subalgebra of F , then Jensen’s inequality gives that

|E(X | G) ≤ E(|X| | G) (4.4)

and therefore E(|E(X | G)|) ≤ E(|X|) and

xP (|E(X | G)| ≥ x) ≤ E(|E(X | G)|) ≤ E(|X|).

This inequality and the choice of x implies that P (|E(X | G)| ≥ x) < δ. Since
(|E(X | G)| ≥ x) ∈ G, we get from (4.4) that∫

(|E(X|G)|≥x)

|E(X | G)|dP ≤
∫

(|E(X|G)|≥x)

E(|X| | G)dP =∫
|E(X|G)|≥x)

|X|dP ≤ ε.

This shows that our family is uniformly integrable. 2
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Note that Theorem 4.4 implies that if (Xn) is a martingale and there exists an X ∈ L1(P ) so that
E(X | Fn) = Xn for all n ∈ N, then necessarily (Xn) is uniformly integrable.

Before we can prove our main theorem of this section, we need

Theorem 4.5 Let (Xn) ⊆ L1(P ) and let X ∈ L1(P ). If Xn → X a.s. and (Xn) is uniformly
integrable, then Xn → X in L1(P ).

Proof: If K > 0, we define the function φK : R → R by φK(x) = x for all −K ≤ x ≤ K,
φK(x) = K for all x > K, and φK(x) = −K for all x < −K. It is easy to see that φK has the
following properties (check it!!):

(i) |φK(x)− x| ≤ |x| for all x ∈ R.

(ii) |φK(x)− φK(y)| ≤ |x− y| for all x, y ∈ R

By (i) we get that for all n ∈ N∫
Ω

|φK(Xn)−Xn|dP ≤
∫

(|Xn|>K)

|Xn|dP

and ∫
Ω

|φK(X)−X|dP ≤
∫

(|X|>K)

|X|dP

Let now ε > 0 be given. Using the uniform integrability of the sequence (Xn) and of {X} we
get from these integral inequalities that there exists a K > 0 so that

(iii) ‖φK(Xn)−Xn‖1 ≤ ε
3

for all n ∈ N.

(iv) ‖φK(X)−X‖1 ≤ ε
3
.

We now fix such a K. Since Xn → X a.s., it follows from (ii) that φK(Xn) → φK(X) a.s. and
the dominated convergence theorem therefore gives that φK(Xn) → φK(X) in L1(P ). Hence
we can find an n0 ∈ N so that ‖φK(Xn)− φK(X)‖1 ≤ ε

3
for all n ≥ n0. The triangle inequality

gives that for all n ≥ n0 we have

‖X −Xn‖1 ≤ ‖X − φK(X)‖1 + ‖φK(X)− φK(Xn)‖1 + ‖φK(Xn)−Xn‖1 ≤ ε.

and therefore Xn → X in L1(P ). 2

We are now ready to state and prove our main result.

Theorem 4.6 Let (Xn) ⊆ L1(P ) be a martingale. The following statements are equivalent:

(i) (Xn) is uniformly integrable.

(ii) There is an X∞ ∈ L1(P ) so that Xn → X∞ in L1(P ).

(iii) There is an X ∈ L1(P ) so that E(X | Fn) = Xn for all n ≥ 0.
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If (ii) (or one of the equivalent statements) holds, then Xn → X∞ a.s. and E(X∞ | Fn) = Xn

for all n ≥ 0.

Proof: (i) ⇒ (ii): If (Xn) is uniformly integrable, then it is bounded in L1(P ) by Proposition
4.2 and the martingale convergence theorem therefore gives that there is an X∞ ∈ L1(P ) so that
Xn → X∞ a.s. Theorem 4.5 now gives that gives that Xn → X∞ in L1(P ).

(ii)⇒ (iii): If (ii) holds then the continuity in L1(P ) of E(· | Fn) ensures that

E(X∞ | Fn) = lim
m
E(Xm | Fn) = Xn in L1(P ),

which proves (iii).

(iii)⇒ (i): If (iii) holds, then Theorem 4.4 shows that (Xn) is uniformly integrable.

The implication (i) → (ii) shows that Xn → X∞ a.s. and the implication (ii) → (iii) shows
that E(X∞ | Fn) = Xn for all n ≥ 0. 2

One can ask what the relation between X∞ satisfying (ii) and an X satisfying (iii) in Theorem
4.6 is. The answer is given by the following corollary.

Corollary 4.7 Let (Xn) ⊆ L1(P ) be a uniformly integrable martingale, let X∞ satisfy (ii) in
Theorem 4.6, and let X ∈ L1(P ) satisfy (iii) in that theorem. Then E(X | F∞) = X∞ where
F∞ = σ(Fn | n ≥ 0)

Proof: We note that sinceXn → X∞ a.s and everyXn isFn–measurable,X∞ isF∞–measurable.

Let G be the class of all those A ∈ F for which∫
A

XdP =

∫
A

X∞dP. (4.5)

It is easy to see (and left to the reader) that G is a σ–algebra. Let now n ≥ 0 and let A ∈ Fn
be arbitrary. Since E(X | Fn) = Xn = E(X∞ | Fn), it follows that

∫
A
XdP =

∫
A
X∞dP

which implies that Fn ⊆ G. Since this is true for all n and G is a σ–algebra, it follows that
F∞ ⊆ G. Hence (4.5) holds for all A ∈ F∞ and since X∞ is F∞–measurable, the defition of the
conditional expectation shows that E(X | F∞) = X∞. 2

5 Strong Law of Large Numbers

In this section we shall give a proof of the Strong Law of Large numbers based on martingale
theory.

We start by defining a backwards martingale
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Definition 5.1 Let X ∈ L1(P ) and let G−n be a sequence of sub–σ–algebras of F so that

G−(n+1) ⊆ G−n for all n ≥ 1.

For every n ∈ N we put X−n = E(X | G−n). (X−n) is called a backwards martingale.

The reason for the name is of course that X−(n+1) = E(X−n | G−(n+1)) for all n ∈ N.

We have the following theorem on backwards martingales.

Theorem 5.2 Let (X−n) be a backwards martingale as in Definition 5.1 and put G−∞ = ∩∞n=1G−n.
There exists anX−∞ ∈ L1(P ) so thatX−n → X−∞ for n→∞ both a.s. and in L1(P ). Actually
X−∞ = E(X1 | G−∞) = E(X | G−∞)

Proof: If n ∈ N we consider the finite sequence X−n, X−(n−1), · · · , X−1 which is a finite mar-
tingale starting with X−n and ending with X−1. If a < b we let U−n[a, b] denote the number of
upcrossings from a to b for that martingale. From the upcrossing Theorem 2.13 we get that

E(U−n[a, b]) ≤ (b−a)−1E((X−1−a)+) ≤ (b−a)−1(E(|X−1|)+|a|) ≤ (b−a)−1(E(|X|)+|a|).

The sequence (U−n[a, b]) is increasing a.s. and if we put U−∞[a, b] = limn U−n[a, b], then it is
readily verified that this limit is the number of downcrossings from b to a of the sequence (X−n)
(we say it that way when we go backwards). The monotone convergence theorem then gives that

E(U−∞[a, b]) = lim
n
E(U−n[a, b]) ≤ E(|X|) + |a| <∞.

Therefore U−∞[a, b] <∞ a.s. Since this holds for all a < b, there exists an sv
X−∞ : Ω→ [−∞,∞] so that X−∞ = limnX−n. The Fatou Lemma now gives us that

E(|X−∞|) ≤ lim inf
n

E(|X−n|) ≤ E(|X−1|) <∞

which implies that X−∞ ∈ R a.s. and that X−∞ ∈ L1(P ).

Since X−n = E(X | G−n) for all n ∈ N, we get from Theorem 4.4 that (X−n) is uniformly
integrable and hence Theorem 4.5 implies that X−n → X−∞ in L1(P ).

To get the last statement we let A ∈ G−∞ be arbitrary and observe that by the L1–convergence
we get ∫

A

X−∞dP = lim
n

∫
A

E(X−1 | G−n)dP =

∫
A

X−1dP,

where the last equality holds because A ∈ G−n for all n. This shows that
X−∞ = E(X−1 | G−∞). 2

Before we can prove the Strong Law of Large numbers we need to recall a few results from
general measure theory and probability theory. We start with:
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Definition 5.3 LetX : Ω→ R be a stochastic variable. We define the Borel probability measure
X(P ) on R by

X(P )(A) = P (X−1(A)) for all B.

X(P ) is called the distribution of X , the law of X , or simply the image measure of P by X .

By defintion two sv’s X and Y are identically distributed when X(P ) = Y (P ). We also recall:

Theorem 5.4 Let X be an sv and let f : R→ R be a Borel–measurable function. Then
f ◦X ∈ L1(P ) if and only f ∈ L1(X(P )) and in that case∫

Ω

f ◦XdP =

∫ ∞
−∞

fdX(P ).

Note that if f ◦X ∈ L1(P ) and A is a Borel set and we use the above formula with f1A instead
of f we get ∫

X−1(A)

f ◦XdP =

∫
A

fdX(P ).

We need a generalization of Definition 5.3 and Theorem 5.4 to stochastic variables taking values
in Rn. If Xk : Ω → R, 1 ≤ k ≤ n are stochastic variables, we can make the stochastic
variable X : Ω→ Rn having the Xk’s as its coordinates, i.e. X = (X1, X2, · · · , Xn). Similar to
Definition 5.3 we have:

Definition 5.5 Let n ∈ N and let X : Ω→ Rn be an sv. We define the Borel probability measure
X(P ) on Rn by

X(P )(A) = P (X−1(A)) for all A ∈ Bn.

Here Bn denotes the set of Borel subsets of Rn. X(P ) is called the distribution of X , the law of
X , or simply the image measure of P by X .

If Xk : Ω→ R, 1 ≤ k ≤ n, are the coordinates of X , i.e X = (X1, X2, · · · , Xn), X(P ) is also
called the joint distribution of X1, X2, · · · , Xn.

Similar to Theorem 5.4 we have the following theorem, the proof of which is roughly the same.

Theorem 5.6 Let n ∈ N, let X : Ω→ Rn be an sv, and let f : Rn → R be a Borel–measurable
function. Then f ◦X ∈ L1(P ) if and only f ∈ L1(X(P )) and in that case∫

Ω

f ◦XdP =

∫
Rn

fdX(P )

Again we can note that if f ◦ X ∈ L1(P ) and A ⊆ Rn is a Borel set, we can use the above
formula with f1A instead of f to get∫

X−1(A)

f ◦XdP =

∫
A

fdX(P ). (5.1)
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If X : Ω → Rn is an sv, say X = (X1, X2, · · · , Xn), it is in general difficult to express the
distribution X(P ) in terms of the distributions Xk(P ), 1 ≤ k ≤ n. However, if the Xk’s are
independent then it is easy as the next result shows.

Theorem 5.7 Let n ∈ N, Xk : Ω → R, 1 ≤ k ≤ n, and put X = (X1, X2, · · · , Xn). Then the
Xk’s are independent if and only if

X(P ) =
n⊗
k=1

Xk(P ) (5.2)

where
⊗n

k=1Xk(P ) denotes the product measure of the Xk(P )’s.

Proof: In order to check when (5.2) holds, it is enough to check when the two measures are
equal on boxes in Rn. Hence let Ak, 1 ≤ k ≤ n be Borel subsets of R and put A =

∏n
k=1Ak.

Note that
X−1(A) = ∩nk=1X

−1
k (Ak),

and therefore
X(P )(A) = P (∩nk=1X

−1
k (Ak)) (5.3)

On the order hand, by definition of the product measure we have
n⊗
k=1

Xk(P )(A) =
n∏
k=1

Xk(P )(Ak) =
n∏
k=1

P (X−1
k (Ak)). (5.4)

If the Xk’s are independent, then the right hand sides of (5.3) and (5.4) are equal for all choices
of the Ak’s and therefore the left hands sides are equal too which means that (5.2) holds.

If (5.2) holds, then the left hand sides of (5.3) and (5.4) are equal for all choices of the Ak’s and
the right hand sides are equal too, which means that the Xk’s are independent. 2

We are going to discuss some results on measures on Rn which have to be used in the proof of
The Strong Law of Large Numbers.

Let n ∈ N be fixed. If π is a permutation of the numbers {1, 2, · · · , n}, we can define the
map Π : Rn → Rn by Π(x1, x2, · · · , xn) = (xπ(1), xπ(2), · · · , xπ(n)) for all x1, x2, · · · , xn ∈ R.
Clearly Π is Borel measurable. Often we shall not distinguiss between Π and π and just call Π a
permutation on Rn, meaning that Π is a map on Rn which permutes the coordinates.

Let µ be a Borel probability measure on R and let µn denote the n–fold product of µ with
itself, so µn is a Borel probability measure on Rn. Note that if Π is a permutation on Rn, then
Π(µn) = µn. Indeed, if A =

∏n
k=1Ak is a box in Rn, then

Π(µn)(A) = µn(
n∏
k=1

Aπ−1(k)) =

n∏
k=1

µ(Aπ−1(k)) = µn(A).
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If f ∈ L1(µn) and A ∈ Bn, then (5.1) gives∫
Π−1(A)

f ◦ Πdµn =

∫
A

fdµn. (5.5)

If in addition A is Π–invariant, i.e. Π(A) = A (equivalently π−1(A) = A), then we get∫
A

f ◦ Πdµn =

∫
A

fdµn. (5.6)

The next theorem and its corollary are very useful in the proof of our main theorem of this
section.

Theorem 5.8 Let µ be a Borel probability measure on R, let f ∈ L1(µn), and let Π be a permu-
tation on Rn. Further we define sn : Rn → R by:

sn(x1, x2, · · · , xn) =
n∑
k=1

xk

If B ⊆ R is a Borel set, then s−1
n (B) is Π–invariant and∫

s−1
n (B)

f ◦ Πdµn =

∫
s−1
n (B)

fdµn (5.7)

Proof: If {xk | 1 ≤ k ≤ n} ⊆ R, then

sn ◦ Π(x1, x2, · · · , xn) =
n∑
k=1

xπ(k) = sn(x1, x2, · · · , xn)

which shows that sn ◦ Π = sn and hence s−1
n (B) = Π−1s−1

n (B) so that s−1
n (B) is Π–invariant.

The conclusion of the theorem now follows from (5.6). 2

Corollary 5.9 Let µ and sn be as in Theorem 5.8 and let us for every 1 ≤ k ≤ n define

pk(x1, x2, · · · , xn) = xk (5.8)

for all x1, x2, · · · , xn ∈ R. If p1 ∈ L1(µn) and B ⊆ R is a Borel set, then∫
s−1
n (B)

pkdµ
n =

∫
s−1
n (B)

p1dµ
n for all 1 ≤ k ≤ n. (5.9)

Proof: Let1 ≤ k ≤ n. If we define the permutation Πk by

Πk(x1, x2, · · · , xk, · · · , xn) = (xk, x2, · · · , x1, · · · , xn),
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then clearly pk = p1 ◦ Πk and hence the conclusion of the corollary follows from (5.7) of Theo-
rem 5.8 2

After these measure theoretical considerations we are finally going back to the main subject. Our
first result states:

Theorem 5.10 Let n ∈ N, let {Xk | 1 ≤ k ≤ n} ⊆ L1(P ) be independent and identically
distributed, and put Sn =

∑n
k=1 Xk. Then

E(Xk | σ(Sn)) = E(X1 | σ(Sn)) =
1

n
Sn (5.10)

Proof: Let µ = X1(P ) and let X = (X1, X2, · · · , Xn). Since the Xk’s are identically dis-
tributed, µ = Xk(P ) for all 1 ≤ k ≤ n and since they are independent, it follows from Theorem
5.7 that µn = X(P ). If we let pk, 1 ≤ k ≤ n and sn be as above, we note that Sn = sn(X) and
hence (5.1) of Theorem 5.6 and (5.9) of Corollary 5.9 give for every Borel set B ⊆ R:∫

S−1
n (B)

XkdP =

∫
X−1s−1

n (B)

pk(X)dP = (5.11)∫
s−1
n (B)

pkdµ
n =

∫
s−1
n (B)

p1dµ
n =∫

S−1
n (B)

X1dP.

Since σ(Sn) = {S−1
n (B) | B ⊆ R a Borel set}, we get from (5.11) that

E(Xk | σ(Sn)) = E(X1 | σ(Sn)), but then

1

n
Sn =

1

n
E(Sn | σ(Sn)) =

1

n

n∑
k=1

E(Xk | σ(Sn)) = E(X1 | σ(Sn)).

2

We are now ready to prove:

Theorem 5.11 The Strong Law of Large Numbers. Let (Xn) ⊆ L1(P ) be a sequence of
independent and identically distributed stochastic variables and put Sn =

∑n
k=1 Xk for all n ∈

N. Then 1
n
Sn → E(X1) both a.s and in L1(P ).

Proof: For every n ∈ N we put F−n = σ(Sk | k ≥ n) = σ(Sn, Xk | k ≥ n + 1). Please think
about the last equality. If we define X−n = E(X1 | F−n), then (Xn) is a backwards martingale.
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Since for every n σ(X1, Sn) is independent of σ(Xk | k ≥ n + 1), it follows from Exercise 21
and Theorem 5.10 that

X−n = E(X1 | σ(Sn)) =
1

n
Sn for all n ∈ N.

Theorem 5.2 now gives that there is an X−∞ ∈ L1(P ) so that 1
n
Sn → X−∞ both a.s. and in

L1(P ). The L1–convergence implies that

E(X1) = E(lim
n

1

n
Sn) = E(X−∞).

Note that if k ∈ N is fixed, then 1
n

∑k
j=1Xj → 0 for n → ∞ and hence 1

n

∑n
j=1Xk+j → X−∞

a.s. This shows that X−∞ is measurable with respect to the tail algebra ∩∞k=1σ{Xm | m ≥ k}
of the Xk’s. Therefore it is constant a.s. by Kolmogorov’s 0 − 1 law which implies that
X−∞ = E(X1) a.s. 2
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