
DM502
Programming A

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM502/!

Python & Linux Install Party

§  Tomorrow (Tuesday, September 12) from 10 – 14
§  Fredagsbar (area south of Kantine II)

§  Participants are those
§  who want Python (& Swampy) on their computer,
§  who want Linux on their computer,
§  who want some study-related software on their computer,
§  who have problems with some study related software, or
§  who just like to hang out and help other people!

§  drinks and some snacks will be provided by IMADA!

June 2009 2

RECURSION:
SEE RECURSION

June 2009 3

Recursion is “Complete”

§  so far we know:
§  values of type integer, float, string
§  arithmetic expressions
§  (recursive) function definitions
§  (recursive) function calls
§  conditional execution
§  input/output

§  ALL possible programs can be written using these elements!
§  we say that we have a “Turing complete” language

June 2009 4

Factorial

§  in mathematics, the factorial function is defined by
§  0! = 1
§  n! = n * (n-1)!

§  such recursive definitions can trivially be expressed in Python
§  Example:

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result
 x = factorial(3)

June 2009 5

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 6

 n è 3

 n è 2

 n è 1

 n è 0

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 7

 n è 3

 n è 2

 n è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 8

 n è 3

 n è 2

 n è 1 recurse è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 9

 n è 3

 n è 2

 n è 1 recurse è 1 result è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 10

 n è 3

 n è 2

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 11

 n è 3

 n è 2 recurse è 1

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 12

 n è 3

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 13

 n è 3

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 14

 n è 3 recurse è 2

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 15

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 16

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

6	

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 17

 x è 6

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

6	

2	

1	

1	

Leap of Faith

§  following the flow of execution difficult with recursion
§  alternatively take the “leap of faith” (induction)

§  Example:
 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result
 x = factorial(3)

June 2009 18

check the
base case

check the
step case

assume recursive
call is correct

Control Flow Diagram

§  Example: def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

June 2009 19

n == 0

recurse = factorial(n-1) True	

False	

result = n * recurse

return 1 return result

factorial(n)

Fibonacci

§  Fibonacci numbers model for unchecked rabbit population
§  rabbit pairs at generation n is sum of rabbit pairs at

generation n-1 and generation n-2

§  mathematically:
§  fib(0) = 0, fib(1) = 1, fib(n) = fib(n-1) + fib(n-2)

§  Pythonically:
 def fib(n):
 if n == 0: return 0
 elif n == 1: return 1
 else: return fib(n-1) + fib(n-2)

§  “leap of faith” required even for small n!

June 2009 20

Control Flow Diagram

§  Example: def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)

June 2009 21

n == 0

True	

False	

return 0 return fib(n-1) + fib(n+2)

fib(n)

n == 1

return 1

True	

False	

Types and Base Cases

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Problem: factorial(1.5) exceeds recursion limit

§  factorial(0.5)
§  factorial(-0.5)
§  factorial(-1.5)
§  …

June 2009 22

Types and Base Cases

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 23

Types and Base Cases

 def factorial(n):
 if not isinstance(n, int):
 print "Integer required"; return None
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 24

Types and Base Cases

 def factorial(n):
 if not isinstance(n, int):
 print "Integer required"; return None
 if n < 0:
 print "Non-negative number expected"; return None
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 25

Debugging Interfaces

§  interfaces simplify testing and debugging

1.  test if pre-conditions are given:
§  do the arguments have the right type?
§  are the values of the arguments ok?

2.  test if the post-conditions are given:
§  does the return value have the right type?
§  is the return value computed correctly?

3.  debug function, if pre- or post-conditions violated

June 2009 26

Debugging (Recursive) Functions

§  to check pre-conditions:
§  print values & types of parameters at beginning of function
§  insert check at beginning of function (pre assertion)

§  to check post-conditions:
§  print values before return statements
§  insert check before return statements (post assertion)

§  side-effect: visualize flow of execution

June 2009 27

ITERATION

June 2009 28

Multiple Assignment Revisited

§  as seen before, variables can be assigned multiple times
§  assignment is NOT the same as equality
§  it is not symmetric, and changes with time

§  Example:
 a = 42
 …
 b = a
 …
 a = 23

June 2009 29

from here,
a and b are equal

from here,
a and b are different

Updating Variables

§  most common form of multiple assignment is updating
§  a variable is assigned to an expression containing that variable

§  Example:
 x = 23
 for i in range(19):
 x = x + 1

§  adding one is called incrementing

§  expression evaluated BEFORE assignment takes place
§  thus, variable needs to have been initialized earlier!

June 2009 30

Iterating with While Loops

§  iteration = repetition of code blocks
§  can be implemented using recursion (countdown, polyline)

§  while statement:
 <while-loop> => while <cond>:
 <instr1>; <instr2>; <instr3>

§  Example: def countdown(n):
 while n > 0:
 print n, "seconds left!"
 n = n - 1
 print "Ka-Boom!"
 countdown(3)

 June 2009 31

n == 3 n == 3
True

n == 3 n == 3 n == 2 n == 2
True

n == 2 n == 2 n == 1 n == 1
True

n == 1 n == 1 n == 0 n == 0
False

n == 0

Termination

§  Termination = the condition is eventually False
§  loop in countdown obviously terminates:

 while n > 0: n = n - 1
§  difficult for other loops:

 def collatz(n):
 while n != 1:
 print n,
 if n % 2 == 0: # n is even
 n = n / 2
 else: # n is odd
 n = 3 * n + 1

June 2009 32

Termination

§  Termination = the condition is eventually False
§  loop in countdown obviously terminates:

 while n > 0: n = n - 1
§  can also be difficult for recursion:

 def collatz(n):
 if n != 1:
 print n,
 if n % 2 == 0: # n is even
 collatz(n / 2)
 else: # n is odd
 collatz(3 * n + 1)

June 2009 33

Breaking a Loop

§  sometimes you want to force termination

§  Example:
 while True:
 num = raw_input('enter a number (or "exit"):\n')
 if num == "exit":
 break
 n = int(num)
 print "Square of", n, "is:", n**2
 print "Thanks a lot!"

June 2009 34

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)
§  for square root of a: f(x) = x2 – a f ’(x) = 2x
§  simplifying for this special case: xn+1 = (xn + a / xn) / 2

§  Example 1: while True:
 print xn
 xnp1 = (xn + a / xn) / 2
 if xnp1 == xn:
 break
 xn = xnp1

June 2009 35

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)

§  Example 2: def f(x): return x**3 - math.cos(x)
 def f1(x): return 3*x**2 + math.sin(x)
 while True:
 print xn
 xnp1 = xn - f(xn) / f1(xn)
 if xnp1 == xn:
 break
 xn = xnp1

June 2009 36

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)

§  Example 2: def f(x): return x**3 - math.cos(x)
 def f1(x): return 3*x**2 + math.sin(x)
 while True:
 print xn
 xnp1 = xn - f(xn) / f1(xn)
 if math.abs(xnp1 - xn) < epsilon:
 break
 xn = xnp1

June 2009 37

Algorithms

§  algorithm = mechanical problem-solving process
§  usually given as a step-by-step procedure for computation

§  Newton’s method is an example of an algorithm
§  other examples:

§  addition with carrying
§  subtraction with borrowing
§  long multiplication
§  long division

§  directly using Pythagora’s formula is not an algorithm

June 2009 38

Divide et Impera

§  latin, means “divide and conquer” (courtesy of Julius Caesar)
§  Idea: break down a problem and recursively work on parts

§  Example: guessing a number by bisection
 def guess(low, high):
 if low == high:
 print "Got you! You thought of: ", low
 else:
 mid = (low+high) / 2
 ans = raw_input("Is "+str(mid)+" correct (>, =, <)?")
 if ans == ">": guess(mid,high)
 elif ans == "<": guess(low,mid)
 else: print "Yeehah! Got you!"

June 2009 39

Debugging Larger Programs

§  assume you have large function computing wrong return value
§  going step-by-step very time consuming

§  Idea: use bisection, i.e., half the search space in each step

1.  insert intermediate output (e.g. using print) at mid-point
2.  if intermediate output is correct, apply recursively to 2nd part
3.  if intermediate output is wrong, apply recursively to 1st part

June 2009 40

STRINGS

June 2009 41

Strings as Sequences

§  strings can be viewed as 0-indexed sequences

§  Examples:
 "Slartibartfast"[0] == "S"
 "Slartibartfast"[1] == "l"
 "Slartibartfast"[2] == "Slartibartfast"[7]
 "Phartiphukborlz"[-1] == "z"

§  grammar rule for expressions:
 <expr> => … | <expr1>[<expr2>]

§  <expr1> = expression with value of type string
§  index <expr2> = expression with value of type integer
§  negative index counting from the back

June 2009 42

Length of Strings

§  length of a string computed by built-in function len(object)

§  Example:
 name = "Slartibartfast"
 length = len(name)
 print name[length-4]

§  Note: name[length] gives runtime error

§  identical to write name[len(name)-1] and name[-1]
§  more general, name[len(name)-a] identical to name[-a]

June 2009 43

