
Some facts on orthonormal bases of Hilbert spaces

Introduction

The results below can be found with detailed proofs in the notes “Noter om Hilbertrum og indre
produkter”.

1 Orthonormal bases

Let H be a Hilbert space. A sequence (xn) ⊆ H of mutual orthogonal vectors (i.e (xn, xm) = 0
for all n 6= m ) with ‖xn‖ = 1 for all n ∈ N is called an orthonormal sequence.

Definition 1.1 An orthonormal sequence (xn) is called an orthonormal basis for H if for every
x ∈ H there exists a sequence (tn) of scalars so that

x =
∞∑
n=1

tnxn.

We have the following theorem:

Theorem 1.2 Let (xn) be an orthonormal basis for H and let x ∈ H and (tn) a sequence of
scalars so that x =

∑∞
n=1 tnxn. Then

(i) tn = (x, xn) for all n ∈ N. In particular the sequence (tn) is uniquely determined.

(ii ‖x‖2 =
∑∞

n=1 |(x, xn)|2

Proof: (i): Since x =
∑∞

m=1 tmxm, we get from the linearity and the continuity of (·, ·), that for
all n ∈ N we have

(x, xn) =
∞∑

m=1

tm(xm, xn) = tn,

which proves (i).
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(ii): By (i) x =
∑∞

n=1(x, xn)xn and the Pythagoras theorem therefore gives that ‖x‖2 =∑∞
m=1 |(x, xn)|2 2

In our notes on Hilbert spaces mentioned above the following theorem is proved, using the Gram–
Schmidt orthogonalization procedure.

Theorem 1.3 A Hilbert space has an orthonormal basis if and only if it is separable.

Since the spaces L2(0, 1) and L2(0,∞) are separable, we get

Corollary 1.4 L2(0, 1) and L2(0,∞) have orthonormal bases.

In our forthcoming proof of the existence of Brownian motion we will actually’ construct con-
crete orthonormal bases of these two spaces.

The next theorem shows when a given orthonormal sequence (en) in H is actually an orthonormal
basis

Theorem 1.5 Let (en) ⊆ H be an orthonormal sequence. Then we have:

(i) For all n ∈ N and all x ∈ H x−
∑n

j=1(x, ej)ej is orthogonal to
∑n

j=1(x, ej)ej .

(ii) For n ∈ N and all x ∈ H
∑n

j=1 |(x, ej)|2 ≤ ‖x‖2

(iii For all x ∈ H
∑∞

n=1 |(x, en)|2 ≤ ‖x‖2 and hence the series
∑∞

n=1(x, en)en is convergent
in H .

(iv) (en) is an orthonormal basis if and only if span((en)) = H .

Proof: (i): If x ∈ H and n ∈ N an easy calculation shows that (x−
∑n

j=1(x, ej)ej,
∑n

m=1(x, em)em) =
0 so that the two vectors are orthogonal.

(ii): From (i) and the Pythagoras theorem it follows that ‖x‖2 = ‖x −
∑n

j=1(x, ej)ej‖2 +∑n
j=1 |(x, ej)|2 and therefore

∑n
j=1 |(x, ej)|2 ≤ ‖x‖2.

(iii); Since the inequality in (ii) holds for all n ∈ N, we get that
∑∞

n=1 |(x, en)|2 ≤ ‖x‖2.
Proposition 3.1 of the lecture notes now gives the convergence of the series in H .

(iv): If (en) is an orthonormal basis, then every x ∈ H can be approximated by finite linear
combinations of the en’s and therefore span((en)) is dense in H . Assume next that the span is
dense and let x ∈ H . Since the series in (iii) converges we can put y =

∑∞
n=1(x, en)en. Clearly

(y, en) = (x, en) for all n ∈ N and hence x− y is orthogonal to all the en’s therefore also to the
closure of their linear span which is H by assumption. Hence x = y, which gives the conclusion.
2
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2 Extensions of continuous linear maps between normed spaces

The next result is about extensions linear maps between general normed spaces. We recall that a
complete normed space is called a Banach space.

Theorem 2.1 Let X be a normed space, X0 ⊆ X a dense subspace, and Y a Banach space.
Further let T : X0 → Y be a linear map so that there is a constant K with ‖Tx‖ ≤ K‖x‖ for
all x ∈ X0. Then there is a unique linear map T̃ : X → Y so that ‖T̃ x‖ ≤ K‖x‖ for all x ∈ X
and T̃ x = Tx for all x ∈ X0

Note that the condition on T is equivalent to the continuity of T .

Proof: Let x ∈ X . Since X0 is dense in X , we can find a sequence (xn) ⊆ X0 with xn → x for
n→∞. Since T is linear, we have that

‖Txn − Txm‖ = ‖T (xn − xm)‖ ≤ K‖xn − xm‖ for all n,m ∈ N. (2.1)

Since (xn) is convergent and hence a Cauchy sequence, equation (2.1) shows that (Txn) is a
Cauchy sequence in Y , and since Y is complete, it is convergent in Y . Put y = limTxn. We
wish to show that y only depends on x and not on (xn) so that we can define T̃ x = y. Note that
we have actually shown that everytime we take a sequence from X0 converging to x, then the
image sequence will converge in Y .

Let now (zn) ⊆ X0 be another sequence converging to x and put z = limTzn. Define a new
sequence (un) ⊆ X0 by u2n−1 = xn and u2n = zn for all n ∈ N. Clearly also un → x
and therefore limTun exists in Y . However, since both (Txn) and (Tzn) are subsequences of
(Tun), we must have z = limTun = y. Hence we can define T̃ x = limTxn and since the
limit does not depend on the actual sequence (xn), it is also clear that T̃ is linear. We have also
‖Txn‖ ≤ K‖xn‖ and therefore

‖T̃ x‖ = lim ‖Txn‖ ≤ K lim ‖xn‖ = K‖x‖

If x ∈ X0, then we can use the constant sequence (x) and hence T̃ x = Tx. 2
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