Exercises for MM513

Niels Jørgen Nielsen

May 13, 2014

In the following Ω, \mathcal{F}, P denotes a probability space.. If X is an sv on (Ω, \mathcal{F}, P) , then we let X(P) denote the image measure of X, i.e. the distribution of X. If μ og ν are two probability measures on \mathbb{R} , we let $\mu \otimes \nu$ denote the product measure of μ and ν .

Problem 1

Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . A subset $B \in \mathcal{G}$ with P(B) > 0 is called an atom in \mathcal{G} if we have:

$$\forall A \in \mathcal{G} : A \subseteq B \Rightarrow P(A) = 0 \lor P(A) = P(B).$$

- (i) Show that if Y is a \mathcal{G} -measurable stochastic variable and B is an atom in \mathcal{G} , then Y is almost surely constant on B.
- (ii) Show that if A og B are atoms in \mathcal{G} with $P(A \setminus B) > 0$, then $P(A \cap B) = 0$. Hence except for the zero set $A \cap B A$ and B are disjoint.

Problem 2

In this problem we let \mathcal{G} denote a finite sub- σ -algebra of \mathcal{F} .

- (i) Showe that if $A \in \mathcal{G} \mod P(A) > 0$, then there exists an atom B in \mathcal{G} with $B \subseteq A$.
- (ii) Show that if $A \in \mathcal{G} \mod P(A) > 0$, then:

$$A = \cup \{ B \subseteq A \mid B \text{ atom i } \mathcal{G} \}.$$

Note that it is a finite union of sets.

(iii) Let $\{B_j \mid 1 \le j \le n\}$ be a maximal set of atoms in \mathcal{G} . According to Problem 1 (ii) we are talking about all atoms in \mathcal{G} except for adding or removing sets of measure 0.

Let $X \in L_1(P)$. Show that

$$E(X \mid \mathcal{G}) = \sum_{j=1}^{n} \frac{1}{P(B_j)} \int_{B_j} X dP \quad 1_{B_j}.$$

Hint: Show that the right hand side satisfies the usual integral equation for conditional expectations. Use also that according to (ii) every set in \mathcal{G} is the union of some of the B_j 'erne.

Problem 3

If Y is a stochastic variable, then we let as usual $\sigma(Y)$ denote the smallest σ -algebra in which Y is measurable. If $X, Y \in L_1(P)$ we put $E(X \mid Y) = E(X \mid \sigma(Y))$.

- (i) Show that if $X, Y \in L_1(P)$ are independent, then $E(X \mid Y) = E(X)$. Hint: Use that $\omega \to E(X)$ er \mathcal{G} -measurable.
- (ii) Find an example of stochastic variables X and Y so that E(X | Y) = E(X), but X and Y are not independent.

Problem 4

Let X and Y be real stochastic variables.

(i) Show that X og Y are independent if and only if

$$E(f(X)g(Y)) = E(f(X))E(g(Y))$$

for all bounded Borel functions $f, g : \mathbb{R} \to \mathbb{R}$.

Hint to the "if" part: Put $f = 1_A$ and $g = 1_B$, where A and B are arbitrary Borel sets.

(ii) Show that X and Y are independent if and only if

$$E(f(X) \mid Y) = E(f(X))$$

l for all bounded Borel functions $f : \mathbb{R} \to \mathbb{R}$.

problem 5

Let $1 \leq p < \infty$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} .

- Let $X \in L_p(P)$. Use Jensen's inequality to show that $E(X \mid \mathcal{G}) \in L_p(P)$ and that $||E(X \mid \mathcal{G})||_p \le ||X||_p$.
- (ii) Show that if $X \in L_{\infty}(P)$, then $E(X \mid \mathcal{G}) \in L_{\infty}(P)$ with $||E(X \mid \mathcal{G})||_{\infty} \le ||X||_{\infty}$
- (ii) Lad now $1 \leq p \leq \infty$ and let $(X_n) \subseteq L_p(P)$ and $X \in L_p(P)$, so that $X_n \to X$ in $L_p(P)$. Show that $E(X_n | \mathcal{G}) \to E(X | \mathcal{G})$ in $L_p(P)$. Hence the Operation $E(\cdot | \mathcal{G})$ is a continuous operation in $L_p(P)$.

Let (\mathcal{F}_n) be a filtering of \mathcal{F} , let (X_n) be a submartingale relative to (\mathcal{F}_n) , and let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function.

- (i) Use Jensen's inequality to show that if $\phi(X_n) \in L_1(P)$ for all $n \in \mathbb{N}$ and ϕ is increasing, then $(\phi(X_n))$ is a submartingale. Show next that if (X_n) is a martingale, then the conclusion holds without the assumption that ϕ is increasing.
- (ii) Let $1 \le p < \infty$ and assume that $X_n \in L_p(P)$ for all $n \in \mathbb{N}$ and that (X_n) is a martingale. Show that $|X_n|^p$ is a submartingale.
- (iii) If $x \in \mathbb{R}$, we put $x^+ = x$ if $x \ge 0$ and $x^+ = 0$ if x < 0. Let $\phi : \mathbb{R} \to \mathbb{R}$ be defined by $\phi(x) = x^+$ for all $x \in \mathbb{R}$. Argue (i.e by the using a drawing) that ϕ is convex. Show next that (X_n^+) is a submartingale.

Problem 7

Let(X_n) $\subseteq L_1(P)$ be a sequence of independent, identically distributed random variables with mean value 0 and variance σ^2 . Define:

$$Y_n = (\sum_{k=1}^n X_k)^2$$

and

$$Z_n = Y_n - n\sigma^2$$

for all $n \in \mathbb{N}$. Put for every $n \mathcal{F}_n = \sigma(X_k \mid 1 \leq k \leq n)$.

Show that (Y_n) is a submartingale and that (Z_n) is a martingale.

Problem 8

Let (\mathcal{F}_n) be a filtration of \mathcal{F} and let $X = (X_n)$ be an (\mathcal{F}_n) -adapted process. (X_n) is called a local martingale if there exists a sequence (T_k) of finite stopping times with $T_k \uparrow \infty$ for $k \to \infty$ and so that $(X_{n \land T_k})$ is a martingale for every $k \in \mathbb{N}$. Such processes are often seen in mathematical finance. Show that a downwards bounded local (X_n) is a som er nedadtil begrænset, er en supermartingale. Hint: Use Fatou's lemma in a suitable way.

Problem 9

Let (\mathcal{F}_n) be a filtration of \mathcal{F} and let $X = (X_n)$ be an (\mathcal{F}_n) -adapted process so that $X_{n+1} - X_n$ is independent of \mathcal{F}_n for all $n \in \mathbb{N}$.

- (i) Assume that $E(X_n) = E(X_1)$ for all $n \in \mathbb{N}$. Show (X_n) is a martingale.
- (ii) Assume that $(E(X_n))$ is an increasing sequence. Show that (X_n) is a submartingale.
- (iii) Guess the next question yourselves!!!

Let (r_n) be a sequence of independent stochastic variables with $P(r_n = 1) = P(r_n = -1) = \frac{1}{2}$ and put $\mathcal{F}_n = \sigma(r_j; 1 \le j \le n)$ for all $n \in \mathbb{N}$.

- (i) Show that (r_n) is an orthonormal sequence in $L_2(P)$.
- (ii) Let $(t_n) \in \mathbb{R}$ be an arbitrary sequence and put for every $n \in \mathbb{N}$ $S_n = \sum_{k=1}^n t_k r_k$. Show that (S_n) is a martingale.
- (iii) Prove that the following statements are equivalent:
 - 1. $\sum_{k=1}^{\infty} t_k^2 < \infty$.
 - 2. The series $S_{\infty} = \sum_{k=1}^{\infty} t_k r_k$ converges in $L_2(P)$.
 - 3. The series $S_{\infty} = \sum_{k=1}^{\infty} t_k r_k$ converges in $L_1(P)$.
 - 4. The series $S_{\infty} = \sum_{k=1}^{\infty} t_k r_k$ converges a.s.
- (iv) Show that if one of the conditions (and hence all) is satisfied, then:

$$(\sum_{k=1}^{\infty} t_k^2)^{\frac{1}{2}} = \|S_{\infty}\|_2$$

Problem 11

Let (r_n) be as in Problem 10.

(i) Show that if $(t_k) \subseteq \mathbb{R}$ og $1 \le p \le 2$, then we have:

$$\|\sum_{k=1}^{n} t_k r_k\|_p \le (\sum_{k=1}^{n} t_k^2)^{\frac{1}{2}}$$
 for alle $n \in \mathbb{N}$.

The aim of the rest of the problem is to prove that there is a constant $A_1 > 0$, so that:

$$A_1(\sum_{k=1}^n t_k^2)^{\frac{1}{2}} \le \|\sum_{k=1}^n t_k r_k\|_1$$

for all $(t_k) \subseteq \mathbb{N}$ and all $n \in \mathbb{N}$.

We assume from now on that such a constant A_1 does not exist and wish to reach a contradiction.

(ii) Shw that the assumption implies that for every K > 0 there exist an $n \in \mathbb{N}$ and $(t_k)_{k=1}^n \subseteq \mathbb{R}$ so that:

$$\|\sum_{k=1}^{n} t_k r_k\|_1 \le 1 \quad \sum_{k=1}^{n} t_k^2 \ge K$$

(iii) Put $p_0 = 0$. Show by induction (and with the help of (ii)) that there exist a strictly increasing sequence $(p_n) \subseteq \mathbb{N}$ and a sequence $(s_k) \subseteq \mathbb{R}$, so that:

$$\sum_{k=p_n+1}^{p_{n+1}} s_k^2 \ge 2^{2n} \quad \text{for alle } n \ge 0$$

and

$$\|\sum_{k=p_n+1}^{p_{n+1}} s_k r_k\|_1 \le 1$$
 for all $n \ge 0$.

- (iv) For every $n \ge 0$ and every $p_n < k \le p_{n+1}$ we put $t_k = 2^{-n} s_k$. Show that $\sum_{n=0}^{\infty} \sum_{k=p_n+1}^{p_{n+1}} t_k r_k$ is convergent in $L_1(P)$ while $\sum_{k=1}^{\infty} t_k^2 = \sum_{n=0}^{\infty} \sum_{k=p_n+1}^{p_{n+1}} t_k^2$ is divergent.
- (v) Explain why this is in contradiction to Problem 10. Hence we have proved the existence of A_1 .
- (vi) Show that for all $1 \le p \le 2$, all $n \in \mathbb{N}$, and all $(t_k) \subseteq \mathbb{R}$ we have:

$$A_1(\sum_{k=1}^n t_k^2)^{\frac{1}{2}} \le \|\sum_{k=1}^n t_k r_k\|_p \le (\sum_{k=1}^n t_k^2)^{\frac{1}{2}}.$$

This inequality is called Khintchine's inequality (for $1 \le p \le 2$). By a duality argument one can get an analoguous inequality for $2 . It has been proved by Uffe Haagerup that the best choice of the constant <math>A_1$ is $A_1 = \frac{1}{\sqrt{2}}$. I do not know whether this can be shown using martingale theory.

Problem 12

Let $(M_n)_{n\geq 0}$ be martingale which is bounded in $L_2(P)$ and define M_∞ as in the notes. Show that $E(M_\infty | \mathcal{F}_n) = M_n$ for alle $n \geq 0$.

Problem 13

Let $(X_n) \subseteq L_2(P)$ be a sequence of independent stochastic variables with $E(X_n) = 0$ for all $n \in \mathbb{N}$. Put $X_0 = 0$ and let as usual $\mathcal{F}_n = \sigma\{X_k \mid 0 \le k \le n\}$. In addition we put $S_0 = 0$ and

$$S_n = \sum_{k=1}^n X_k$$
 for alle $n \in \mathbb{N}$.

From the book and the notes it follows that $S = (S_n)$ is a martingale.

(i) Show that for all $n \in \mathbb{N}$ we have:

$$S_n^2 - S_{n-1}^2 = X_n S_n + X_n S_{n-1}.$$

- (ii) Find the Doob decomposition of S^2 . Hint: One can e.g. use the formula in the notes to find (A_n) .
- (iii) If one does not know the Doob decomposition, one can attack it as follows (and do that!!): Calculate $E(S_n^2 | \mathcal{F}_{n-1})$ for all $n \in \mathbb{N}$. Use this expression to find what has to be subtracted from S_n^2 to get a martingale.

Let (X_n) be an $L_2(P)$ -bounded martingale and put

$$X_{\infty} = \lim X_n.$$

This limit exists a.s. and in $L_2(P)$ according to the notes. Show that (X_n^2) is a uniformly integrable submartingale and that

$$X_{\infty}^2 = \lim X_n^2$$
 a.s. and in $L_1(P)$.

Hint: Show first that $E(X_{\infty}^2 \mid \mathcal{F}_n) \geq X_n^2$ a.s.

Problem 15

This problem is a generalization of Theorem 3.2 of the notes. Let $1 and let <math>(X_n)$ be a martingale which is bounded $L_p(P)$, e.g. $\sup_n E(|X_n|^p) < \infty$.

- (i) Show that $X_{\infty} = \lim X_n$ exists a.s. and in $L_1(P)$.
- (ii) Show that $E(X_{\infty} | \mathcal{F}_n) = X_n$ for all $n \in \mathbb{N}$.
- (iii) Show that $X_{\infty} \in L_p(P)$.
- (iv) Show that $E(|X_{\infty}|^p | \mathcal{F}_n) \ge |X_n|^p$ for all $n \in \mathbb{N}$ and conclude that $(|X_n|^p)$ is uniformly integrable.
- (v) Use the convexity of $|\cdot|^p$ to show that

$$|X_{\infty} - X_n|^p \le 2^{p-1}(|X_{\infty}|^p + |X_n|^p)$$
 for all $n \in \mathbb{N}$

and conclude that $(|X_{\infty} - X_n|^p)$ is uniformly integrable. Show next that $X_{\infty} = \lim X_n$ i $L_p(P)$.

Problem 16

Let $(X_n) \subseteq L_1(P)$ be a sequence of independent stochastic variables and put $X_0 = 0$, $S_0 = 0$, and $S_n = \sum_{k=1}^n X_k$ for all $n \in \mathbb{N}$. As usual we let $\mathcal{F}_n = \sigma\{X_k \mid 1 \le k \le n\}$ for all $n \in \mathbb{N}$. Find the Doob decomposition of (S_n) .

Let (\mathcal{F}_n) be a filtration of \mathcal{F} so that all P–zero sets belongs \mathcal{F}_0 and let τ be a stopping time. In addition we let \mathcal{F}_{τ} the subset of \mathcal{F} consisting of all those $A \in \mathcal{F}$, for which $A \cap (\tau = n) \in \mathcal{F}_n$ for all $n \ge 0$.

- 1. Show that \mathcal{F}_{τ} is a σ -algebra.
- 2. Show that if σ is a stopping time with $\sigma \leq \tau$ n.s., then $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$.
- 3. Let $(X_n)_{n\geq 0}$ be a process which is adapted the filtration and assume that $\tau < \infty$ a.s. Show that X_{τ} is \mathcal{F}_{τ} -measurable.
- 4. Assume in addition that $(X_n) \subseteq L_1(P)$ and that there exists an $M \in \mathbb{N}$, so that $\tau \leq M$ a.s. Show that

$$|X_{\tau}| \le \sum_{n=0}^{M} |X_n|,$$

and conclude that $X_{\tau} \in L_1(P)$

In the following we let (\mathcal{F}_n) be a filtration which satisfies the condition in Problem 17.

Problem 18 (optional sampling)

Let (X_n) be a submartingale (with respect to (\mathcal{F}_n)), and let σ and τ be bounded stopping times with $\sigma \leq \tau$ a.s.

1. Show that if m < k and $A \in \mathcal{F}_{\sigma}$, then

$$\int_{A \cap (\sigma=m)} X_k dP \ge \int_{A \cap (\sigma=m)} X_m dP.$$

2. Show that $E(X_{\tau} | \mathcal{F}_{\sigma}) \ge X_{\sigma}$. (Hint: Write $X_{\tau} - X_{\sigma}$ as a martingale transform with a suitable *C* and use this to prove that if $m \ge 0$, then $\int_{A \cap (\sigma=m)} (X_{\tau} - X_{\sigma}) dP \ge 0$; hereafter sum over *m*.)

The corresponding result for supermartingales shows, that it is not possible to turn a non–favorable play to a favorable one by using bounded stopping times.

Let $0 and let <math>(X_n)_{n\ge 1}$ be a sequence of independent stochastic variables so that $P(X_n = 1) = p$ and $P(X_n = -1) = 1 - p$ for all $n \in \mathbb{N}$. If $a \in \mathbb{R}$, we put $X_0 = a$ and $S_n = \sum_{k=0}^n X_k$ and let in this case $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$. Compare this to the beginning of Section 2 of the notes. (S_n) is called a simple random walk with parameter p and starting at a. If $p = \frac{1}{2}$, (S_n) is called symmetric.

Let $a, k \in \mathbb{N}$ with a < k, let (S_n) be a simple symmetric random walk starting at a. It follows from earlier results that (S_n) is a martingale. Further we let

$$\tau = \inf\{n \ge 1 \mid S_n = 0 \quad \text{or } S_n = k\}.$$

It follows from Proposition 2.6 in the notes that τ is a stopping time. It can be proved that $P(\tau < \infty) = 1$.

- 1. Show that (S_n) og τ satisfies the conditions in Problem 27.
- 2. Show that $E(S_{\tau}) = a$.
- 3. Show that $P(S_{\tau} = k) = \frac{a}{k}$. (Hint: Split $E(S_{\tau})$ as the sum of the integral over the set, where $S_{\tau} = 0$ and the integral over the set, where $S_{\tau} = k$.)

Note that $P(S_{\tau} = k)$ gives the probability that you get k kroner out of your game, before you get bankrupt (i.g. $S_{\tau} = 0$)!!

Problem 20

Let $0 , <math>p \neq \frac{1}{2}$, let $a, k \in \mathbb{N}$ with a < k, and let in addition (S_n) be a simple random walk with parameter p, starting at a. Further, let (X_n) be defined as above and put

$$Z_n = (\frac{1-p}{p})^{S_n} \quad \text{for all } n \in \mathbb{N},$$

and let

$$\tau = \inf\{n \ge 1 \mid S_n = 0 \quad \text{or } S_n = k\}$$

- 1. Show that $E((\frac{1-p}{n})^{X_n}) = 1$ for all $n \ge 1$ and conclude that (Z_n) is a martingale.
- 2. Show that $E(Z_{\tau}) = (\frac{1-p}{p})^a$.
- 3. Show that $P(S_{\tau} = k) = P(Z_{\tau} = (\frac{1-p}{p})^k) = \frac{1-(\frac{1-p}{p})^a}{1-(\frac{1-p}{p})^k}.$

Problem 21

Let $X \in L_1(P)$ and let \mathcal{G} and \mathcal{H} be sub σ algebras of \mathcal{F} . Let further \mathcal{H} be independent of $\sigma(X, \mathcal{G})$. The aim of this problem is to prove that

$$E(X \mid \sigma(\mathcal{G}, \mathcal{H})) = E(X \mid \mathcal{G}).$$
⁽¹⁾

It is enough to prove (1) for $X \ge 0$. Why? Hence from now on we assume that $X \ge 0$.

1. Let $G \in \mathcal{G}$ and $H \in \mathcal{H}$. Show that

$$\int_{G\cap H} XdP = P(H) \int_G XdP$$

and

$$\int_{G \cap H} E(X \mid \mathcal{G})dP = P(H) \int_{G} E(X \mid \mathcal{G})dP,$$

and conclude that

$$\int_{G \cap H} X dP = \int_{G \cap H} E(X \mid \mathcal{G}) dP.$$

2. Show that

$$\int_{A} X dP = \int_{A} E(X \mid \mathcal{G}) dP \quad \text{for all } A \in \sigma(\mathcal{G}, \mathcal{H}).$$

Hint: Use that $\{G \cap H \mid G \in \mathcal{G}, H \in \mathcal{H}\}$ is a suitable generating system for $\sigma(\mathcal{G}, \mathcal{H})$ and use the usual measure theoretical arguments benyt de sædvanlige målteoretiske argumenter.

3. Conclude from 2. that (1) holds.

Problem 22

Let X be normally distributed with mean value 0 and variance σ^2 . Calculate $E(\exp(X))$ and the variance of $\exp(X)$.

Hint: Use Theorem 5.4 of the notes.

Problem 23

Let (B_n) be a stochastic process satisfying:

- (i) $B_0 = 0$ a.s.
- (ii) Hvis $0 \le m < n$, then $B_n B_m$ is normally distributed with mean value 0 and variance n m.
- (iii) If $0 \le n_1 < n_2 < \cdots < n_k$, then $B_{n_1}, B_{n_2} B_{n_1}, \cdots, B_{n_k} B_{n_{k-1}}$ are independent.

 (B_n) is called a discreet Brownian motion or a discreet Wiener process. It is not that easy to prove its existence, but this we shall assume as fact here. Note that in (ii) we have n - m og **not** $(n - m)^2$!!

For every $n \in \mathbb{N}$ we put $\mathcal{F}_n = \sigma(B_k, 0 \leq k \leq n)$.

- 1. Prove that (B_n) is a martingale.
- 2. Find the Doob decomposition of (B_n^2) .

3. Let $a \in \mathbb{R}$, $a \neq 0$ and define:

$$M_n = \exp(aB_n - \frac{1}{2}a^2n) \quad \text{for all } n \ge 0.$$
(1)

Show that (M_n) is a martingale.

Hint: Do not use Jensen here! Write for $n \ge 1$

$$M_n = \exp(a(B_n - B_{n-1}) - \frac{1}{2}a^2)M_{n-1}$$

and use the assumptions and the result from Problem 22.

4. Show that there is a $M_{\infty} \in L_1(P)$ so that

$$M_n \to M_\infty$$
 a.s

- 5. Let $\varepsilon > 0$ and put for every $n \ge 0$ $b_n = a^{-1}(\frac{1}{2}a^2n + \log \varepsilon)$. Determine that $(M_n \ge \varepsilon) = (B_n \ge b_n)$.
- 6. Show that for a > 0 vil

 $M_n \to 0$ in probability.

Conclude from this that $M_{\infty} = 0$ n.s. Similar calculations can be done for a < 0.

7. Is (M_n) uniformly integrable?

Problem 24

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space (μ need not be a finite measure) and let $f : \Omega \to [0, \infty]$ be an \mathcal{F} -measurable function. We define ν by:

$$\nu(A) = \int_{A} f d\mu \quad \text{for all } A \in \mathcal{F}.$$
 (1)

- 1. Show that ν is a measure.
- 2. Let $g: \Omega \to [0, \infty]$ be measurable. Show that

$$\int_{\Omega} g d\nu = \int_{\Omega} g f d\mu.$$
⁽²⁾

3. Let now $g: \Omega \to \mathbb{R}$ be an arbitrary measurable function. Show that $g \in L_1(\nu)$, if and only if $gf \in L_1(\mu)$. Show next that in that case (2) holds.

problem 25

Let B_n , (\mathcal{F}_n) , and (M_n) be as defined in Problem 23. In addition, define the process (X_n) by:

$$X_n = B_n - an \quad \text{for all } n \ge 0. \tag{1}$$

In the following we let $N \in \mathbb{N}$ be fixed and put

$$Q(A) = \int_{A} M_N dP \quad \text{for all } A \in \mathcal{F}.$$
 (2)

- 1. Show that Q is a probability measure with the property that for all $A \in \mathcal{F}$ we have that Q(A) = 0, if and only if P(A) = 0.
- 2. Show that if $Y \in L_1(Q)$ and Y is \mathcal{F}_n -measurable for some n with $0 \le n \le N$, then

$$\int_{\Omega} Y dQ = \int_{\Omega} Y M_n dP.$$
(3)

The aim of the rest of the problem is to prove that $(X_n)_{0 \le n \le N}$ is a finite Brownian motion in the probability space (Ω, \mathcal{F}, Q) .

3. Let $0 \le m < n \le N$ and let $f : \mathbb{R} \to \mathbb{R}$ be a bounded Borel function. Prove that

$$\int_{\Omega} f(X_n - X_m) dQ =$$

$$\int_{\Omega} f(B_n - B_m - a(n-m)) \exp(B_n - B_m - \frac{1}{2}a^2(n-m)) dP =$$

$$(2\pi(n-m)^{-\frac{1}{2}} \int_{-\infty}^{\infty} f(u-(n-m)a) \exp(-\frac{(u-(n-m)a)^2}{2(n-m)}) du =$$

$$(2\pi(n-m))^{-\frac{1}{2}} \int_{-\infty}^{\infty} f(u) \exp(\frac{-u^2}{2(n-m)}) du.$$
(4)

Hint: Use (3), that $E(M_m) = 1$, and Theorem 5.4 in the notes.

4. Conclude from 3. that if $0 \le m < n \le N$, then $X_n - X_m$ is normally distributed N(0, n - m) in the probability space (Ω, \mathcal{F}, Q) .

Hint: Let $x \in \mathbb{R}$ and put $f = 1_{]-\infty,x]}$ in (4).

5. Let $0 = n_0 < n_1 < \cdots < n_k \leq N$ and let $x_1, x_2, \cdots, x_k \in \mathbb{R}$. Show that

$$Q(\bigcap_{j=1}^{k} (X_j - X_{j-1} \le x_j)) = \prod_{j=1}^{k} Q(X_j - X_{j-1} \le x_j),$$
(5)

and conclude that $X_1, X_{n_2} - X_{n_1}, \dots, X_{n_k} - X_{n_{k-1}}$ are independent. Hint: Prove (5) by induction.ved induktion. In the *k*'te step it is a good idea to write $M_{n_k} = M_{k-1} \exp(B_{n_k} - B_{n_{k-1}} - \frac{1}{2}a^2(n_k - n_{k-1})).$ It has now been proven that $\{X_n \mid 0 \le n \le N \text{ is a finite Brownian motion.}\}$ 6. Is it possible to make the construction above for the whole sequence $(X_n)_{n\geq 0}$ once and for all? Specifically:Mere specifikt: Does there exist an $M \in L_1(P)$ with M > 0 a.s. so that if we put

$$Q(A) = \int_A M dP \quad \text{for all } A \in \mathcal{F},$$

then Q is a probability measure with the property that

$$Q(A) = \int_A M_n dP$$
 for all n and all $A \in \mathcal{F}_n$?

Problem 26

Let $(X_n)_{n\geq O} \subseteq L_1(P)$ be a sequence of independent, identically distributed stochastic variables. Put for every $n \geq 0$ $S_n = \sum_{k=0}^n X_k$ and $\mathcal{F}_n = \sigma(X_0, X_1, \cdots, X_n)$.

- 1. Show that if $E(X_0) = 0$, then (S_n) is a martingale.
- 2. Show that if $E(X_0) > 0$, then (S_n) is a submartingale.
- 3. Guess the next question yourselves!!

Problem 27

Let $(X_n)_{n\geq 0}$ be a martingale relative to the filtration (\mathcal{F}_n) and let τ be a stopping time with $P(\tau < \infty) = 1$. Assume further that there is an M so that således at $|X_n| \mathbb{1}_{(n \leq \tau)} \leq M$, hence that (X_n) is bounded up to the time τ .

- 1. Show that $|X_{\tau}| \leq M$ and conclude that $E(|X_{\tau}|) < \infty$.
- 2. Show that $E(X_{\tau \wedge n} \to E(X_{\tau})$ for $n \to \infty$ and use JP, Theorem 24.2 to conclude that $E(X_{\tau}) = E(X_0)$.

(Hint: Write $X_{\tau \wedge n} = X_{\tau} 1_{(\tau \leq n)} + X_n 1_{(n < \tau)}$.)