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Python & Linux Install Party 

§  Tomorrow (Tuesday, September 12) from 10 – 14 
§  Fredagsbar (area south of Kantine II) 

§  Participants are those 
§  who want Python (& Swampy) on their computer, 
§  who want Linux on their computer, 
§  who want some study-related software on their computer, 
§  who have problems with some study related software, or 
§  who just like to hang out and help other people! 

§  drinks and some snacks will be provided by IMADA! 
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RECURSION: 
SEE RECURSION 
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Recursion is “Complete” 

§  so far we know: 
§  values of type integer, float, string 
§  arithmetic expressions 
§  (recursive) function definitions 
§  (recursive) function calls 
§  conditional execution 
§  input/output 

§  ALL possible programs can be written using these elements! 
§  we say that we have a “Turing complete” language 
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Factorial 

§  in mathematics, the factorial function is defined by 
§  0! = 1 
§  n! = n * (n-1)! 

§  such recursive definitions can trivially be expressed in Python 
§  Example: 

 def factorial(n): 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 
 x = factorial(3) 
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Stack Diagram for Factorial 
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Leap of Faith 

§  following the flow of execution difficult with recursion 
§  alternatively take the “leap of faith” (induction) 

§  Example: 
 def factorial(n): 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 
 x = factorial(3) 
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Control Flow Diagram 

§  Example:         def factorial(n): 
             if n == 0: 
                 return 1 
             recurse = factorial(n-1) 
             result = n * recurse 
             return result 
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Fibonacci 

§  Fibonacci numbers model for unchecked rabbit population 
§  rabbit pairs at generation n is sum of rabbit pairs at 

generation n-1 and generation n-2 

§  mathematically: 
§  fib(0) = 0,  fib(1) = 1,  fib(n) = fib(n-1) + fib(n-2) 

§  Pythonically: 
 def fib(n): 
     if n == 0:  return 0 
     elif n == 1:  return 1 
     else:  return fib(n-1) + fib(n-2) 

 

§  “leap of faith” required even for small n! 
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Control Flow Diagram 

§  Example:            def fib(n): 
     if n == 0: 
         return 0 
     elif n == 1: 
         return 1 
     else:   
         return fib(n-1) + fib(n-2) 

June 2009 21 

n == 0 

True	



False	



return 0 return fib(n-1) + fib(n+2) 

fib(n) 

n == 1 

return 1 

True	

False	





Types and Base Cases 

 def factorial(n): 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 

§  Problem:  factorial(1.5) exceeds recursion limit 

§  factorial(0.5) 
§  factorial(-0.5) 
§  factorial(-1.5) 
§  … 
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Types and Base Cases 

 def factorial(n): 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 

 
 
 
 
 

§  Idea:   check type at beginning of function 
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Types and Base Cases 

 def factorial(n): 
     if not isinstance(n, int): 
         print "Integer required";  return None 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 

 
 

§  Idea:   check type at beginning of function 
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Types and Base Cases 

 def factorial(n): 
     if not isinstance(n, int): 
         print "Integer required";  return None 
     if n < 0: 
         print "Non-negative number expected";  return None 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 

§  Idea:   check type at beginning of function 
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Debugging Interfaces 

§  interfaces simplify testing and debugging 

1.  test if pre-conditions are given: 
§  do the arguments have the right type? 
§  are the values of the arguments ok? 

2.  test if the post-conditions are given: 
§  does the return value have the right type? 
§  is the return value computed correctly? 

3.  debug function, if pre- or post-conditions violated 
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Debugging (Recursive) Functions 

§  to check pre-conditions: 
§  print values & types of parameters at beginning of function 
§  insert check at beginning of function (pre assertion) 

§  to check post-conditions: 
§  print values before return statements 
§  insert check before return statements (post assertion) 

§  side-effect: visualize flow of execution 
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ITERATION 
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Multiple Assignment Revisited 

§  as seen before, variables can be assigned multiple times 
§  assignment is NOT the same as equality 
§  it is not symmetric, and changes with time 

§  Example: 
 a = 42 
 … 
 b = a 
 … 
 a = 23 
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Updating Variables 

§  most common form of multiple assignment is updating 
§  a variable is assigned to an expression containing that variable 

§  Example: 
 x = 23 
 for i in range(19): 
     x = x + 1 

 

§  adding one is called incrementing 

§  expression evaluated BEFORE assignment takes place 
§  thus, variable needs to have been initialized earlier! 
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Iterating with While Loops 

§  iteration  =   repetition of code blocks 
§  can be implemented using recursion (countdown, polyline) 

§  while statement: 
 <while-loop>  =>  while <cond>: 
        <instr1>;  <instr2>;  <instr3> 

 

§  Example:   def countdown(n): 
       while n > 0: 
           print n, "seconds left!" 
           n = n - 1 
       print "Ka-Boom!" 
   countdown(3) 
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Termination 

§  Termination  =  the condition is eventually False 
§  loop in countdown obviously terminates: 

 while n > 0:      n = n - 1 
§  difficult for other loops: 

 def collatz(n): 
     while n != 1: 
         print n, 
         if n % 2 == 0:   # n is even 
             n = n / 2 
         else:    # n is odd 
             n = 3 * n + 1 
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Termination 

§  Termination  =  the condition is eventually False 
§  loop in countdown obviously terminates: 

 while n > 0:      n = n - 1 
§  can also be difficult for recursion: 

 def collatz(n): 
     if n != 1: 
         print n, 
         if n % 2 == 0:   # n is even 
             collatz(n / 2) 
         else:    # n is odd 
             collatz(3 * n + 1) 
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Breaking a Loop 

§  sometimes you want to force termination 

§  Example: 
 while True: 
     num = raw_input('enter a number (or "exit"):\n') 
     if num == "exit": 
         break 
     n = int(num) 
     print "Square of", n, "is:", n**2 
 print "Thanks a lot!" 

June 2009 34 



Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 
§  for square root of a:  f(x) = x2 – a  f ’(x) = 2x 
§  simplifying for this special case:  xn+1 = (xn + a / xn) / 2 

§  Example 1:  while True: 
       print xn 
       xnp1 = (xn + a / xn) / 2 
       if xnp1 == xn: 
           break 
       xn = xnp1 

June 2009 35 



Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 

§  Example 2:  def f(x):  return x**3 - math.cos(x) 
   def f1(x):  return 3*x**2 + math.sin(x) 
   while True: 
       print xn 
       xnp1 = xn - f(xn) / f1(xn) 
       if xnp1 == xn: 
           break 
       xn = xnp1 
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Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 

§  Example 2:  def f(x):  return x**3 - math.cos(x) 
   def f1(x):  return 3*x**2 + math.sin(x) 
   while True: 
       print xn 
       xnp1 = xn - f(xn) / f1(xn) 
       if math.abs(xnp1 - xn) < epsilon: 
           break 
       xn = xnp1 
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Algorithms 

§  algorithm  =    mechanical problem-solving process 
§  usually given as a step-by-step procedure for computation 

§  Newton’s method is an example of an algorithm 
§  other examples: 

§  addition with carrying 
§  subtraction with borrowing 
§  long multiplication 
§  long division 

§  directly using Pythagora’s formula is not an algorithm 
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Divide et Impera 

§  latin, means “divide and conquer” (courtesy of Julius Caesar) 
§  Idea:   break down a problem and recursively work on parts 

§  Example:  guessing a number by bisection 
 def guess(low, high): 
     if low == high: 
         print "Got you! You thought of: ", low 
     else: 
         mid = (low+high) / 2 
         ans = raw_input("Is "+str(mid)+" correct (>, =, <)?") 
         if ans == ">":  guess(mid,high) 
         elif ans == "<":  guess(low,mid) 
         else:   print "Yeehah! Got you!" 
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Debugging Larger Programs 

§  assume you have large function computing wrong return value 
§  going step-by-step very time consuming 

§  Idea:   use bisection, i.e., half the search space in each step 

1.  insert intermediate output (e.g. using print) at mid-point 
2.  if intermediate output is correct, apply recursively to 2nd part 
3.  if intermediate output is wrong, apply recursively to 1st part 
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STRINGS 
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Strings as Sequences 

§  strings can be viewed as 0-indexed sequences 
 

§  Examples: 
 "Slartibartfast"[0] == "S" 
 "Slartibartfast"[1] == "l" 
 "Slartibartfast"[2] == "Slartibartfast"[7] 
 "Phartiphukborlz"[-1] == "z" 

§  grammar rule for expressions: 
 <expr>   =>   …  |  <expr1>[<expr2>] 

§  <expr1>   = expression with value of type string 
§  index <expr2>  = expression with value of type integer 
§  negative index counting from the back 
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Length of Strings 

§  length of a string computed by built-in function len(object) 

§  Example: 
 name = "Slartibartfast" 
 length = len(name) 
 print name[length-4] 

 
§  Note:   name[length] gives runtime error 

§  identical to write name[len(name)-1] and name[-1] 
§  more general, name[len(name)-a] identical to name[-a] 
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