
1

Example: Associative Arrays

  An environment can be expressed as an
associative array, e.g.:

$myEnv = array(

 ”phptype” => ”pgsql”,
 ”hostspec” => ”localhost”,
 ”port” => ”5432”,
 ”database” => ”petersk09”,

 ”username” => ”petersk09”,
 ”password” => ”geheim”);

Function connect
in the DB library

2

Making a Connection

  With the DB library imported and the
array $myEnv available:

$myCon = DB::connect($myEnv);

Class is Connection
because it is returned
by DB::connect()

3

Executing SQL Statements

  Method query applies to a Connection
object

  It takes a string argument and returns a
result
  Could be an error code or the relation

returned by a query

Concatenation
in PHP

Remember this
variable is replaced
by its value.

Method
application

4

Example: Executing a Query

  Find all the bars that sell a beer given
by the variable $beer

$beer = ’Od.Cl.’;
$result = $myCon->query(
 ”SELECT bar FROM Sells” .
 ”WHERE beer = ’$beer’;”);

5

Cursors in PHP

  The result of a query is the tuples
returned

  Method fetchRow applies to the result
and returns the next tuple, or FALSE if
there is none

6

Example: Cursors

while ($bar = $result->fetchRow())
{
 // do something with $bar

}

7

Example: Tuple Cursors

$bar = “C.Ch.“;
$menu = $myCon->query(
“SELECT beer, price FROM Sells
WHERE bar = ‘$bar‘;“);

while ($bp = $result->fetchRow())
{
 print $bp[0] . “ for “ . $bp[1];

}

8

An Aside: SQL Injection

  SQL queries are often constructed by
programs

  These queries may take constants from
user input

  Careless code can allow rather
unexpected queries to be constructed
and executed

9

Example: SQL Injection

  Relation Accounts(name, passwd, acct)
  Web interface: get name and password from

user, store in strings n and p, issue query,
display account number

$result = $myCon->query(
“SELECT acct FROM Accounts WHERE
name = ‘$n’ AND passwd = ‘$p’;”);

10

User (Who Is Not Bill Gates) Types

Name:

Password:

Your account number is 1234-567

gates’ --

who cares?

Comment
in PostgreSQL

All treated as a comment

11

The Query Executed

SELECT acct FROM Accounts
WHERE name = ’gates’ --’ AND
 passwd = ’who cares?’

Summary 8

More things you should know:
  Stored Procedures, PL/pgsql
  Declarations, Statements, Loops,
  Cursors, Tuple Variables
  Three-Tier Approach, JDBC, PHP/DB

12

13

Database Implementation

Database Implementation

Isn‘t implementing a database system easy?
  Store relations
  Parse statements
  Print results
  Change relations

14

15

Introducing the

Database Management System

•  The latest from DanLabs
•  Incorporates latest relational technology
•  Linux compatible

16

DanDB 3000
Implementation Details

  Relations stored in files (ASCII)
  Relation R is in /var/db/R
  Example:

Peter # Erd.We.
Lars # Od.Cl. . . .

17

DanDB 3000
Implementation Details

  Directory file (ASCII) in /var/db/directory
  For relation R(A,B) with A of type

VARCHAR(n) and B of type integer:
R # A # STR # B # INT

  Example:

Favorite # drinker # STR # beer # STR
Sells # bar # STR # beer # STR # ...

. . .

18

DanDB 3000
Sample Sessions

% dandbsql
 Welcome to DanDB 3000!
>

> quit
%

. . .

19

DanDB 3000
Sample Sessions

> SELECT *
 FROM Favorite;

 drinker # beer
 ##################
 Peter # Erd.We.
 Lars # Od.Cl.
 (2 rows)

>

20

DanDB 3000
Sample Sessions

> SELECT drinker AS snob
 FROM Favorite, Sells
 WHERE Favorite.beer = Sells.beer
 AND price > 25;

 snob
 ######
 Peter
 (1 rows)

>

21

DanDB 3000
Sample Sessions

> CREATE TABLE expensive (bar TEXT);
> INSERT INTO expensive (SELECT bar
 FROM Sells
 WHERE price > 25);
>

Create table with expensive bars

22

DanDB 3000
Implementation Details

  To execute “SELECT * FROM R WHERE condition”:
1.  Read /var/db/dictionary, find line starting with “R #”
2.  Display rest of line
3.  Read /var/db/R file, for each line:

a.  Check condition
b.  If OK, display line

23

DanDB 3000
Implementation Details

  To execute “CREATE TABLE S (A1 t1, A2 t2);”:
1.  Map t1 and t2 to internal types T1 and T2
2.  Append new line “S # A1 # T1 # A2 # T2”

to /var/db/directory

  To execute “INSERT INTO S (SELECT * FROM R
 WHERE condition);”:
1.  Process select as before
2.  Instead of displaying, append lines to file /var/db/S

24

DanDB 3000
Implementation Details

  To execute “SELECT A,B FROM R,S WHERE condition;”:
1.  Read /var/db/dictionary to get schema for R and S
2.  Read /var/db/R file, for each line:

a.  Read /var/db/S file, for each line:
i.  Create join tuple
ii.  Check condition
iii.  Display if OK

25

DanDB 3000
Problems

  Tuple layout on disk
  Change string from ‘Od.Cl.’ to ‘Odense

Classic’ and we have to rewrite file
  ASCII storage is expensive
  Deletions are expensive

  Search expensive – no indexes!
  Cannot find tuple with given key quickly
  Always have to read full relation

26

DanDB 3000
Problems

  Brute force query processing
  Example:
SELECT * FROM R,S WHERE R.A=S.A
AND S.B > 1000;

  Do select first?
  Natural join more efficient?

  No concurrency control

27

DanDB 3000
Problems

  No reliability
  Can lose data
  Can leave operations half done

  No security
  File system insecure
  File system security is too coarse

  No application program interface (API)
  How to access the data from a real program?

28

DanDB 3000
Problems

  Cannot interact with other DBMSs
  Very limited support of SQL

  No constraint handling etc.
  No administration utilities, no web

frontend, no graphical user interface, ...
  Lousy salesmen!

Data Storage

29

Computer System

30

CPU

RAM SATA

Secondary
Storage

... ...

The Memory Hierarchy

Cache

RAM

Harddisk

Tape Robot
31

0.5/GB

1.5/GB

70/GB

a lot/MB 0.3 ns

2.5 ns

8.5 ms

minutes

co
st

latency

primary

secondary

tertiary

DBMS and Storage

  Databases typically too large to keep in
primary storage

  Tables typically kept in secondary
storage

  Large amounts of data that are only
accessed infrequently are stored in
tertiary storage

  Indexes and current tables cached in
primary storage

32

Harddisk

  N rotating magenetic platters
  2xN heads for reading and writing
  track, cylinder, sector, gap

33

…

Harddisk Access

  access time: how long does it take to
load a block from the harddisk?

  seek time: how long does it take to
move the heads to the right cylinder?

  rotational delay: how long does it take
until the head gets to the right sectors?

  transfer time: how long does it take to
read the block?

  access = seek + rotational + transfer
34

Seek Time

  average seek time = ½ time to move
head from outermost to innermost
cylinder

35

…

Rotational Delay

  average rotational delay = ½ rotation

36

head here

block to read

Transfer Time

  Transfer time = 1/n rotation when
there are n blocks on one track

37

from here

to here

Access Time

  Typical harddisk:
 Maximal seek time: 10 ms
  Rotational speed: 7200 rpm
  Block size: 4096 bytes
  Sectors (512 bytes) per track: 1600 (average)

  Average access time:
  Average seek time: 5 ms
  Average rotational delay: 60/7200/2 = 4.17 ms
  Average transfer time: 0.04 ms

38

9.21 ms

Random vs Sequential Access

  Random access of blocks:
1/0.00921s * 4096 byte = 0.42 Mbyte/s

  Sequential access of blocks:
120/s * 200 * 4096 byte = 94 Mbyte/s

  Performance of the DBMS dominated by
number of random accesses

39

On Disk Cache

40

CPU

RAM SATA

Secondary
Storage

... ...

cache

cache

Problems with Harddisks

  Even with caches, harddisk remains
bottleneck for DBMS performance

  Harddisks can fail:
  Intermittent failure
 Media decay
 Write failure
  Disk crash

  Handle intermittent failures by
rereading the block in question

41

Detecting Read Failures

  Use checksums to detect failures
  Simplest form is parity bit:

  0 if number of ones in the block is even
  1 if number of ones in the block is odd
  Detects all 1-bit failures
  Detects 50% of many-bit failures
  By using n bits, we can reduce the chance

of missing an error to 1/2^n

42

Disk Arrays

  Use more than one disk for higher
reliability and/or performance

  RAID (Redundant Arrays of
Independent Disks)

43

logically one disk

RAID 0

  Alternate blocks between two or more
disks (“Striping“)

  Increases performance both for writing
and reading

  No increase in reliability

44

0

Disk 1 2

1
2 3
4 5

Storing blocks 0-5
in the first three
blocks of disk 1 & 2

RAID 1

  Duplicate blocks on two or more disks
(“Mirroring“)

  Increases performance for reading
  Increases reliability significantly

45

0

Disk 1 2

0
1 1
2 2

Storing blocks 0-2
in the first three
blocks of disk 1 & 2

RAID 5

  Stripe blocks on n+1 disks where for each
block, one disk stores parity information

  More performant when writing than RAID 1
  Increased reliability compared to RAID 0

46

0

Disk 1 2 3

1
P 2
5 P

Storing blocks 0-5
in the first three
blocks of disk 1, 2 & 3

P
3
4

RAID Capacity

  Assume disks with capacity 1 TByte
  RAID 0: N disks = N TByte
  RAID 1: N disks = 1 TByte
  RAID 5: N disks = (N-1) TByte
  RAID 6: N disks = (N-M) TByte
  ...

47

Storage of Values

  Basic unit of storage: Byte
  Integer: 4 bytes

Example: 42 is

  Real: n bits for mantissa, m for exponent
  Characters: ASCII, UTF8, ...
  Boolean: and

48

8
bits

00000000 00000000 00000000 00101010

00000000 11111111

Storage of Values

  Dates:
  Days since January 1, 1900
  DDMMYYYY (not DDMMYY)

  Time:
  Seconds since midnight
  HHMMSS

  Strings:
  Null terminated
  Length given

49

L r a s

4 a L r s

DBMS Storage Overview

50

Values

Records

Blocks

Files

Memory

Record

  Collection of related data items (called
Fields)

  Typically used to store one tuple
  Example: Sells record consisting of

  bar field
  beer field
  price field

51

Record Metadata

  For fixed-length records, schema
contains the following information:
  Number of fields
  Type of each field
 Order in record

  For variable-length records, every
record contains this information in its
header

52

Record Header

  Reserved part at the beginning of a
record

  Typically contains:
  Record type (which Schema?)
  Record length (for skipping)
  Time stamp (last access)

53

Files

  Files consist of blocks containing records
  How to place records into blocks?

54

assume fixed
length blocks

assume a single file

Files

  Options for storing records in blocks:
1.  Separating records
2.  Spanned vs. unspanned
3.  Sequencing
4.  Indirection

55

1. Separating Records

Block

a.  no need to separate - fixed size recs.
b.  special marker
c.  give record lengths (or offsets)

i.  within each record
ii.  in block header

56

R2 R1 R3

2. Spanned vs Unspanned

  Unspanned: records must be in one block

  Spanned: one record in two or more blocks

  Unspanned much simpler, but wastes space
  Spanned essential if record size > block size

57

R1 R2 R3 R4 R5

R1 R2 R3
(a)

R3
(b) R6 R5 R4 R7

(a)

3. Sequencing

  Ordering records in a file (and in the blocks)
by some key value

  Can be used for binary search
  Options:

a.  Next record is physically contiguous

b.  Records are linked

58

Next (R1) R1 ...

R1 Next (R1)

4. Indirection
  How does one refer to records?

a.  Physical address (disk id, cylinder, head,
sector, offset in block)

b.  Logical record ids and a mapping table

  Tradeoff between flexibility and cost
59

Physical
addr. Rec ID

Indirection map

17 2:34:5:742:2340

Modification of Records

How to handle the following operations
on the record level?
1.  Insertion
2.  Deletion
3.  Update

60

1. Insertion

  Easy case: records not in sequence
  Insert new record at end of file
  If records are fixed-length, insert new

record in deleted slot

  Difficult case: records are sorted
  Find position and slide following records
  If records are sequenced by linking, insert

overflow blocks

61

2. Deletion

a.  Immediately reclaim space by shifting
other records or removing overflows

b.  Mark deleted and list as free for re-use
  Tradeoffs:

  How expensive is immediate reclaim?
  How much space is wasted?

62

Problem with Deletion
  Dangling pointers:

  When using physical addresses:

  When using logical addresses:

63

R1 ?

Never reused May be reused

ID LOC

7788

Never reuse
ID 7788 nor
space in the map

