Some facts on orthonormal bases of Hilbert spaces

Introduction

The results below can be found with detailed proofs in the notes "Noter om Hilbertrum og indre produkter".

1 Orthonormal bases

Let *H* be a Hilbert space. A sequence $(x_n) \subseteq H$ of mutual orthogonal vectors (i.e $(x_n, x_m) = 0$ for all $n \neq m$) with $||x_n|| = 1$ for all $n \in \mathbb{N}$ is called an orthonormal sequence.

Definition 1.1 An orthonormal sequence (x_n) is called an orthonormal basis for H if for every $x \in H$ there exists a sequence (t_n) of scalars so that

$$x = \sum_{n=1}^{\infty} t_n x_n.$$

We have the following theorem:

Theorem 1.2 Let (x_n) be an orthonormal basis for H and let $x \in H$ and (t_n) a sequence of scalars so that $x = \sum_{n=1}^{\infty} t_n x_n$. Then

(i) $t_n = (x, x_n)$ for all $n \in \mathbb{N}$. In particular the sequence (t_n) is uniquely determined.

$$(ii ||x||^2 = \sum_{n=1}^{\infty} |(x, x_n)|^2$$

Proof: (i): Since $x = \sum_{m=1}^{\infty} t_m x_m$, we get from the linearity and the continuity of (\cdot, \cdot) , that for all $n \in \mathbb{N}$ we have

$$(x, x_n) = \sum_{m=1}^{\infty} t_m(x_m, x_n) = t_n,$$

which proves (i).

(ii): By (i) $x = \sum_{n=1}^{\infty} (x, x_n) x_n$ and the Pythagoras theorem therefore gives that $||x||^2 = \sum_{m=1}^{\infty} |(x, x_n)|^2$

In our notes on Hilbert spaces mentioned above the following theorem is proved, using the Gram– Schmidt orthogonalization procedure.

Theorem 1.3 A Hilbert space has an orthonormal basis if and only if it is separable.

Since the spaces $L_2(0,1)$ and $L_2(0,\infty)$ are separable, we get

Corollary 1.4 $L_2(0,1)$ and $L_2(0,\infty)$ have orthonormal bases.

In our forthcoming proof of the existence of Brownian motion we will actually' construct concrete orthonormal bases of these two spaces.

The next theorem shows when a given orthonormal sequence (e_n) in H is actually an orthonormal basis

Theorem 1.5 Let $(e_n) \subseteq H$ be an orthonormal sequence. Then we have:

- (i) For all $n \in \mathbb{N}$ and all $x \in H$ $x \sum_{j=1}^{n} (x, e_j) e_j$ is orthogonal to $\sum_{j=1}^{n} (x, e_j) e_j$.
- (ii) For $n \in \mathbb{N}$ and all $x \in H \sum_{j=1}^{n} |(x, e_j)|^2 \le ||x||^2$
- (iii For all $x \in H \sum_{n=1}^{\infty} |(x, e_n)|^2 \le ||x||^2$ and hence the series $\sum_{n=1}^{\infty} (x, e_n) e_n$ is convergent in H.
- (iv) (e_n) is an orthonormal basis if and only if $\overline{span((e_n))} = H$.

Proof: (i): If $x \in H$ and $n \in \mathbb{N}$ an easy calculation shows that $(x - \sum_{j=1}^{n} (x, e_j)e_j, \sum_{m=1}^{n} (x, e_m)e_m) = 0$ so that the two vectors are orthogonal.

(ii): From (i) and the Pythagoras theorem it follows that $||x||^2 = ||x - \sum_{j=1}^n (x, e_j)e_j||^2 + \sum_{j=1}^n |(x, e_j)|^2$ and therefore $\sum_{j=1}^n |(x, e_j)|^2 \le ||x||^2$.

(iii); Since the inequality in (ii) holds for all $n \in \mathbb{N}$, we get that $\sum_{n=1}^{\infty} |(x, e_n)|^2 \leq ||x||^2$. Proposition 3.1 of the lecture notes now gives the convergence of the series in H.

(iv): If (e_n) is an orthonormal basis, then every $x \in H$ can be approximated by finite linear combinations of the e_n 's and therefore $span((e_n))$ is dense in H. Assume next that the span is dense and let $x \in H$. Since the series in (iii) converges we can put $y = \sum_{n=1}^{\infty} (x, e_n)e_n$. Clearly $(y, e_n) = (x, e_n)$ for all $n \in \mathbb{N}$ and hence x - y is orthogonal to all the e_n 's therefore also to the closure of their linear span which is H by assumption. Hence x = y, which gives the conclusion. \Box

2 Extensions of continuous linear maps between normed spaces

The next result is about extensions linear maps between general normed spaces. We recall that a complete normed space is called a Banach space.

Theorem 2.1 Let X be a normed space, $X_0 \subseteq X$ a dense subspace, and Y a Banach space. Further let $T : X_0 \to Y$ be a linear map so that there is a constant K with $||Tx|| \leq K ||x||$ for all $x \in X_0$. Then there is a unique linear map $\tilde{T} : X \to Y$ so that $||\tilde{T}x|| \leq K ||x||$ for all $x \in X$ and $\tilde{T}x = Tx$ for all $x \in X_0$

Note that the condition on T is equivalent to the continuity of T.

Proof: Let $x \in X$. Since X_0 is dense in X, we can find a sequence $(x_n) \subseteq X_0$ with $x_n \to x$ for $n \to \infty$. Since T is linear, we have that

$$||Tx_n - Tx_m|| = ||T(x_n - x_m)|| \le K ||x_n - x_m|| \quad \text{for all } n, m \in \mathbb{N}.$$
 (2.1)

Since (x_n) is convergent and hence a Cauchy sequence, equation (2.1) shows that (Tx_n) is a Cauchy sequence in Y, and since Y is complete, it is convergent in Y. Put $y = \lim Tx_n$. We wish to show that y only depends on x and not on (x_n) so that we can define $\tilde{T}x = y$. Note that we have actually shown that everytime we take a sequence from X_0 converging to x, then the image sequence will converge in Y.

Let now $(z_n) \subseteq X_0$ be another sequence converging to x and put $z = \lim T z_n$. Define a new sequence $(u_n) \subseteq X_0$ by $u_{2n-1} = x_n$ and $u_{2n} = z_n$ for all $n \in \mathbb{N}$. Clearly also $u_n \to x$ and therefore $\lim T u_n$ exists in Y. However, since both (Tx_n) and (Tz_n) are subsequences of (Tu_n) , we must have $z = \lim T u_n = y$. Hence we can define $\tilde{T}x = \lim T x_n$ and since the limit does not depend on the actual sequence (x_n) , it is also clear that \tilde{T} is linear. We have also $||Tx_n|| \leq K ||x_n||$ and therefore

$$\|\tilde{T}x\| = \lim \|Tx_n\| \le K \lim \|x_n\| = K\|x\|$$

If $x \in X_0$, then we can use the constant sequence (x) and hence $\tilde{T}x = Tx$.