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Example: Associative Arrays 

  An environment can be expressed as an 
associative array, e.g.: 

$myEnv = array( 

 ”phptype”  => ”pgsql”, 
 ”hostspec” => ”localhost”, 
 ”port”     => ”5432”, 
 ”database” => ”petersk09”, 

 ”username” => ”petersk09”, 
 ”password” => ”geheim”); 



Function connect 
in the DB library 
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Making a Connection 

  With the DB library imported and the 
array $myEnv available: 

$myCon = DB::connect($myEnv); 

Class is Connection 
because it is returned 
by DB::connect() 
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Executing SQL Statements 

  Method query applies to a Connection 
object 

  It takes a string argument and returns a 
result 
  Could be an error code or the relation 

returned by a query 



Concatenation 
in PHP 

Remember this 
variable is replaced 
by its value. 

Method 
application 
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Example: Executing a Query 

  Find all the bars that sell a beer given 
by the variable $beer 

$beer = ’Od.Cl.’; 
$result = $myCon->query( 
  ”SELECT bar FROM Sells” . 
  ”WHERE beer = ’$beer’;”); 
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Cursors in PHP 

  The result of a query is  the tuples 
returned 

  Method fetchRow applies to the result 
and returns the next tuple, or FALSE if 
there is none 
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Example: Cursors 

while ($bar = $result->fetchRow()) 
{ 
 // do something with $bar 

} 
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Example: Tuple Cursors 

$bar = “C.Ch.“; 
$menu = $myCon->query(    
“SELECT beer, price FROM Sells 
WHERE bar = ‘$bar‘;“); 

while ($bp = $result->fetchRow()) 
{ 
 print $bp[0] . “ for “ . $bp[1]; 

} 
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An Aside: SQL Injection 

  SQL queries are often constructed by 
programs 

  These queries may take constants from 
user input 

  Careless code can allow rather 
unexpected queries to be constructed 
and executed 
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Example: SQL Injection 

  Relation Accounts(name, passwd, acct) 
  Web interface: get name and password from 

user, store in strings n  and p, issue query, 
display account number 

$result = $myCon->query( 
“SELECT acct FROM Accounts WHERE 
name = ‘$n’ AND passwd = ‘$p’;”); 



10 

User (Who Is Not Bill Gates) Types 

Name: 

Password: 

Your account number is 1234-567 

gates’ -- 

who cares? 

Comment 
in PostgreSQL 



All treated as a comment 
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The Query Executed 

SELECT acct FROM Accounts 
WHERE name = ’gates’  --’ AND 
 passwd = ’who cares?’ 



Summary 8 

More things you should know: 
  Stored Procedures, PL/pgsql 
  Declarations, Statements, Loops,  
  Cursors, Tuple Variables 
  Three-Tier Approach, JDBC, PHP/DB 
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Database Implementation 



Database Implementation 

Isn‘t implementing a database system easy? 
  Store relations 
  Parse statements 
  Print results 
  Change relations 
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Introducing the 

Database Management System 

•  The latest from DanLabs 
•  Incorporates latest relational technology 
•  Linux compatible 
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DanDB 3000    
Implementation Details 

  Relations stored in files (ASCII) 
  Relation R is in /var/db/R 
  Example: 

Peter # Erd.We. 
Lars  # Od.Cl. . . . 
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DanDB 3000    
Implementation Details 

  Directory file (ASCII) in /var/db/directory 
  For relation R(A,B) with A of type 

VARCHAR(n) and B of type integer:       
R # A # STR # B # INT 

  Example: 

Favorite # drinker # STR # beer # STR 
Sells # bar # STR # beer # STR # ... 

. . . 
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DanDB 3000 
Sample Sessions 

% dandbsql 
   Welcome to DanDB 3000! 
> 

> quit 
% 

. . . 
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DanDB 3000 
Sample Sessions 

> SELECT * 
  FROM Favorite; 

  drinker # beer 
  ################## 
  Peter   # Erd.We. 
  Lars    # Od.Cl. 
  (2 rows) 

> 
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DanDB 3000 
Sample Sessions 

> SELECT drinker AS snob 
  FROM Favorite, Sells 
  WHERE Favorite.beer = Sells.beer 
    AND price > 25; 

  snob 
  ###### 
  Peter 
  (1 rows) 

> 



21 

DanDB 3000 
Sample Sessions 

> CREATE TABLE expensive (bar TEXT); 
> INSERT INTO expensive (SELECT bar 
  FROM Sells 
  WHERE price > 25); 
> 

Create table with expensive bars 
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DanDB 3000 
Implementation Details 

  To execute “SELECT * FROM R WHERE condition”: 
1.  Read /var/db/dictionary, find line starting with “R #” 
2.  Display rest of line 
3.  Read /var/db/R file, for each line: 

a.  Check condition 
b.  If OK, display line 
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DanDB 3000 
Implementation Details 

  To execute “CREATE TABLE S (A1 t1, A2 t2);”: 
1.  Map t1 and t2 to internal types T1 and T2 
2.  Append new line “S # A1 # T1 # A2 # T2”     

to /var/db/directory 

  To execute “INSERT INTO S (SELECT * FROM R 
           WHERE condition);”: 
1.  Process select as before 
2.  Instead of displaying, append lines to file /var/db/S 
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DanDB 3000 
Implementation Details 

  To execute “SELECT A,B FROM R,S WHERE condition;”: 
1.  Read /var/db/dictionary to get schema for R and S 
2.  Read /var/db/R file, for each line: 

a.  Read /var/db/S file, for each line: 
i.  Create join tuple 
ii.  Check condition 
iii.  Display if OK 
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DanDB 3000 
Problems 

  Tuple layout on disk 
  Change string from ‘Od.Cl.’ to ‘Odense 

Classic’ and we have to rewrite file 
  ASCII storage is expensive 
  Deletions are expensive 

  Search expensive – no indexes! 
  Cannot find tuple with given key quickly 
  Always have to read full relation 
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DanDB 3000 
Problems 

  Brute force query processing 
  Example:       
SELECT * FROM R,S WHERE R.A=S.A 
AND S.B > 1000; 

  Do select first? 
  Natural join more efficient? 

  No concurrency control 
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DanDB 3000 
Problems 

  No reliability 
  Can lose data 
  Can leave operations half done 

  No security 
  File system insecure 
  File system security is too coarse 

  No application program interface (API) 
  How to access the data from a real program? 
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DanDB 3000 
Problems 

  Cannot interact with other DBMSs 
  Very limited support of SQL 

  No constraint handling etc. 
  No administration utilities, no web 

frontend, no graphical user interface, ... 
  Lousy salesmen! 



Data Storage 
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Computer System 
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CPU 

RAM SATA 

Secondary 
Storage 

... ... 



The Memory Hierarchy 

Cache 

RAM 

Harddisk 

Tape Robot 
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DBMS and Storage 

  Databases typically too large to keep in 
primary storage 

  Tables typically kept in secondary 
storage 

  Large amounts of data that are only 
accessed infrequently are stored in 
tertiary storage 

  Indexes and current tables cached in 
primary storage 
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Harddisk 

  N rotating magenetic platters 
  2xN heads for reading and writing 
  track, cylinder, sector, gap 
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…
 



Harddisk Access 

  access time: how long does it take to 
load a block from the harddisk? 

  seek time: how long does it take to 
move the heads to the right cylinder? 

  rotational delay: how long does it take 
until the head gets to the right sectors? 

  transfer time: how long does it take to 
read the block? 

  access = seek + rotational + transfer 
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Seek Time 

  average seek time = ½ time to move 
head from outermost to innermost 
cylinder 
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…
 



Rotational Delay 

  average rotational delay = ½ rotation 
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head here 

block to read 



Transfer Time 

  Transfer time = 1/n rotation when  
there are n blocks on one track 
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from here 

to here 



Access Time 

  Typical harddisk: 
 Maximal seek time: 10 ms 
  Rotational speed: 7200 rpm 
  Block size: 4096 bytes 
  Sectors (512 bytes) per track: 1600 (average) 

  Average access time: 
  Average seek time: 5 ms 
  Average rotational delay: 60/7200/2 = 4.17 ms 
  Average transfer time: 0.04 ms 
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9.21 ms 



Random vs Sequential Access 

  Random access of blocks:         
1/0.00921s * 4096 byte = 0.42 Mbyte/s 

  Sequential access of blocks:            
120/s * 200 * 4096 byte = 94 Mbyte/s 

  Performance of the DBMS dominated by 
number of random accesses 
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On Disk Cache 
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Problems with Harddisks 

  Even with caches, harddisk remains 
bottleneck for DBMS performance 

  Harddisks can fail: 
  Intermittent failure 
 Media decay 
 Write failure 
  Disk crash 

  Handle intermittent failures by 
rereading the block in question 
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Detecting Read Failures 

  Use checksums to detect failures 
  Simplest form is parity bit: 

  0 if number of ones in the block is even 
  1 if number of ones in the block is odd 
  Detects all 1-bit failures 
  Detects 50% of many-bit failures 
  By using n bits, we can reduce the chance 

of missing an error to 1/2^n 
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Disk Arrays 

  Use more than one disk for higher 
reliability and/or performance 

  RAID (Redundant Arrays of 
Independent Disks) 
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logically one disk 



RAID 0  

  Alternate blocks between two or more 
disks (“Striping“) 

  Increases performance both for writing 
and reading 

  No increase in reliability 
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Storing blocks 0-5 
in the first three 
blocks of disk 1 & 2 



RAID 1  

  Duplicate blocks on two or more disks 
(“Mirroring“) 

  Increases performance for reading 
  Increases reliability significantly 
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0 
1 1 
2 2 

Storing blocks 0-2 
in the first three 
blocks of disk 1 & 2 



RAID 5  

  Stripe blocks on n+1 disks where for each 
block, one disk stores parity information 

  More performant when writing than RAID 1 
  Increased reliability compared to RAID 0 
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RAID Capacity 

  Assume disks with capacity 1 TByte 
  RAID 0: N disks = N TByte 
  RAID 1: N disks = 1 TByte 
  RAID 5: N disks = (N-1) TByte 
  RAID 6: N disks = (N-M) TByte 
  ... 
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Storage of Values 

  Basic unit of storage: Byte 
  Integer: 4 bytes      

Example: 42 is  

  Real: n bits for mantissa, m for exponent 
  Characters: ASCII, UTF8, ... 
  Boolean:    and 
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8 
bits 

00000000 00000000 00000000 00101010 

00000000 11111111 



Storage of Values 

  Dates: 
  Days since January 1, 1900 
  DDMMYYYY (not DDMMYY) 

  Time: 
  Seconds since midnight 
  HHMMSS 

  Strings: 
  Null terminated 
  Length given 
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DBMS Storage Overview 
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Values 

Records 

Blocks 

Files 

Memory 



Record 

  Collection of related data items (called 
Fields) 

  Typically used to store one tuple 
  Example: Sells record consisting of 

  bar field 
  beer field 
  price field 
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Record Metadata 

  For fixed-length records, schema 
contains the following information: 
  Number of fields 
  Type of each field 
 Order in record 

  For variable-length records, every 
record contains this information in its 
header 
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Record Header 

  Reserved part at the beginning of a 
record 

  Typically contains: 
  Record type (which Schema?) 
  Record length (for skipping) 
  Time stamp (last access) 
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Files 

  Files consist of blocks containing records 
  How to place records into blocks? 
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assume fixed 
length blocks 

assume a single file 



Files 

  Options for storing records in blocks: 
1.  Separating records 
2.  Spanned vs. unspanned 
3.  Sequencing 
4.  Indirection 
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1. Separating Records 

Block 

a.  no need to separate - fixed size recs. 
b.  special marker 
c.  give record lengths (or offsets) 

i.  within each record 
ii.  in block header 
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R2 R1 R3 



2. Spanned vs Unspanned 

  Unspanned: records must be in one block 

  Spanned: one record in two or more blocks 

  Unspanned much simpler, but wastes space 
  Spanned essential if record size > block size 
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R1 R2 R3 R4 R5 

R1 R2 R3 
(a) 

R3 
(b) R6 R5 R4 R7 

(a) 



3. Sequencing 

  Ordering records in a file (and in the blocks) 
by some key value 

  Can be used for binary search 
  Options: 

a.  Next record is physically contiguous 

b.  Records are linked 
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Next (R1) R1 ... 

R1 Next (R1) 



4. Indirection 
  How does one refer to records? 

a.  Physical address (disk id, cylinder, head, 
sector, offset in block) 

b.  Logical record ids and a mapping table 

  Tradeoff between flexibility and cost 
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Physical 
addr. Rec ID 

Indirection map 

17 2:34:5:742:2340 



Modification of Records 

How to handle the following operations 
on the record level? 
1.  Insertion 
2.  Deletion 
3.  Update 
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1. Insertion 

  Easy case: records not in sequence 
  Insert new record at end of file 
  If records are fixed-length, insert new 

record in deleted slot 

  Difficult case: records are sorted 
  Find position and slide following records 
  If records are sequenced by linking, insert 

overflow blocks 
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2. Deletion 

a.  Immediately reclaim space by shifting 
other records or removing overflows 

b.  Mark deleted and list as free for re-use 
  Tradeoffs: 

  How expensive is immediate reclaim? 
  How much space is wasted? 

62 



Problem with Deletion 
  Dangling pointers: 

  When using physical addresses: 

  When using logical addresses: 
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R1 ? 

Never reused May be reused 

ID LOC 

7788 

Never reuse 
ID 7788 nor 
space in the map 


