DM 509 Programming Languages

Spring 2012 Re-exam Project

Department of Mathematics and Computer Science
University of Southern Denmark

May 14, 2012

Introduction

The purpose of the project for DM509 is to try in practice the use of logic
and functional programming for small but non-trivial examples. The project
consists of two parts. The first deals with logic programming and the second
part with functional programming. Please make sure to read this entire note
before starting your work on the project. Pay close attention to the sections
on deadlines, deliverables, and exam rules.

Exam Rules

This project is the 4th quarter re-exam for the course.
Thus, the project must be done individually, and no cooperation is al-
lowed beyond what is explicitly stated in this document.

Deliverables

A short project report (at least 6 pages without front page and appendix) has
to be delivered. This report has to contain the following 7 sections (either
twice for each part or covering both parts at once):

e front page (course number, name, section, date of birth)
e specification (what the programs are supposed to do)

e design (how the programs were planned)

e implementation (how the programs were written)

e testing (what tests you performed)

e conclusion (how satisfying the results are)

e appendix (complete source code)
The report has to be delivered in TWO copies:
e 1 electronic copy using Blackboard’s Assignment Hand-In functionality

e 1 paper copy to the teacher’s mailbox at the secretariat

Deadline
June 18, 2012, 12:00

Part 1

Your task in this part of the project is to write a solver for Kakuro puzzles.
Kakuro puzzles are a kind of crossword puzzles with numbers where the
following two conditions have to be met:

e In each consecutive row or column of empty fields, all numbers have to
be from the set {1,2,3,4,5,6,7,8,9} and they must all be different.

e For each consecutive row or column of empty fields, a number at the
to the left or above of the fields specifies the sum of all these numbers.

The following two figures show a Kakuro puzzle and its solution (taken from
Wikipedia, both graphics are under the GNU Free Documentation License).

23430 27 Q12 Q6 23430 27 Q12 Q6
. N v 97X 8|79
. PN \ 8(9X\8/9|5/7
N 12 68597

7 N \ 6[11¢2(6]5
b BN 46132
21 5 121931614
6 3 6 112 3911

The Input

For input to your program, the Kakuro puzzles are represented as Prolog
terms. More specifically, they are represented as matrices (lists of rows which
are lists of fields) where the fields can be one of the following four types:

e A frame block with no sum information (black in the graphics above)
is represented by the term x/x.

e A frame block with sum information for a row (black lower left, number
N in upper right) is represented by the term x/N, e.g., x/16 or x/24.

e A frame block with sum information for a column (number N in lower
left, black upper right) is represented by the term N/x, e.g., 23/x.

e An empty field is represented by just the term x.

Thus, for our example above we obtain the following Prolog term:

[[x/x , 23/x, 30/x , x/x , x/x , 27/x, 12/x, 16/x],

[x/16, x , X , x/x , 17/24, x , X , X],
[x/17, x , X , 15/29, x , X , X , X],
[x/35, x , X , X , X , X , 12/x, x/x 1,
[x/x , x/7 , x , X , 7/8 , x , X , 7/x 7,
[x/x , 11/x, 10/16, x , X , X , X , X],
[x/21, x , X , X , X , x/5 , x , X],
[x/6 , x , X , X , x/x , x/3 , x , x 1],

The home page of the course contains a number of possible inputs to test
your program on.

The Output

The output of your solver should also be a Prolog term. The representation
is similar to the one for the Input except for all x being replaced by the
appropriate number.

Thus, for our example above we obtain the following Prolog term:

[[x/x , 23/x, 30/x , x/x , x/x , 27/x, 12/x, 16/x],

[x/16, 9 , 7 , x/x , 17/24, 8 , 7 , 9 1,
[x/17, 8 , 9 , 15/29, 8 , 9 , 5 , 7 1,
[x/35, 6 , 8 , 5 , 9 , 7T, 12/x, x/x 1,
[x/x , x/7 , 6 , 1 ,7/8 , 2 ,6 ,7/x1],
[x/x , 11/x, 10/16, 4 , 6 , 1 , 3 ,2 1,
[x/21, 8 , 9 , 3 , 1 , x/5 , 1 , 4 1,
[x/6 , 3 ,1 , 2 , x/x ,x/3,2 ,1 1].
The Task

Implement a predicate solve/2 that takes an unsolved Kakuro puzzle as the
first argument and instantiates the second argument by its solved form.

Keep in mind, that there are many different ways how to implement such
a solve/2 predicate. Explain your approach, then implement it and produce
the final report.

The Foundations

There is a number of built-in predicates that you might find useful when
building a Kakuro solver:

var/1, which is true if the argument is an (uninstantiated) variable

fd_var/1, which is true if the argument is an (uninstantiated) con-
straint variable

number/1, which is true if the argument is an integer or a floating point
number

read/1, write/1, and n1/0 for input and output

fd domain/3, fd all different/1, fd labeling/1, and #= for con-
straint solving

To make life easier for you, I have also defined some predicates for outputting
Kakuro puzzles (show/1, works both on puzzles in input and in output form)
and for converting Kakuro puzzles in a different notation to our representa-
tion (convert/2, works when the first argument is a term as used in the
additional examples linked from the course home page).

Finally, there is a template available from the course home page for calling
your solve/2 predicate (see next section) using the predicate kakuro/O0.

Example Output

The printed output when posing the query ?- kakuro. and inputting the
input from above could be:

Please enter puzzle as matrix:
[[x/x , 23/x, 30/x , x/x , x/x , 27/x, 12/x, 16/x],

[x/16, x , x , x/x , 17/24, x ,x ,x 1],
[x/17, x , X , 156/29, x , X , X , x 1,
[x/35, x , X , X , X , X , 12/x, x/x 17,
[x/x , x/7 , x , X , 7/8 , x , X , 7/x 1,
[x/x , 11/x, 10/16, x , X , X , X , X 1,
[x/21, x , X , X , X , x/5 , x ,x],
[x/6 , x , X , X , x/x , x/3 , X , x1].

et e St et e Tt s

12/x | 16/x

23/x | 30/x | x/x | x/x | 27/x

| x /x

e e St et S s

| x /16

| 17/24 |

| x /x

e s Sttt et S

| x /17 |

15/29 |

e s ettt ettt S

| x /x

12/x

e e e B B et ST

| x /35 |

| 7 /x

| 7 /8

| x /7

| x /x

e e L s s S g

| 11/x | 10/16 |

| x /x

e e St e s et e

| x /21

| x /5

e e e et S 4

| x /6

| x /3

| x /x

s S e atatatat ST R e

DONE

. DONE
e s et e et S

Setting up constraints ...
Solving constraints

| 12/x | 16/x

27/x

23/x | 30/x | x/x | x /x |

| x /x

e e B i i et B

| x /16

9

7

| 17/24 | 8

| x /x

7

9

e St e e e S Tttt

| x /17 | 8

7

5

8

15/29 |

9

s e e ettt L

| x /35 |

| x /x

12/x

7

8

6

e s Sttt B e et

| 7 /x

6

2

| 7 /8

| x /7
et e R S s matala e e

| x /x

2

3

4

| 11/x | 10/16 |

| x /x

et I e B

| x /21

4

8

et e St et B e

| x /6

2

| x /3

| x /x

et e et ettt LT B

yes

Part 2

Your task in this part of the project is to work with a data structure for repre-
senting polynomial fractions, i.e., expressions built from variables, constants,
addition, subtraction, multiplication, and division.

The data structure is defined in the following way:

data Operator = Add | Sub | Mul | Div
data Poly = C Float | V String | Op Poly Operator Poly

Using this data structure, we can for example represent the polynomial
4 — x + 3x? by the following expression:

Op (Op (C 4) Sub (V "x")) Add (Op (C 3) Mul (Op (V "x") Mul (V "x")))

There is a template available from the course home page that defines this
data structure and binds this expression to the variable testpoly.

This template also contains an incomplete definition of a function for
evaluating variable-free polynomial fractions:

eval :: Poly -> Float

eval (Op pl o p2) = interpret o vall val2 where
vall = eval pl
val2 = eval p2

The Tasks

Implement the following operations on polynomial fractions by implement-

ing the following functions (and any auxiliary functions you might consider
needed):

1. Implement the function interpret used in eval above to complete
the definition of our evaluation function. Use the form given in the
template.

2. Define a function derive :: String -> Poly -> Poly which com-
putes the (symbolic) derivation of a polynomial fraction with respect
to a given variable identified by its name. For example, the expression
derive "x" testpoly should return a polynomial which corresponds
to -1 + 6x.

3. Define a function simplify :: Poly -> Poly to simplify polynomial
fractions. You can use rules like 0 +x = x and 0 x x = 0 as well as
the function eval. For example, simplify (derive "x" testpoly)
should return a result at least as simple as —1 + 3 * (z +). And
simplify (Op (V "x") Div (C 1.0)) should evaluate to V "x".

4. Define a data type Substitution that maps some variables to con-
stant values. Then define a function of the type instantiate ::
Substitution -> Poly -> Poly that takes a polynomial fraction and
instantiates all variables mentioned in the substitution by the corre-
sponding constant. After instantiating the variables, the resulting ex-
pression should be simplified. For example, if you call instantiate on
testpoly with a substitution that maps x to 1.0, the result should be
C 6.0.

Hint: By removing deriving Show behind the definitions of Operator and
Poly and uncommenting the show declarations at the bottom of the template,
you can view the polynomials in a more human-readable format.

