
1

Creating (Declaring) a Relation

§  Simplest form is:
 CREATE TABLE <name> (
 <list of elements>
);

§  To delete a relation:
 DROP TABLE <name>;

2

Elements of Table Declarations

§  Most basic element:
an attribute and its type

§  The most common types are:
§  INT or INTEGER (synonyms)
§  REAL or FLOAT (synonyms)
§  CHAR(n) = fixed-length string of n

characters
§  VARCHAR(n) = variable-length string of up

to n characters

3

Example: Create Table

 CREATE TABLE Sells (
 bar CHAR(20),

 beer VARCHAR(20),

 price REAL

);

4

SQL Values

§  Integers and reals are represented as
you would expect

§  Strings are too, except they require
single quotes
§  Two single quotes = real quote, e.g.,
’Trader Joe’’s Hofbrau Bock’

§  Any value can be NULL
§  (like Objects in Java)

5

Dates and Times

§  DATE and TIME are types in SQL
§  The form of a date value is:
 DATE ’yyyy-mm-dd’
§  Example: DATE ’2009-02-04’ for

February 4, 2009

6

Times as Values

§  The form of a time value is:
 TIME ’hh:mm:ss’

 with an optional decimal point and
fractions of a second following
§  Example: TIME ’15:30:02.5’ = two

and a half seconds after 15:30

7

Declaring Keys

§  An attribute or list of attributes may be
declared PRIMARY KEY or UNIQUE

§  Either says that no two tuples of the
relation may agree in all the attribute(s)
on the list

§  There are a few distinctions to be
mentioned later

8

Declaring Single-Attribute Keys

§  Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute

§  Example:
 CREATE TABLE Beers (
 name CHAR(20) UNIQUE,

 manf CHAR(20)

);

9

Declaring Multiattribute Keys

§  A key declaration can also be another
element in the list of elements of a
CREATE TABLE statement

§  This form is essential if the key consists
of more than one attribute
§ May be used even for one-attribute keys

10

Example: Multiattribute Key

§  The bar and beer together are the key for Sells:
 CREATE TABLE Sells (
 bar CHAR(20),

 beer VARCHAR(20),

 price REAL,

 PRIMARY KEY (bar, beer)

);

11

PRIMARY KEY vs. UNIQUE

1.  There can be only one PRIMARY KEY
for a relation, but several UNIQUE
attributes

2.  No attribute of a PRIMARY KEY can
ever be NULL in any tuple. But
attributes declared UNIQUE may have
NULL’s, and there may be several
tuples with NULL

12

Changing a Relation Schema

§  To delete an attribute:
 ALTER TABLE <name> DROP
<attribute>;

§  To add an attribute:
 ALTER TABLE <name> ADD <element>;
§  Examples:
 ALTER TABLE Beers ADD prize CHAR(10);
 ALTER TABLE Drinkers DROP phone;

13

Semistructured Data

§  Another data model, based on trees
§  Motivation: flexible representation of data
§  Motivation: sharing of documents among

systems and databases

14

Graphs of Semistructured Data

§  Nodes = objects
§  Labels on arcs (like attribute names)
§  Atomic values at leaf nodes (nodes with

no arcs out)
§  Flexibility: no restriction on:

§  Labels out of a node
§  Number of successors with a given label

15

Example: Data Graph

Odense
Classic

Albani

10th 2009

Rev. 53 Cafe
Chino

M’lob

beer beer
bar

manf manf

servedAt

name

name
name

addr

prize

year award

root

The bar object
For Cafe Chino

The beer object
For Odense Classic

Notice a
new kind
of data

16

XML

§  XML = Extensible Markup Language
§  While HTML uses tags for formatting

(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”)

§  Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents

17

XML Documents

§  Start the document with a declaration,
surrounded by <?xml … ?>

§  Typical:
<?xml version = “1.0” encoding
= “utf-8” ?>

§  Document consists of one root tag
surrounding nested tags

18

Tags

§  Tags, as in HTML, are normally
matched pairs, as <FOO> … </FOO>
§ Optional single tag <FOO/>

§  Tags may be nested arbitrarily
§  XML tags are case sensitive

<?xml version = “1.0” encoding = “utf-8” ?>
<BARS>

 <BAR><NAME>Cafe Chino</NAME>
 <BEER><NAME>Odense Classic</NAME>
 <PRICE>20</PRICE></BEER>
 <BEER><NAME>Erdinger Weißbier</NAME>
 <PRICE>35</PRICE></BEER>
 </BAR>
 <BAR> …

</BARS>

A BEER
subobject

19

Example: an XML Document

A NAME
subobject

20

Attributes

§  Like HTML, the opening tag in XML can
have attribute = value pairs

§  Attributes also allow linking among
elements (discussed later)

21

Bars, Using Attributes

<?xml version = “1.0” encoding = “utf-8” ?>
<BARS>

 <BAR name = “Cafe Chino”>
 <BEER name = “Odense Classic” price = 20 />
 <BEER name = “Erdinger Weißbier” price =
35 />
 </BAR>
 <BAR> …

</BARS>

Notice Beer elements
have only opening tags
with attributes.

name and
price are
attributes

22

DTD’s (Document Type Definitions)

§  A grammatical notation for describing
allowed use of tags.

§  Definition form:
<!DOCTYPE <root tag> [
 <!ELEMENT <name>(<components>)>
 . . . more elements . . .
]>

23

Example: DTD

<!DOCTYPE BARS [
 <!ELEMENT BARS (BAR*)>
 <!ELEMENT BAR (NAME, BEER+)>
 <!ELEMENT NAME (#PCDATA)>
 <!ELEMENT BEER (NAME, PRICE)>
 <!ELEMENT PRICE (#PCDATA)>

]>

A BARS object has
zero or more BAR’s
nested within.

A BAR has one
NAME and one
or more BEER
subobjects.

A BEER has a
NAME and a
PRICE.

NAME and PRICE
are HTML text.

24

Attributes

§  Opening tags in XML can have
attributes

§  In a DTD,
<!ATTLIST E . . . >
 declares an attribute for element E,
along with its datatype

25

Example: Attributes

<!ELEMENT BEER EMPTY>
 <!ATTLIST name CDATA #REQUIRED,

 manf CDATA #IMPLIED>

No closing
tag or
subelements

Character
string

Required = “must occur”;
Implied = “optional

Example use:
<BEER name=“Odense Classic” />

Summary 1

Things you should know now:
§  Basic ideas about databases and DBMSs
§  What is a data model?
§  Idea and Details of the relational model
§  SQL as a data definition language

Things given as background:
§  History of database systems
§  Semistructured data model 26

Relational Algebra

27

28

What is an “Algebra”

§  Mathematical system consisting of:
§ Operands – variables or values from which

new values can be constructed
§ Operators – symbols denoting procedures

that construct new values from given
values

§  Example:
§  Integers ..., -1, 0, 1, ... as operands
§  Arithmetic operations +/- as operators

29

What is Relational Algebra?

§  An algebra whose operands are
relations or variables that represent
relations

§  Operators are designed to do the most
common things that we need to do with
relations in a database
§  The result is an algebra that can be used

as a query language for relations

30

Core Relational Algebra

§  Union, intersection, and difference
§  Usual set operations, but both operands

must have the same relation schema
§  Selection: picking certain rows
§  Projection: picking certain columns
§  Products and joins: compositions of

relations
§  Renaming of relations and attributes

31

Selection

§  R1 := σC (R2)
§  C is a condition (as in “if” statements)

that refers to attributes of R2

§  R1 is all those tuples of R2 that satisfy C

32

Example: Selection

Relation Sells:
 bar beer price
 Cafe Chino Od. Cla. 20
 Cafe Chino Erd. Wei. 35
 Cafe Bio Od. Cla. 20
 Bryggeriet Pilsener 31

ChinoMenu := σbar=“Cafe Chino”(Sells):

 bar beer price
 Cafe Chino Od. Cla. 20
 Cafe Chino Erd. Wei. 35

33

Projection

§  R1 := πL (R2)
§  L is a list of attributes from the schema of R2

§  R1 is constructed by looking at each tuple of R2,
extracting the attributes on list L, in the order
specified, and creating from those components
a tuple for R1

§  Eliminate duplicate tuples, if any

34

Example: Projection

Relation Sells:
 bar beer price
 Cafe Chino Od. Cla. 20
 Cafe Chino Erd. Wei. 35
 Cafe Bio Od. Cla. 20
 Bryggeriet Pilsener 31

Prices := πbeer,price(Sells):

 beer price
 Od. Cla. 20
 Erd. Wei. 35
 Pilsener 31

35

Extended Projection

§  Using the same πL operator, we allow
the list L to contain arbitrary
expressions involving attributes:

1.  Arithmetic on attributes, e.g., A+B->C
2.  Duplicate occurrences of the same

attribute

36

Example: Extended Projection

R = (A B)
 1 2
 3 4

πA+B->C,A,A (R) = C A1 A2
 3 1 1
 7 3 3

37

Product

§  R3 := R1 Χ R2

§  Pair each tuple t1 of R1 with each tuple t2 of R2
§  Concatenation t1t2 is a tuple of R3

§  Schema of R3 is the attributes of R1 and then
R2, in order

§  But beware attribute A of the same name in R1
and R2: use R1.A and R2.A

38

Example: R3 := R1 Χ R2

 R1(A, B)
 1 2
 3 4

 R2(B, C)

 5 6
 7 8
 9 10

 R3(A, R1.B, R2.B, C)
 1 2 5 6
 1 2 7 8
 1 2 9 10
 3 4 5 6
 3 4 7 8
 3 4 9 10

39

Theta-Join

§  R3 := R1 ⋈C R2
§  Take the product R1 Χ R2

§  Then apply σC to the result

§  As for σ, C can be any boolean-valued
condition
§  Historic versions of this operator allowed

only A θ B, where θ is =, <, etc.; hence
the name “theta-join”

40

Example: Theta Join

Sells(bar, beer, price) Bars(name, addr)
 C.Ch. Od.C. 20 C.Ch. Reventlo.
 C.Ch. Er.W. 35 C.Bi. Brandts
 C.Bi. Od.C. 20 Bryg. Flakhaven
 Bryg. Pils. 31

 BarInfo := Sells ⋈Sells.bar = Bars.name Bars

 BarInfo(bar, beer, price, name, addr)
 C.Ch. Od.C. 20 C.Ch. Reventlo.
 C.Ch. Er.W. 35 C.Ch. Reventlo.
 C.Bi. Od.C. 20 C.Bi. Brandts
 Bryg. Pils. 31 Bryg. Flakhaven

41

Natural Join

§  A useful join variant (natural join)
connects two relations by:
§  Equating attributes of the same name, and
§  Projecting out one copy of each pair of

equated attributes

§  Denoted R3 := R1 ⋈ R2

42

Example: Natural Join
Sells(bar, beer, price) Bars(bar, addr)

 C.Ch. Od.Cl. 20 C.Ch. Reventlo.
 C.Ch. Er.We. 35 C.Bi. Brandts
 C.Bi. Od.Cl. 20 Bryg. Flakhaven
 Bryg. Pils. 31

 BarInfo := Sells ⋈ Bars
Note: Bars.name has become Bars.bar

 to make the natural join “work”

 BarInfo(bar, beer, price, addr)
 C.Ch. Od.Cl. 20 Reventlo.
 C.Ch. Er.We. 35 Reventlo.
 C.Bi. Od.Cl. 20 Brandts
 Bryg. Pils. 31 Flakhaven

43

Renaming

§  The ρ operator gives a new schema to a
relation

§  R1 := ρR1(A1,…,An)(R2) makes R1 be a
relation with attributes A1,…,An and the
same tuples as R2

§  Simplified notation: R1(A1,…,An) := R2

44

Example: Renaming

Bars(name, addr)
 C.Ch. Reventlo.
 C.Bi. Brandts
 Bryg. Flakhaven

 R(bar, addr)
 C.Ch. Reventlo.
 C.Bi. Brandts
 Bryg. Flakhaven

R(bar, addr) := Bars

45

Building Complex Expressions

§  Combine operators with parentheses
and precedence rules

§  Three notations, just as in arithmetic:
1.  Sequences of assignment statements
2.  Expressions with several operators
3.  Expression trees

46

Sequences of Assignments

§  Create temporary relation names
§  Renaming can be implied by giving

relations a list of attributes

§  Example: R3 := R1 ⋈C R2 can be
written:
R4 := R1 Χ R2

R3 := σC (R4)

47

Expressions in a Single Assignment

§  Example: the theta-join R3 := R1 ⋈C R2
can be written: R3 := σC (R1 Χ R2)

§  Precedence of relational operators:
1.  [σ, π, ρ] (highest)

2.  [Χ, ⋈]
3. ∩
4.  [∪, —]

48

Expression Trees

§  Leaves are operands – either variables
standing for relations or particular,
constant relations

§  Interior nodes are operators, applied to
their child or children

49

Example: Tree for a Query

§  Using the relations Bars(name, addr)
and Sells(bar, beer, price), find the
names of all the bars that are either at
Brandts or sell Pilsener for less than 35:

50

As a Tree:

Bars Sells

σaddr = “Brandts” σprice<35 AND beer=“Pilsener”

πname

ρR(name)

πbar

∪

51

Example: Self-Join

§  Using Sells(bar, beer, price), find the bars
that sell two different beers at the same
price

§  Strategy: by renaming, define a copy of
Sells, called S(bar, beer1, price). The
natural join of Sells and S consists of
quadruples (bar, beer, beer1, price) such
that the bar sells both beers at this price

52

The Tree

Sells Sells

ρS(bar, beer1, price)

⋈

πbar

σbeer != beer1

53

Schemas for Results

§  Union, intersection, and difference: the
schemas of the two operands must be
the same, so use that schema for the
result

§  Selection: schema of the result is the
same as the schema of the operand

§  Projection: list of attributes tells us the
schema

54

Schemas for Results

§  Product: schema is the attributes of both
relations
§  Use R1.A and R2.A, etc., to distinguish two

attributes named A

§  Theta-join: same as product
§  Natural join: union of the attributes of the

two relations
§  Renaming: the operator tells the schema

55

Relational Algebra on Bags

§  A bag (or multiset) is like a set, but an
element may appear more than once

§  Example: {1,2,1,3} is a bag
§  Example: {1,2,3} is also a bag that

happens to be a set

56

Why Bags?

§  SQL, the most important query
language for relational databases, is
actually a bag language

§  Some operations, like projection, are
more efficient on bags than sets

57

Operations on Bags

§  Selection applies to each tuple, so its
effect on bags is like its effect on sets.

§  Projection also applies to each tuple,
but as a bag operator, we do not
eliminate duplicates.

§  Products and joins are done on each
pair of tuples, so duplicates in bags
have no effect on how we operate.

58

Example: Bag Selection

R(A, B)
 1 2
 5 6
 1 2

 σA+B < 5 (R) = A B
 1 2
 1 2

59

Example: Bag Projection

R(A, B)
 1 2
 5 6
 1 2

 πA (R) = A
 1
 5
 1

60

Example: Bag Product

R(A, B) S(B, C)
 1 2 3 4
 5 6 7 8
 1 2

R Χ S = A R.B S.B C
 1 2 3 4
 1 2 7 8
 5 6 3 4
 5 6 7 8
 1 2 3 4
 1 2 7 8

61

Example: Bag Theta-Join

R(A, B) S(B, C)
 1 2 3 4
 5 6 7 8
 1 2

R ⋈ R.B<S.B S = A R.B S.B C
 1 2 3 4
 1 2 7 8
 5 6 7 8
 1 2 3 4
 1 2 7 8

62

Bag Union

§  An element appears in the union of two
bags the sum of the number of times it
appears in each bag

§  Example: {1,2,1} ∪ {1,1,2,3,1} =
{1,1,1,1,1,2,2,3}

63

Bag Intersection

§  An element appears in the intersection
of two bags the minimum of the
number of times it appears in either.

§  Example:
{1,2,1,1} ∩ {1,2,1,3} = {1,1,2}.

64

Bag Difference

§  An element appears in the difference
A – B of bags as many times as it
appears in A, minus the number of
times it appears in B.
§  But never less than 0 times.

§  Example: {1,2,1,1} – {1,2,3} = {1,1}.

65

Beware: Bag Laws != Set Laws
§  Some, but not all algebraic laws that

hold for sets also hold for bags
§  Example: the commutative law for

union (R ∪S = S ∪R) does hold for
bags
§  Since addition is commutative, adding the

number of times x appears in R and S
does not depend on the order of R and S

66

Example: A Law That Fails

§  Set union is idempotent, meaning that
S ∪S = S

§  However, for bags, if x appears n times
in S, then it appears 2n times in
S ∪S

§  Thus S ∪S != S in general
§  e.g., {1} ∪ {1} = {1,1} != {1}

Summary 2

More things you should know:
§  Relational Algebra
§  Selection, (Extended) Projection,

Product, Join, Natural Join, Renaming
§  Complex Operations as Sequences,

Expressions, or Trees
§  Difference between Sets and Bags

67

Basic SQL Queries

68

69

Why SQL?

§  SQL is a very-high-level language
§  Say “what to do” rather than “how to do it”
§  Avoid a lot of data-manipulation details

needed in procedural languages like C++ or
Java

§  Database management system figures
out “best” way to execute query
§  Called “query optimization”

70

Select-From-Where Statements
 SELECT desired attributes
 FROM one or more tables
 WHERE condition about tuples of
 the tables

71

Our Running Example

§  All our SQL queries will be based on the
following database schema.
§  Underline indicates key attributes.

 Beers(name, manf)
 Bars(name, addr, license)
 Drinkers(name, addr, phone)
 Likes(drinker, beer)
 Sells(bar, beer, price)
 Frequents(drinker, bar)

72

Example

§  Using Beers(name, manf), what beers are
made by Albani Bryggerierne?
 SELECT name
 FROM Beers

 WHERE manf = ’Albani’;

73

Result of Query

 name
 Od. Cl.
 Eventyr
 Blålys
 . . .

The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Albani Bryggerierne, such as Odense Classic.

74

Meaning of Single-Relation Query
§  Begin with the relation in the FROM

clause
§  Apply the selection indicated by the

WHERE clause
§  Apply the extended projection indicated

by the SELECT clause

75

Operational Semantics

Check if
Albani

name manf

Blålys Albani Include t.name
in the result, if so

Tuple-variable t
loops over all
tuples

76

Operational Semantics – General

§  Think of a tuple variable visiting each
tuple of the relation mentioned in FROM

§  Check if the “current” tuple satisfies the
WHERE clause

§  If so, compute the attributes or
expressions of the SELECT clause using
the components of this tuple

77

* In SELECT clauses

§  When there is one relation in the FROM
clause, * in the SELECT clause stands for
“all attributes of this relation”

§  Example: Using Beers(name, manf):
 SELECT *
 FROM Beers

 WHERE manf = ’Albani’;

78

Result of Query:

 name manf
 Od.Cl. Albani
 Eventyr Albani
 Blålys Albani

Now, the result has each of the attributes
of Beers

