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In the following Ω,F , P ) denotes a probability space.. If X is an sv on (Ω,F , P ), then we
let X(P ) denote the image measure of X , i.e. the distribution of X . If µ og ν are two probability
measures on R, we let µ⊗ ν denote the product measure of µ and ν.

Problem 1
Let G be a sub–σ–algebra ofF . A subset B ∈ G with P (B) > 0 is called an atom in G if we
have:

∀A ∈ G : A ⊆ B ⇒ P (A) = 0 ∨ P (A) = P (B).

(i) Show that if Y is a G–measurable stochastic variable and B is an atom in G, then Y is
almost surely constant on B.

(ii) Show that if A og B are atoms in G with P (A\B) > 0, then P (A∩B) = 0. Hence except
for the zero set A ∩B A and B are disjoint.

Problem 2
In this problem we let G denote a finite sub–σ–algebra of F .

(i) Showe that if A ∈ G med P (A) > 0, then there exists an atom B in G with B ⊆ A.

(ii) Show that if A ∈ G med P (A) > 0, then:

A = ∪{B ⊆ A | B atom i G}.

Note that it is a finite union of sets.

(iii) Let {Bj | 1 ≤ j ≤ n} be a maximal set of atoms in G. According to Problem 1 (ii) we are
talking about all atoms in G except for adding or removing sets of measure 0.

Let X ∈ L1(P ). Show that

E(X | G) =
n∑
j=1

1

P (Bj)

∫
Bj

XdP 1Bj
.

1



Hint: Show that the right hand side satisfies the usual integral equation for conditional
expectations. Use also that according to (ii) every set in G is the union of some of the
Bj’erne.

Problem 3
If Y is a stochastic variable,then we let as usual σ(Y ) denote the smallest σ–algebra in which Y
is measurable. If X, Y ∈ L1(P ) we put E(X | Y ) = E(X | σ(Y )).

(i) Show that if X, Y ∈ L1(P ) are independent, then E(X | Y ) = E(X).

Hint: Use that ω → E(X) er G–measurable.

(ii) Find an example of stochastic variables X and Y so that E(X | Y ) = E(X), but X and
Y are not independent.

Problem 4
Let X and Y be real stochastic variables.

(i) Show that X og Y are independent if and only if

E(f(X)g(Y )) = E(f(X))E(g(Y ))

for all bounded Borel functions f, g : R→ R.

Hint to the “if” part: Put f = 1A and g = 1B, where A and B are arbitrary Borel sets.

(ii) Show that X and Y are independent if and only if

E(f(X) | Y ) = E(f(X))

l for all bounded Borel functions f : R→ R.

problem 5
Let 1 ≤ p <∞ and let G be a sub–σ–algebra of F .

• Let X ∈ Lp(P ). Use Jensen’s inequality to show that
E(X | G) ∈ Lp(P ) and that ‖E(X | G)‖p ≤ ‖X‖p.

(ii) Show that if X ∈ L∞(P ), then E(X | G) ∈ L∞(P ) with‖E(X | G)‖∞ ≤ ‖X‖∞

(ii) Lad now 1 ≤ p ≤ ∞ and let (Xn) ⊆ Lp(P ) and X ∈ Lp(P ), so that Xn → X in
Lp(P ). Show that E(Xn | G) → E(X | G) in Lp(P ). Hence the Operation E(· | G) is a
continuous operation in Lp(P ).
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Problem 6
Let (Fn) be a filtering of F , let (Xn) be a submartingale relative to (Fn), and let φ : R → R be
a convex function.

(i) Use Jensen’s inequality to show that if φ(Xn) ∈ L1(P ) for all n ∈ N and φ is increas-
ing, then (φ(Xn)) is a submartingale. Show next that if (Xn) is a martingale, then the
conclusion holds without the assumption that φ is increasing.

(ii) Let 1 ≤ p < ∞ and assume that Xn ∈ Lp(P ) for all n ∈ Nand that (Xn) is a martingale.
Show that |Xn|p is a submartingale.

(iii) If x ∈ R, we put x+ = x if x ≥ 0 and x+ = 0 if x < 0. Let φ : R → R be defined by
φ(x) = x+ for all x ∈ R. Argue (i.e by the using a drawing) that φ is convex. Show next
that (X+

n ) is a submartingale.

Problem 7
Let(Xn) ⊆ L1(P ) be a sequence of independent, identically distributed random variables with
mean value 0 and variance σ2. Define:

Yn = (
n∑
k=1

Xk)
2

and
Zn = Yn − nσ2

for all n ∈ N. Put for every n Fn = σ(Xk | 1 ≤ k ≤ n).
Show that (Yn) is a submartingale and that (Zn) is a martingale.

Problem 8
Let (Fn) be a filtration ofF and letX = (Xn) be an (Fn)–adapted process. (Xn) is called a local
martingale if there exists a sequence (Tk) of finite stopping times with Tk ↑ ∞ for k → ∞ and
so that (Xn∧Tk) is a martingale for every k ∈ N. Such processes are often seen in mathematical
finance. Show that a downwards bounded local (Xn) is a som er nedadtil begrænset, er en
supermartingale. Hint: Use Fatou’s lemma in a suitable way.

Problem 9
Let (Fn) be a filtration of F and let X = (Xn) be an (Fn)–adapted process so that Xn+1 −Xn

is independent of Fn for all n ∈ N.

(i) Assume that E(Xn) = E(X1) for all n ∈ N. Show (Xn) is a martingale.

(ii) Assume that (E(Xn)) is an increasing sequence. Show that (Xn) is a submartingale.

(iii) Guess the next question yourselves!!!
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Problem 10
Let (rn) be a sequence of independent stochastic variables with P (rn = 1) = P (rn = −1) = 1

2

and put Fn = σ(rj; 1 ≤ j ≤ n) for all n ∈ N.

(i) Show that (rn) is an orthonormal sequence in L2(P ).

(ii) Let (tn) ∈ R be an arbitrary sequence and put for every n ∈ N Sn =
∑n

k=1 tkrk. Show
that (Sn) is a martingale.

(iii) Prove that the following statements are equivalent:

1.
∑∞

k=1 t
2
k <∞.

2. The series S∞ =
∑∞

k=1 tkrk converges in L2(P ).

3. The seies S∞ =
∑∞

k=1 tkrk converges in L1(P ).

4. The series S∞ =
∑∞

k=1 tkrk converges a.s.

(iv) Show that if one of the conditions (and hence all) is satisfied, then:

(
∞∑
k=1

t2k)
1
2 = ‖S∞‖2

Problem 11
Let (rn) be as in Problem 10.

(i) Show that if (tk) ⊆ R og 1 ≤ p ≤ 2, then we have:

‖
n∑
k=1

tkrk‖p ≤ (
n∑
k=1

t2k)
1
2 for alle n ∈ N.

The aim of the rest of the problem is to prove that there is a constant A1 > 0, so that:

A1(
n∑
k=1

t2k)
1
2 ≤ ‖

n∑
k=1

tkrk‖1

for all (tk) ⊆ N and all n ∈ N.
We assume from now on that such a constant A1 does not exist and wish to reach a contra-

diction.

(ii) Shw that the assumption implies that for everyK > 0 there exist an n ∈ N and (tk)
n
k=1 ⊆ R

so that:

‖
n∑
k=1

tkrk‖1 ≤ 1
n∑
k=1

t2k ≥ K
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(iii) Put p0 = 0. Show by induction (and with the help of (ii)) that there exist a stricly increasing
sequence (pn) ⊆ N and a sequence (sk) ⊆ R, so that:

pn+1∑
k=pn+1

s2
k ≥ 22n for alle n ≥ 0

and

‖
pn+1∑

k=pn+1

skrk‖1 ≤ 1 for alle n ≥ 0.

(iv) For every n ≥ 0 and every pn < k ≤ pn+1 we put tk = 2−nsk. Show that
∑∞

n=0

∑pn+1

k=pn+1 tkrk
is convergent in L1(P ) while

∑∞
k=1 t

2
k =

∑∞
n=0

∑pn+1

k=pn+1 t
2
k is divergent.

(v) Explain why this is in contradiction toProblem 10. Hence we have proved the existence of
A1.

(vi) Show that for all 1 ≤ p ≤ 2, all n ∈ N, and all (tk) ⊆ R we have:

A1(
n∑
k=1

t2k)
1
2 ≤ ‖

n∑
k=1

tkrk‖p ≤ (
n∑
k=1

t2k)
1
2 .

This inequality is called Khintchine’s inequality (for 1 ≤ p ≤ 2). By a duality argument one
can get an analoguous inequality for 2 < p < ∞. It has been proved by Uffe Haagerup that
the best choice of the constant A1 is A1 = 1√

2
. I do not know whether this can be shown using

martingale theory.

Problem 12
Let(Mn)n≥0 be martingale which is bounded in L2(P ) and define M∞ as in the notes. Show that
E(M∞ | Fn) = Mn for alle n ≥ 0.

Problem 13
Let (Xn) ⊆ L2(P ) be a sequence of independent stochastic variables with E(Xn) = 0 for
alln ∈ N. Put X0 = 0 and let as usual Fn = σ{Xk | 0 ≤ k ≤ n}. In addition we put S0 = 0 and

Sn =
n∑
k=1

Xk for alle n ∈ N.

From the book and the notes it follows that S = (Sn) is a martingale.

(i) Show that for all n ∈ N we have:

S2
n − S2

n−1 = XnSn +XnSn−1.
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(ii) Find the Doob decomposition of S2. Hint: One can e.g. use the formula in the notes to
find (An).

(iii) If one does not know the Doob decompostion, one can attack it as follows (and do that!!):
CalculateE(S2

n | Fn−1) for all n ∈ N. Use this expression to find what has to be subtracted
from S2

n to get a martingale.

Problem 14
Let (Xn)) be an L2(P )–bounded martingale and put

X∞ = limXn.

This limit exists a.s. and in L2(P ) according to the notes. Show that (X2
n) is a uniformly

integrable submartingale and that

X2
∞ = limX2

n a.s. and in L1(P ).

Hint: Show first that E(X2
∞ | Fn) ≥ X2

n a.s.

Problem 15
This problem is a generalization of Theorem 3.2 of the notes. Let 1 < p <∞ and let (Xn) be a
martingale which is bounded Lp(P ), e.g. supnE(|Xn|p) <∞.

(i) Show that X∞ = limXn exists a.s. and in L1(P ).

(ii) Show that E(X∞ | Fn) = Xn for all n ∈ N.

(iii) Show that X∞ ∈ Lp(P ).

(iv) Show that E(|X∞|p | Fn) ≥ |Xn|p for all n ∈ N and conclude that (|Xn|p) is uniformly
integrable.

(v) Use the convexity of | · |p to show that

|X∞ −Xn|p ≤ 2p−1(|X∞|p + |Xn|p) for alle n ∈ N

and conclude that (|X∞ −Xn|p) is uniformly integrable. Show next that X∞ = limXn i
Lp(P ).

Problem 16
Let (Xn) ⊆ L1(P ) be a sequence of independent stochastic variables and put X0 = 0, S0 = 0,
and Sn =

∑n
k=1Xk for all n ∈ N. As usual we let Fn = σ{Xk | 1 ≤ k ≤ n} for all n ∈ N. Find

the Doob decomposition of (Sn).
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Problem 17
Let (Fn) be a filtration of F so that all P–zero sets belongs F0 and let τ be a stopping time.
In addition we let Fτ the subset of F consisting of all those A ∈ F , for which
A ∩ (τ = n) ∈ Fn for all n ≥ 0.

1. Show that Fτ is a σ–algebra.

2. Show that if σ is a stopping time with σ ≤ τ n.s., then Fσ ⊆ Fτ .

3. Let (Xn)n≥0 be a process which is adapted the filtration and assume that τ <∞ a.s. Show
that Xτ is Fτ–measurable.

4. Assume in addition that (Xn) ⊆ L1(P ) and that there exists an M ∈ N, so that τ ≤ M
a.s. Show that

|Xτ | ≤
M∑
n=0

|Xn|,

and conclude that Xτ ∈ L1(P )

In the following we let (Fn) be a filtration which satisfies the condition in Problem 17.

Problem 18 (optional sampling)
Let (Xn) be a submartingale (with respect to (Fn)), and let σ and τ be bounded stopping times
with σ ≤ τ a.s.

1. Show that if m < k and A ∈ Fσ, then∫
A∩(σ=m)

XkdP ≥
∫
A∩(σ=m)

XmdP.

2. Show that E(Xτ | Fσ) ≥ Xσ. (Hint: Write Xτ − Xσ as a martingale transform with a
suitable C and use this to prove that ifm ≥ 0, then

∫
A∩(σ=m)

(Xτ −Xσ)dP ≥ 0; hereafter
sum over m.)

The corresponding result for supermartingales shows, that it is not possible to turn a non–
favorable play to a favorable one by using bounded stopping times.

Let 0 < p ≤ 1 and let (Xn)n≥1 be a sequence of independent stochastic variables so that
P (Xn = 1) = p and P (Xn = −1) = 1 − p for all n ∈ N. If a ∈ R, we put X0 = a and
Sn =

∑n
k=0 Xk and let in this case Fn = σ(X0, X1, · · · , Xn). Compare this to the beginning of

Section 2 of the notes. (Sn) is called a simple random walk with parameter p and starting at a. If
p = 1

2
, (Sn) is called symmetric.

7



Problem 19
Let a, k ∈ N with a < k, let (Sn) be a simple symmetric random walk starting at a. It follows
from earlier results that (Sn) is a martingale. Further we let

τ = inf{n ≥ 1 | Sn = 0 or Sn = k}.

It follows from Proposition 2.6 in the notes that τ is a stopping time. It can be proved that
P (τ <∞) = 1.

1. Show that (Sn) og τ satisfies the conditions in Problem 27.

2. Show that E(Sτ ) = a.

3. Show that P (Sτ = k) = a
k
. (Hint: Split E(Sτ ) as the sum of the integral over the set,

where Sτ = 0 and the integral over the set, where Sτ = k.)

Note that P (Sτ = k) gives the probability that you get k kroner out of your game, before you
get bankrupt (i.g.Sτ = 0)!!

Problem 20
Let 0 < p < 1, p 6= 1

2
, let a, k ∈ N with a < k, and let in addition (Sn) be a simple random walk

with parameter p, starting at a. Further, let (Xn) be defined as above and put

Zn = (
1− p
p

)Sn for all n ∈ N,

and let
τ = inf{n ≥ 1 | Sn = 0 or Sn = k}

1. Show that E((1−p
p

)Xn) = 1 for all n ≥ 1 and conclude that (Zn) is a martingale.

2. Show that E(Zτ ) = (1−p
p

)a.

3. Show that P (Sτ = k) = P (Zτ = (1−p
p

)k) =
1−( 1−p

p
)a

1−( 1−p
p

)k
.

Problem 21
Let X ∈ L1(P )) and let G and H be sub σ algebras of F . Let further H be independent of
σ(X,G). The aim of this problem is to prove that

E(X | σ(G,H)) = E(X | G). (1)

It is enough to prove (1) for X ≥ 0. Why? Hence from now on we assume that X ≥ 0.
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1. Let G ∈ G and H ∈ H. Show that∫
G∩H

XdP = P (H)

∫
G

XdP

and ∫
G∩H

E(X | G)dP = P (H)

∫
G

E(X | G)dP,

and conclude that ∫
G∩H

XdP =

∫
G∩H

E(X | G)dP.

2. Show that ∫
A

XdP =

∫
A

E(X | G)dP for all A ∈ σ(G,H).

Hint: Use that {G ∩ H | G ∈ G, H ∈ H} is a suitable generating system for σ(G,H)
and use the usual measure theoretical argumentsog benyt de sædvanlige målteoretiske ar-
gumenter.

3. Conclude from 2. that (1) holds.

Problem 22
Let X be normally distributed with mean value 0 and variance σ2. Calculate E(exp(X)) and the
variance of exp(X).

Hint: Use Theorem 5.4 of the notes.

Problem 23
Let (Bn) be a stochastic process satisfying:

(i) B0 = 0 a.s.

(ii) Hvis 0 ≤ m < n, then Bn − Bm is normally distributed with mean value 0 and variance
n−m.

(iii) If 0 ≤ n1 < n2 < · · · < nk, then Bn1 , Bn2 −Bn1 , · · · , Bnk
−Bnk−1

are independent.

(Bn) is called a discreet Brownian motion or a discreet Wiener process. It is not that easy to
prove its existence, but this we shall assume as fact here. Note that in (ii) we have n−m og not
(n−m)2!!

For every n ∈ N we put Fn = σ(Bk, 0 ≤ k ≤ n).

1. Prove that (Bn) is a martingale.

2. Find the Doob decomposition of (B2
n).

9



3. Let a ∈ R, a 6= 0 and define:

Mn = exp(aBn −
1

2
a2n) for all n ≥ 0. (1)

Show that (Mn) is a martingale.

Hint: Do not use Jensen here! Write for n ≥ 1

Mn = exp(a(Bn −Bn−1)− 1

2
a2)Mn−1,

and use the assumptions and the result from Problem 22.

4. Show that there is a M∞ ∈ L1(P ) so that

Mn →M∞ a.s.

5. Let ε > 0 and put for every n ≥ 0 bn = a−1(1
2
a2n+ log ε). Determine that

(Mn ≥ ε) = (Bn ≥ bn).

6. Show that for a > 0 vil
Mn → 0 in probability.

Conclude from this that M∞ = 0 n.s. Similar calculations can be done for a < 0.

7. Is (Mn) uniformly integrable?

Problem 24
Let (Ω,F , µ) be a measure space (µ need not be a finite measure) and let f : Ω → [0,∞[ be an
F–measurable function. We define ν by:

ν(A) =

∫
A

fdµ for all A ∈ F . (1)

1. Show that ν is a measure.

2. Let g : Ω→ [0,∞[ be measurable. Show that∫
Ω

gdν =

∫
Ω

gfdµ. (2)

3. Let now g : Ω→ R be an arbitrary measurable function. Show that g ∈ L1(ν), if and only
if gf ∈ L1(µ). Show next that in that case (2) holds.
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problem 25
Let Bn), (Fn), and (Mn) be as defined in Problem 23. In addition, define the process (Xn) by:

Xn = Bn − an for all n ≥ 0. (1)

In the following we let N ∈ N be fixed and put

Q(A) =

∫
A

MNdP for all A ∈ F . (2)

1. Show that Q is a probability measure with the property that for all A ∈ F we have that
Q(A) = 0, if and only if P (A) = 0.

2. Show that if Y ∈ L1(Q) and Y is Fn–measurable for some n with 0 ≤ n ≤ N , then∫
Ω

Y dQ =

∫
Ω

YMndP. (3)

The aim of the rest of the problem is to prove that (Xn)0≤n≤N is a finite Brownian motion in the
probability space (Ω,F , Q).

3. Let 0 ≤ m < n ≤ N and let f : R→ R be a bounded Borel function. Prove that∫
Ω

f(Xn −Xm)dQ = (4)∫
Ω

f(Bn −Bm − a(n−m)) exp(Bn −Bm −
1

2
a2(n−m))dP =

(2π(n−m)−
1
2

∫ ∞
−∞

f(u− (n−m)a) exp(−(u− (n−m)a)2

2(n−m)
)du =

(2π(n−m))−
1
2

∫ ∞
−∞

f(u) exp(
−u2

2(n−m)
)du.

Hint: Use (3), that E(Mm) = 1, and Theorem 5.4 in the notes.

4. Conclude from 3. that if 0 ≤ m < n ≤ N , then Xn − Xm is normally distributed
N(0, n−m) in the probability space (Ω,F , Q).

Hint: Let x ∈ R and put f = 1]−∞,x] in (4).

5. Let 0 = n0 < n1 < · · · < nk ≤ N and let x1, x2, · · · , xk ∈ R. Show that

Q(∩kj=1(Xj −Xj−1 ≤ xj)) =
k∏
j=1

Q(Xj −Xj−1 ≤ xj), (5)

and conclude that X1, Xn2 −Xn1 , · · · , Xnk
−Xnk−1

are independent.

Hint: Prove (5) by induction.ved induktion. In the k’te step it is a good idea to write
Mnk

= Mk−1 exp(Bnk
−Bnk−1

− 1
2
a2(nk − nk−1)).

It has now been proven that {Xn | 0 ≤ n ≤ N is a finite Brownian motion.

11



6. Is it possible to make the construction above for the whole sequence (Xn)n≥0 once and for
all? Specifically:Mere specifikt: Does there exist an M ∈ L1(P ) with M > 0 a.s. so that
if we put

Q(A) =

∫
A

MdP for all A ∈ F ,

then Q is a probability measure with the property that

Q(A) =

∫
A

MndP for all n and all A ∈ Fn?

Problem 26
Let (Xn)n≥O ⊆ L1(P ) be a sequence of independent, identically distributed stochastic variables.
Put for every n ≥ 0 Sn =

∑n
k=0Xk and Fn = σ(X0, X1, · · · , Xn).

1. Show that if E(X0) = 0, then (Sn) is a martingale.

2. Show that if E(X0) > 0, then (Sn) is a submartingale.

3. Guess the next question yourselves!!

Problem 27
Let (Xn)n≥0 be a martingale relative to the filtration (Fn) and let τ be a stopping time with
P (τ < ∞) = 1. Assume further that there is an M so that således at |Xn|1(n≤τ) ≤ M , hence
that (Xn) is bounded up to the time τ .

1. Show that |Xτ | ≤M and conclude that E(|Xτ |) <∞.

2. Show that E(Xτ∧n → E(Xτ ) for n → ∞ and use JP, Theorem 24.2 to conclude that
E(Xτ ) = E(X0).

(Hint: Write Xτ∧n = Xτ1(τ≤n) +Xn1(n<τ).)
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