
Hash Tables

1

Hash Table in Primary Storage

§  Main parameter B = number of buckets
§  Hash function h maps key to numbers

from 0 to B-1
§  Bucket array indexed from 0 to B-1
§  Each bucket contains exactly one value
§  Strategy for handling conflicts

2

Example: B = 4

§  Insert c (h(c) = 3)
§  Insert a (h(a) = 1)
§  Insert e (h(e) = 1)
§  Alternative 1:

§  Search for free bucket,
e.g. by Linear Probing

§  Alternative 2:
§  Add overflow bucket

3

. . .

0

1

2

3

Conflict!

a

c

e

e

Hash Function

§  Hash function should ensure hash values
are equally distributed

§  For integer key K, take h(K) = K modulo B
§  For string key, add up the numeric values

of the characters and compute the
remainder modulo B

§  For really good hash functions, see Donald
Knuth, The Art of Computer Programming:
Volume 3 – Sorting and Searching

4

Hash Table in Secondary Storage

§  Each bucket is a block containing f
key-pointer pairs

§  Conflict resolution by probing potentially
leads to a large number of I/Os

§  Thus, conflict resolution by adding
overflow buckets

§  Need to ensure we can directly access
bucket i given number i

5

Example: Insertion, B=4, f=2

§  Insert a
§  Insert b
§  Insert c
§  Insert d
§  Insert e
§  Insert g
§  Insert i

6

0

1

2

3

a

1

b

2

c

3

d

0

a
e

1

c
g

3

i

Efficiency

§  Very efficient if buckets use only one
block: one I/O per lookup

§  Space utilization is #keys in hash
divided by total #keys that fit

§  Try to keep between 50% and 80%:
§ < 50% wastes space
§ > 80% significant number of overflows

7

Dynamic Hashing

§  How to grow and shrink hash tables?
§  Alternative 1:

§  Use overflows and reorganizations

§  Alternative 2:
§  Use dynamic hashing
§  Extensible Hash Tables
§  Linear Hash Tables

8

Extensible Hash Tables

§  Hash function computes sequence of k
bits for each key
 k = 8

§  At any time, use only the first i bits
§  Introduce indirection by a pointer array
§  Pointer array grows and shrinks (size 2i)
§  Pointers may share data blocks (store

number of bits used for block in j) 9

00110101
i = 3

Example: k = 4, f = 2

10

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0111

1

Insertion

§  Find destination block B for key-pointer pair
§  If there is room, just insert it
§  Otherwise, let j denote the number of bits

used for block B
§  If j = i, increment i by 1:

§  Double the length of the bucket array to 2i+1

§  Adjust pointers such that for old bit strings w,
w0 and w1 point to the same bucket

§  Retry insertion

11

Insertion

§  If j < i, add a new block B‘:
§  Key-pointer pairs with (j+1)st bit = 0 stay in B
§  Key-pointer pairs with (j+1)st bit = 1 go to B‘
§  Set number of bits used to j+1 for B and B‘
§  Adjust pointers in bucket array such that if for

all w where previously w0 and w1 pointed to B,
now w1 points to B‘

§  Retry insertion

12

Example: Insert, k = 4, f = 2

§  Insert 1010

13

0001

1

1001
1100

1

0

1

i = 1

00

01

10

11

i = 2

1100

1 1100

2

1001

1 1001

2 1001
1010

2

Example: Insert, k = 4, f = 2

§  Insert 0111

14

0001

1 i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0111

1

Example: Insert, k = 4, f = 2

§  Insert 0000

15

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0111

1

0111

1

0001

1 0001

2

0111

2

0001
0000

2

Deletion

§  Find destination block B for key-pointer pair
§  Delete the key-pointer pair
§  If two blocks B referenced by w0 and w1

contain at most f keys, merge them,
decrease their j by 1, and adjust pointers

§  If there is no block with j = i, reduce the
pointer array to size 2i-1 and decrease i by 1

16

Example: Delete, k = 4, f = 2

§  Delete 0000

17

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0000

2

0111

2

0001

2 0001
0111

2 0001
0111

1

Example: Delete, k = 4, f = 2

§  Delete 0111

18

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0111

1 0001

1

Example: Delete, k = 4, f = 2

§  Delete 1010

19

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001

1

1001

2 1001
1100

2 1001
1100

1

Efficiency

§  As long as pointer array fits into
memory and hash function behaves
nicely, just need one I/O per lookup

§  Overflows can still happen if many key-
pointer pairs hash to the same bit string

§  Solve by adding overflow blocks

20

Extensible Hash Tables

§  Advantage:
§  Not too much waste of space
§  No full reorganizations needed

§  Disadvantages:
§  Doubling the pointer array is expensive
§  Performance degrades abruptly (now it fits,

next it does not)
§  For f = 2, k = 32, if there are 3 keys for

which the first 20 bits agree, we already
need a pointer array of size 1048576 21

Linear Hash Tables

§  Choose number of buckets n such that on
average between for example 50% and
80% of a block contain records (pmin = 0.5,
pmax = 0.8)

§  Bookkeep number of records r
§  Use ceiling(log2 n) lower bits for addressing
§  If the bit string used for addressing

corresponds to integer m and m≥n,
use m-2i-1 instead

22

Example: k = 4, f = 2

23

i = 1 i = 2

0001
1001

n = 4

0

1

2

0

1

2

3

1010

1100

0111

0101
 r = 6

Insertion

§  Find appropriate bucket (h(K) or h(K)-2i-1)
§  If there is room, insert the key-pointer pair
§  Otherwise, create an overflow block and

insert the key-pointer pair there
§  Increase r by 1; if r/n > pmax*f, add bucket:

§  If the binary representation of n is 1a2...ai,
split bucket 0a2...ai according to the i -th bit

§  Increase n by 1
§  If n > 2i, increase i by 1

24

Example: Insert, f = 2, pmax = 0.8

§  Insert 1010

25

1100

i = 1 i = 1

0001
1001

n = 2

r = 3

0

1

1100
1010

r = 4

Example: Insert, f = 2, pmax = 0.8

§  Attention: 4/2 > 1.6

26

i = 1 i = 1

0001
1001

n = 2

r = 3

0

1

1100
1010

r = 4

0

1

2

1100

1010

n = 3

i = 2

Example: Insert, f = 2, pmax = 0.8

§  Insert 0111

27

i = 1 i = 2

0001
1001

n = 3

r = 3

1100

r = 4

0

1

2 1010

r = 5
0111

Example: Insert, f = 2, pmax = 0.8

§  Attention: 5/3 > 1.6

28

i = 1 i = 2

0001
1001

n = 3

0

1

2

r = 5

0

1

2

3

1010

1100

n = 4

0111

0111

Example: Insert, f = 2, pmax = 0.8

§  Insert 0101

29

i = 1 i = 2

0001
1001

n = 4

r = 5

0

1

2

0

1

2

3

1010

1100

0111

0101
 r = 6

0111
0101 r = 6

Linear Hash Tables

§  Advantage:
§  Not too much waste of space
§  No full reorganizations needed
§  No indirections needed

§  Disadvantages:
§  Can still have overflow chains

30

B+Trees vs Hashing

§  Hashing good for given key values
§  Example:

SELECT * FROM Sells WHERE price = 20;
§  B+Trees and conventional indexes good

for range queries:
§  Example:

SELECT * FROM Sells WHERE price > 20;

31

Summary 11

More things you should know:
§  Hashing in Secondary Storage
§  Extensible Hashing
§  Linear Hashing

32

THE END

Important upcoming events
§  March 25: delivery of the final report
§  March 28: 24-hour take-home exam

33

