Some facts on orthonormal bases of Hilbert spaces

Introduction

The results below can be found with detailed proofs in the notes “Noter om Hilbertrum og indre
produkter”.

1 Orthonormal bases

Let H be a Hilbert space. A sequence (z,,) C H of mutual orthogonal vectors (i.e (z,, z,,) = 0
for all n # m ) with ||z,,|| = 1 for all n € N is called an orthonormal sequence.

Definition 1.1 An orthonormal sequence (x,,) is called an orthonormal basis for H if for every
x € H there exists a sequence (t,,) of scalars so that
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We have the following theorem:

Theorem 1.2 Let (x,,) be an orthonormal basis for H and let x € H and (t,) a sequence of
scalars so that x = Zzozl tnTn. Then

(i) t, = (z,z,) for alln € N. In particular the sequence (t,,) is uniquely determined.
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Proof: (i): Since z = > ~_, t,,,2;,, we get from the linearity and the continuity of (-, -), that for
all » € N we have
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which proves (i).



(i): By () = >.°7 (z,x,)z, and the Pythagoras theorem therefore gives that ||z||* =
Zm:l |(I‘7$n>|2 O

In our notes on Hilbert spaces mentioned above the following theorem is proved, using the Gram—
Schmidt orthogonalization procedure.

Theorem 1.3 A Hilbert space has an orthonormal basis if and only if it is separable.
Since the spaces L2 (0, 1) and Ly(0, co) are separable, we get
Corollary 1.4 L5(0,1) and Ls(0,00) have orthonormal bases.

In our forthcoming proof of the existence of Brownian motion we will actually’ construct con-
crete orthonormal bases of these two spaces.

The next theorem shows when a given orthonormal sequence (e, ) in H is actually an orthonormal
basis
Theorem 1.5 Let (e,) C H be an orthonormal sequence. Then we have:

(i) Foralln € Nandallx € Hx — )77,
(ii) Forn € Nandallx € H Y77_, |(,¢;)]* < []]?

(z,e;)e; is orthogonal to 3 7, (v, €;)e;.

(iti Forallz € HY " |(x,e,)* < ||z||* and hence the series y .- (x,e,)e, is convergent
in H.

(iv) (ey) is an orthonormal basis if and only if span((e,)) = H.

Proof: (i): If z € H and n € N an easy calculation shows that (z—> 7 (z, €;)e;, > (2, em)en) =
0 so that the two vectors are orthogonal.

(ii): From (i) and the Pythagoras theorem it follows that [|z[* = |z — 377_ (2, ¢;)e;||* +
> -1 1(x, €;)[* and therefore 37 [(x, e;)[* < [l]*.

(iii); Since the inequality in (ii) holds for all n € N, we get that > >~ |(z,e,)]* < [z[*
Proposition 3.1 of the lecture notes now gives the convergence of the series in .

(iv): If (e,) is an orthonormal basis, then every z € H can be approximated by finite linear
combinations of the e,,’s and therefore span((e,)) is dense in H. Assume next that the span is
dense and let z € H. Since the series in (iii) converges we can puty = » >~ (, e,)e,. Clearly
(y,en) = (z,e,) for all n € N and hence = — y is orthogonal to all the e,,’s therefore also to the
closure of their linear span which is // by assumption. Hence x = y, which gives the conclusion.
O



2 Extensions of continuous linear maps between normed spaces

The next result is about extensions linear maps between general normed spaces. We recall that a
complete normed space is called a Banach space.

Theorem 2.1 Let X be a normed space, Xqg C X a dense subspace, and Y a Banach space.
Further let T : Xo — Y be a linear map so that there is a constant K with | Tx| < K ||z|| for
all z € Xy. Then there is a unique linear map T : X — 'Y so that | Tz|| < K||z|| for all z € X
and Tz = Tz forall x € X,

Note that the condition on 7' is equivalent to the continuity of 7.

Proof: Let v € X. Since X is dense in X, we can find a sequence (x,,) C X, with z,, — x for
n — 0o. Since 7' is linear, we have that

Tz, — Txpl = [|T(x, — 2p)|| < K|z, — x| foralln,m e N. (2.1

Since (z,,) is convergent and hence a Cauchy sequence, equation (2.1) shows that (T'z,,) is a
Cauchy sequence in Y, and since Y is complete, it is convergent in Y. Put y = lim T'z,,. We
wish to show that y only depends on z and not on (z,,) so that we can define Tz = y. Note that
we have actually shown that everytime we take a sequence from X converging to z, then the
image sequence will converge in Y.

Let now (z,) € X, be another sequence converging to x and put z = lim 7'z,,. Define a new
sequence (u,) C Xy by us,—1 = x, and uy, = z, for all n € N. Clearly also u, — =
and therefore lim T'u,, exists in Y. However, since both (T'x,,) and (7'z,) are subsequences of
(T'u,), we must have z = limTwu, = y. Hence we can define Tz = lim Tz, and since the
limit does not depend on the actual sequence (z,,), it is also clear that T is linear. We have also
|Tx,|| < K||x,|| and therefore

T = lim | T, || < K lim ||z, ]| = K|l2]]

If z € X, then we can use the constant sequence (z) and hence Tx =Tu. O



