
DM519 Concurrent Programming

Chapter 3 Concurrent Execution

1
1

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

2
2

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

uConcepts:

2
2

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

uConcepts:

lWe adopt a model-based approach for the design and

construction of concurrent programs

2
2

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

uConcepts:

lWe adopt a model-based approach for the design and

construction of concurrent programs

u Safe model => safe program

2
2

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

uConcepts:

lWe adopt a model-based approach for the design and

construction of concurrent programs

u Safe model => safe program

uModels:

2
2

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

uConcepts:

lWe adopt a model-based approach for the design and

construction of concurrent programs

u Safe model => safe program

uModels:

lWe use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

2
2

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

uConcepts:

lWe adopt a model-based approach for the design and

construction of concurrent programs

u Safe model => safe program

uModels:

lWe use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

uPractice:

2
2

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

uConcepts:

lWe adopt a model-based approach for the design and

construction of concurrent programs

u Safe model => safe program

uModels:

lWe use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

uPractice:

lWe use Java for constructing concurrent programs
2

2

DM519 Concurrent Programming

Repetition (Models; LTS, FSP)

3
3

DM519 Concurrent Programming

Repetition (Models; LTS, FSP)

Model = simplified representation of the real world

3
3

DM519 Concurrent Programming

Repetition (Models; LTS, FSP)

Model = simplified representation of the real world

uBased on Labelled Transition Systems (LTS):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

3
3

DM519 Concurrent Programming

Repetition (Models; LTS, FSP)

Model = simplified representation of the real world

uBased on Labelled Transition Systems (LTS):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

3
3

DM519 Concurrent Programming

Repetition (Models; LTS, FSP)

Model = simplified representation of the real world

uBased on Labelled Transition Systems (LTS):

uDescribed textually as Finite State Processes

(FSP):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

3
3

DM519 Concurrent Programming

Repetition (Models; LTS, FSP)

Model = simplified representation of the real world

uBased on Labelled Transition Systems (LTS):

uDescribed textually as Finite State Processes

(FSP): EngineOff = (engineOn -> EngineOn),
EngineOn = (engineOff -> EngineOff
 |speed -> EngineOn).

Focuses on concurrency aspects (of the program)
- everything else abstracted away

3
3

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice
 : P +{ … } // alphabet extension

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice
 : P +{ … } // alphabet extension
 : X // process variable

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice
 : P +{ … } // alphabet extension
 : X // process variable

♦ action indexing x[i:1..N] -> P or x[i] -> P

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice
 : P +{ … } // alphabet extension
 : X // process variable

♦ action indexing x[i:1..N] -> P or x[i] -> P

♦ process parameters P(N=3) = …

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice
 : P +{ … } // alphabet extension
 : X // process variable

♦ action indexing x[i:1..N] -> P or x[i] -> P

♦ process parameters P(N=3) = …

♦ constant definitions const N = 3

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice
 : P +{ … } // alphabet extension
 : X // process variable

♦ action indexing x[i:1..N] -> P or x[i] -> P

♦ process parameters P(N=3) = …

♦ constant definitions const N = 3

♦ range definitions range R = 0..N

4
4

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice
 : P +{ … } // alphabet extension
 : X // process variable

♦ action indexing x[i:1..N] -> P or x[i] -> P

♦ process parameters P(N=3) = …

♦ constant definitions const N = 3

♦ range definitions range R = 0..N
Which constructions do not add expressive power?
(and are thus only "syntactic sugar").

4
4

DM519 Concurrent Programming

Repetition (Java Threads)

Subclassing java.lang.Thread:

Implementing java.lang.Runnable:

5
5

DM519 Concurrent Programming

Repetition (Java Threads)

Subclassing java.lang.Thread:

Implementing java.lang.Runnable:

class MyThread extends Thread {
 public void run() {
 // ...
 }
} Thread t = new MyThread();

t.start();
// ...

5
5

DM519 Concurrent Programming

Repetition (Java Threads)

Subclassing java.lang.Thread:

Implementing java.lang.Runnable:

class MyThread extends Thread {
 public void run() {
 // ...
 }
}

class MyRun implements Runnable {
 public void run() {
 // ...
 }
}

Thread t = new MyThread();
t.start();
// ...

Thread t = new Thread(new MyRun());
t.start();
// ...

5
5

DM519 Concurrent Programming

Chapter 3: Concurrent Execution

6
6

DM519 Concurrent Programming

Chapter 3: Concurrent Execution

Concepts: processes - concurrent execution
 and interleaving

6
6

DM519 Concurrent Programming

Chapter 3: Concurrent Execution

Concepts: processes - concurrent execution
 and interleaving
 process interaction

6
6

DM519 Concurrent Programming

Chapter 3: Concurrent Execution

Concepts: processes - concurrent execution
 and interleaving
 process interaction

Models: parallel composition of asynchronous processes
 interleaving

6
6

DM519 Concurrent Programming

Chapter 3: Concurrent Execution

Concepts: processes - concurrent execution
 and interleaving
 process interaction

Models: parallel composition of asynchronous processes
 interleaving

 interaction - shared actions
 process labelling, and action relabelling and hiding

6
6

DM519 Concurrent Programming

Chapter 3: Concurrent Execution

Concepts: processes - concurrent execution
 and interleaving
 process interaction

Models: parallel composition of asynchronous processes
 interleaving

 interaction - shared actions
 process labelling, and action relabelling and hiding

 structure diagrams

6
6

DM519 Concurrent Programming

Chapter 3: Concurrent Execution

Concepts: processes - concurrent execution
 and interleaving
 process interaction

Models: parallel composition of asynchronous processes
 interleaving

 interaction - shared actions
 process labelling, and action relabelling and hiding

 structure diagrams

Practice: Multithreaded Java programs

6
6

DM519 Concurrent Programming

Definition: Parallelism

7
7

DM519 Concurrent Programming

Definition: Parallelism

uParallelism (aka. Real/True Concurrent Execution)

7
7

DM519 Concurrent Programming

Definition: Parallelism

uParallelism (aka. Real/True Concurrent Execution)

lPhysically simultaneous processing

7
7

DM519 Concurrent Programming

Definition: Parallelism

uParallelism (aka. Real/True Concurrent Execution)

lPhysically simultaneous processing

uInvolves multiple processing elements (PEs)

and/or independent device operations

A

Time

B
C

7
7

DM519 Concurrent Programming

Definition: Concurrency

8
8

DM519 Concurrent Programming

Definition: Concurrency

uConcurrency (aka. Pseudo-Concurrent Execution)

lLogically simultaneous processing

uDoes not imply multiple processing elements (PEs)

8
8

DM519 Concurrent Programming

Definition: Concurrency

uConcurrency (aka. Pseudo-Concurrent Execution)

lLogically simultaneous processing

uDoes not imply multiple processing elements (PEs)

uRequires interleaved execution on a single PE

8
8

DM519 Concurrent Programming

Definition: Concurrency

A

Time

B
C

uConcurrency (aka. Pseudo-Concurrent Execution)

lLogically simultaneous processing

uDoes not imply multiple processing elements (PEs)

uRequires interleaved execution on a single PE

8
8

DM519 Concurrent Programming

Parallelism vs Concurrency

uParallelism uConcurrency

A

Time

B
C

A

Time

B
C

9
9

DM519 Concurrent Programming

Parallelism vs Concurrency

Both concurrency and parallelism require controlled access to shared
resources.

We use the terms parallel and concurrent interchangeably (and generally
do not distinguish between real and pseudo-concurrent execution).

Also, creating software independent of the physical setup, makes us
capable of deploying it on any platform.

uParallelism uConcurrency

A

Time

B
C

A

Time

B
C

9
9

DM519 Concurrent Programming

3.1 Modelling Concurrency

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?

x y

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?

x

Possible execution sequences?

y

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?

x

Possible execution sequences?

y

• x ; y

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?

x

Possible execution sequences?

y

• x ; y
• y ; x

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?

x

Possible execution sequences?

y

• x ; y
• y ; x
• x || y

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?

x

Possible execution sequences?

y

Asynchronous
model of execution

• x ; y
• y ; x
• x || y

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?

lArbitrary relative order of actions from different processes

(interleaving but preservation of each process order)

x

Possible execution sequences?

y

Asynchronous
model of execution

• x ; y
• y ; x
• x || y

10
10

DM519 Concurrent Programming

3.1 Modelling Concurrency

11
11

DM519 Concurrent Programming

3.1 Modelling Concurrency

u How should we model process execution speed?

a

b

x

y

11
11

DM519 Concurrent Programming

3.1 Modelling Concurrency

u How should we model process execution speed?

lWe choose to abstract away time:

a

b

x

y

11
11

DM519 Concurrent Programming

3.1 Modelling Concurrency

u How should we model process execution speed?

lWe choose to abstract away time:

uArbitrary speed!

a

b

x

y

11
11

DM519 Concurrent Programming

3.1 Modelling Concurrency

u How should we model process execution speed?

lWe choose to abstract away time:

uArbitrary speed!
-: we can say nothing of real-time properties

a

b

x

y

11
11

DM519 Concurrent Programming

3.1 Modelling Concurrency

u How should we model process execution speed?

lWe choose to abstract away time:

uArbitrary speed!

+: independent of architecture, processor speed,
 scheduling policies, …

-: we can say nothing of real-time properties

a

b

x

y

11
11

DM519 Concurrent Programming

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

12

Parallel Composition - Action Interleaving

12

DM519 Concurrent Programming

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP).

12

Parallel Composition - Action Interleaving

12

DM519 Concurrent Programming

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

12

Parallel Composition - Action Interleaving

12

DM519 Concurrent Programming

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

12

Parallel Composition - Action Interleaving

12

DM519 Concurrent Programming

Possible traces as
a result of action
interleaving?

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

12

Parallel Composition - Action Interleaving

12

DM519 Concurrent Programming

• scratchàthinkàtalkPossible traces as
a result of action
interleaving?

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

12

Parallel Composition - Action Interleaving

12

DM519 Concurrent Programming

• scratchàthinkàtalk
• thinkàscratchàtalk

Possible traces as
a result of action
interleaving?

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

12

Parallel Composition - Action Interleaving

12

DM519 Concurrent Programming

• scratchàthinkàtalk
• thinkàscratchàtalk
• thinkàtalkàscratch

Possible traces as
a result of action
interleaving?

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

12

Parallel Composition - Action Interleaving

12

DM519 Concurrent Programming

Parallel Composition - Action Interleaving

13
13

DM519 Concurrent Programming

Parallel Composition - Action Interleaving

Cartesian product?

13
13

DM519 Concurrent Programming

Parallel Composition - Action Interleaving

Cartesian product?

13
13

DM519 Concurrent Programming

Parallel Composition - Action Interleaving

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH

Cartesian product?

13
13

DM519 Concurrent Programming

Parallel Composition - Action Interleaving

2 states 3 states

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH
2 x 3 states

Cartesian product?

13
13

DM519 Concurrent Programming

Parallel Composition - Algebraic Laws

14
14

DM519 Concurrent Programming

Parallel Composition - Algebraic Laws

Commutative: (P||Q) = (Q||P)

14
14

DM519 Concurrent Programming

Parallel Composition - Algebraic Laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)

14
14

DM519 Concurrent Programming

Parallel Composition - Algebraic Laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)
 = (P||Q||R).

14
14

DM519 Concurrent Programming

Parallel Composition - Algebraic Laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)
 = (P||Q||R).

Small example:

14
14

DM519 Concurrent Programming

Parallel Composition - Algebraic Laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)
 = (P||Q||R).

Small example:

MALTHE = (climbTree->fall->MALTHE).
OSKAR = (run->jump->OSKAR).

||MALTHE_OSKAR = (MALTHE || OSKAR).

14
14

DM519 Concurrent Programming

Parallel Composition - Algebraic Laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)
 = (P||Q||R).

Small example:

MALTHE = (climbTree->fall->MALTHE).
OSKAR = (run->jump->OSKAR).

||MALTHE_OSKAR = (MALTHE || OSKAR).

LTS? Traces? Number of states?

14
14

DM519 Concurrent Programming

Modelling Interaction - Shared Actions

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

15
15

DM519 Concurrent Programming

Modelling Interaction - Shared Actions

If processes in a composition have actions in common, these
actions are said to be shared.
Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

uShared Actions:

15
15

DM519 Concurrent Programming

Modelling Interaction - Shared Actions

If processes in a composition have actions in common, these
actions are said to be shared.
Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

uShared Actions:

MAKE1
synchronises
with USE1 when
ready.

15
15

DM519 Concurrent Programming

Modelling Interaction - Shared Actions

If processes in a composition have actions in common, these
actions are said to be shared.
Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

uShared Actions:

MAKE1
synchronises
with USE1 when
ready.

LTS? Traces? Number of states?

15
15

DM519 Concurrent Programming

Modelling Interaction - Example

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

make ready

make

make

ready

ready

readyreadyready

use use use

16
16

DM519 Concurrent Programming

Modelling Interaction - Example

3 states
3 states

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

make ready

make

make

ready

ready

readyreadyready

use use use

16
16

DM519 Concurrent Programming

Modelling Interaction - Example

3 states
3 states

3 x 3 states?

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

make ready

make

make

ready

ready

readyreadyready

use use use

16
16

DM519 Concurrent Programming

Modelling Interaction - Example

3 states
3 states

3 x 3 states?

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

make ready

make

make

ready

ready

readyreadyready

use use use No…!

16
16

DM519 Concurrent Programming

Modelling Interaction - Example

3 states
3 states

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

make

ready

use

ready

make

make

ready

ready

readyreadyready

use use

17
17

DM519 Concurrent Programming

Modelling Interaction - Example

3 states
3 states

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

make

ready

use

Interaction
may constrain
the overall
behaviour !

4 states!

ready

make

make

ready

ready

readyreadyready

use use

17
17

DM519 Concurrent Programming

Example

P = (x -> y -> P).
Q = (y -> x -> Q).

||R = (P || Q).

18
18

DM519 Concurrent Programming

Example

P = (x -> y -> P).
Q = (y -> x -> Q).

||R = (P || Q).

2 states
2 states

18
18

DM519 Concurrent Programming

Example

P = (x -> y -> P).
Q = (y -> x -> Q).

||R = (P || Q).

LTS? Traces? Number of states?

2 states
2 states

18
18

DM519 Concurrent Programming

Example

P = (x -> y -> P).
Q = (y -> x -> Q).

||R = (P || Q).

LTS? Traces? Number of states?

2 states
2 states

18

P = (a -> P | b -> P).
Q = (c -> Q) + {a}.

||PQ = (P || Q).

18

DM519 Concurrent Programming

Example

P = (x -> y -> P).
Q = (y -> x -> Q).

||R = (P || Q).

LTS? Traces? Number of states?

2 states
2 states

18

P = (a -> P | b -> P).
Q = (c -> Q) + {a}.

||PQ = (P || Q).

LTS? Traces?

18

DM519 Concurrent Programming

Modelling Interaction - Example

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

19
19

DM519 Concurrent Programming

Modelling Interaction - Example

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

LTS? Traces?

19
19

DM519 Concurrent Programming

Modelling Interaction - Example

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

LTS? Traces?

19
19

DM519 Concurrent Programming

Modelling Interaction - Example

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

LTS? Traces?

Can we make sure the MAKER does not “get ahead of” the USER
(i.e. never make before use); and if so, how?

19
19

DM519 Concurrent Programming

Modelling Interaction - Handshake

A handshake is an action acknowledged by another process:

MAKERv2 = (make->ready->used->MAKERv2).
USERv2 = (ready->use->used->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

20
20

DM519 Concurrent Programming

Modelling Interaction - Handshake

A handshake is an action acknowledged by another process:

MAKERv2 = (make->ready->used->MAKERv2).
USERv2 = (ready->use->used->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

20
20

DM519 Concurrent Programming

Modelling Interaction - Multiple Processes

Multi-party synchronisation:
MAKE_A = (makeA->ready->used->MAKE_A).
MAKE_B = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

21
21

DM519 Concurrent Programming

Modelling Interaction - Multiple Processes

Multi-party synchronisation:
MAKE_A = (makeA->ready->used->MAKE_A).
MAKE_B = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

21
21

DM519 Concurrent Programming

Composite Processes

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

22
22

DM519 Concurrent Programming

Composite Processes

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

||FACTORY = ((MAKE_A || MAKE_B)|| ASSEMBLE).

substitution of
def’n of MAKERS

22
22

DM519 Concurrent Programming

Composite Processes

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

||FACTORY = ((MAKE_A || MAKE_B)|| ASSEMBLE).

substitution of
def’n of MAKERS

Further simplification?

22
22

DM519 Concurrent Programming

Composite Processes

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

||FACTORY = ((MAKE_A || MAKE_B)|| ASSEMBLE).

substitution of
def’n of MAKERS

associativity!

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Further simplification?

22
22

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

23
23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:

23
23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

Two instances of a switch process:

23
23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

Two instances of a switch process:
LTS? (a:SWITCH)

23
23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

Two instances of a switch process:
LTS? (a:SWITCH)

23
23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:
LTS? (a:SWITCH)

23
23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:
LTS? (a:SWITCH)

23
23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:
LTS? (a:SWITCH)

23
23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

Create an array of instances of the switch process:

24
24

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).

Create an array of instances of the switch process:

24
24

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).

||SWITCHES(N=3) = (s[i:1..N]:SWITCH).

Create an array of instances of the switch process:

24
24

DM519 Concurrent Programming

Process Labelling By A Set Of Prefix Labels

{a1,..,an}::P replaces every action label x in the alphabet of P
with the labels a1.x,…,an.x.
Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a1.x,…,an.x} -> X).

25
25

DM519 Concurrent Programming

Process Labelling By A Set Of Prefix Labels

{a1,..,an}::P replaces every action label x in the alphabet of P
with the labels a1.x,…,an.x.
Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a1.x,…,an.x} -> X).

Process prefixing is useful for modelling shared resources:

25
25

DM519 Concurrent Programming

Process Labelling By A Set Of Prefix Labels

{a1,..,an}::P replaces every action label x in the alphabet of P
with the labels a1.x,…,an.x.
Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a1.x,…,an.x} -> X).

Process prefixing is useful for modelling shared resources:

USER = (acquire->use->release->USER).

25
25

DM519 Concurrent Programming

Process Labelling By A Set Of Prefix Labels

{a1,..,an}::P replaces every action label x in the alphabet of P
with the labels a1.x,…,an.x.
Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a1.x,…,an.x} -> X).

Process prefixing is useful for modelling shared resources:

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

25
25

DM519 Concurrent Programming

Process Labelling By A Set Of Prefix Labels

{a1,..,an}::P replaces every action label x in the alphabet of P
with the labels a1.x,…,an.x.
Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a1.x,…,an.x} -> X).

Process prefixing is useful for modelling shared resources:

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

25
25

DM519 Concurrent Programming

Process Prefix Labels For Shared Resources

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

26
26

DM519 Concurrent Programming

Process Prefix Labels For Shared Resources

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

26
26

DM519 Concurrent Programming

Process Prefix Labels For Shared Resources

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

26
26

DM519 Concurrent Programming

Process Prefix Labels For Shared Resources

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

26
26

DM519 Concurrent Programming

Process Prefix Labels For Shared Resources

How does the model
ensure that the user that
acquires the resource is
the one to release it?

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

26
26

DM519 Concurrent Programming

Process Prefix Labels For Shared Resources

How does the model
ensure that the user that
acquires the resource is
the one to release it?

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

26
26

DM519 Concurrent Programming

Example

X = (x -> STOP).

27
27

DM519 Concurrent Programming

Example

X = (x -> STOP).

||SYS_1 = {a,b}:X.

||SYS_2 = {a,b}::X.

27
27

DM519 Concurrent Programming

Example

X = (x -> STOP).

LTS? Traces? Number of states?

||SYS_1 = {a,b}:X.

||SYS_2 = {a,b}::X.

27
27

DM519 Concurrent Programming

Example

X = (x -> STOP).

LTS? Traces? Number of states?

||SYS_1 = {a,b}:X.

||SYS_2 = {a,b}::X.

27
27

DM519 Concurrent Programming

Example

X = (x -> STOP).

LTS? Traces? Number of states?

||SYS_1 = {a,b}:X.

||SYS_2 = {a,b}::X.

LTS? Traces? Number of states?

27
27

DM519 Concurrent Programming

Example

X = (x -> STOP).

LTS? Traces? Number of states?

||SYS_1 = {a,b}:X.

||SYS_2 = {a,b}::X.

LTS? Traces? Number of states?

27
27

DM519 Concurrent Programming

Example

X = (x -> STOP).

LTS? Traces? Number of states?

||SYS_1 = {a,b}:X.

||SYS_2 = {a,b}::X.

LTS? Traces? Number of states?

27

{a...}:X creates one process per prefix

{a...}::X creates one process with all prefixes

27

DM519 Concurrent Programming

Action Relabelling

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:
 /{newlabel1/oldlabel1,… newlabeln/oldlabeln}.

28
28

DM519 Concurrent Programming

Action Relabelling

Relabelling to ensure that composed processes
synchronise on particular actions:

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:
 /{newlabel1/oldlabel1,… newlabeln/oldlabeln}.

28
28

DM519 Concurrent Programming

Action Relabelling

Relabelling to ensure that composed processes
synchronise on particular actions:

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:
 /{newlabel1/oldlabel1,… newlabeln/oldlabeln}.

CLIENT = (call->wait->continue->CLIENT).

28
28

DM519 Concurrent Programming

Action Relabelling

Relabelling to ensure that composed processes
synchronise on particular actions:

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:
 /{newlabel1/oldlabel1,… newlabeln/oldlabeln}.

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

28
28

DM519 Concurrent Programming

Action Relabelling

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

29
29

DM519 Concurrent Programming

Action Relabelling

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

C = (CLIENT /{reply/wait}).

29
29

DM519 Concurrent Programming

Action Relabelling

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

C = (CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

29
29

DM519 Concurrent Programming

Action Relabelling

||C_S = (C || S).

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

C = (CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

29
29

DM519 Concurrent Programming

Action Relabelling

||C_S = (C || S).

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

C

C = (CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

29
29

DM519 Concurrent Programming

Action Relabelling

||C_S = (C || S).

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

C S

C = (CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

29
29

DM519 Concurrent Programming

Action Relabelling

||C_S = (C || S).

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

C S

C_S

C = (CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

29
29

DM519 Concurrent Programming

Action Relabelling - Prefix Labels

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

30
30

DM519 Concurrent Programming

Action Relabelling - Prefix Labels

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

30
30

DM519 Concurrent Programming

Action Relabelling - Prefix Labels

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request
 ->call.reply->continue->CLIENTv2).

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

30
30

DM519 Concurrent Programming

Action Relabelling - Prefix Labels

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request
 ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
 /{call/accept}.

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

30
30

DM519 Concurrent Programming

Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the hiding operator \{a1,..,ax}
removes the action names a1..ax from the alphabet of P and makes
these concealed actions "silent".
These silent actions are labelled tau.
Silent actions in different processes are not shared.

31
31

DM519 Concurrent Programming

Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the hiding operator \{a1,..,ax}
removes the action names a1..ax from the alphabet of P and makes
these concealed actions "silent".
These silent actions are labelled tau.
Silent actions in different processes are not shared.

USER = (acquire->use->release->USER)
 \{use}.

31
31

DM519 Concurrent Programming

Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the hiding operator \{a1,..,ax}
removes the action names a1..ax from the alphabet of P and makes
these concealed actions "silent".
These silent actions are labelled tau.
Silent actions in different processes are not shared.

USER = (acquire->use->release->USER)
 \{use}.

31
31

DM519 Concurrent Programming

Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the interface
operator @{a1,..,ax} hides all actions in the
alphabet of P not labelled in the set a1..ax.

Sometimes it is more convenient to specify the set of labels to be
exposed....

32
32

DM519 Concurrent Programming

Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the interface
operator @{a1,..,ax} hides all actions in the
alphabet of P not labelled in the set a1..ax.

Sometimes it is more convenient to specify the set of labels to be
exposed....

USER = (acquire->use->release->USER)
 @{acquire,release}.

32
32

DM519 Concurrent Programming

Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the interface
operator @{a1,..,ax} hides all actions in the
alphabet of P not labelled in the set a1..ax.

Sometimes it is more convenient to specify the set of labels to be
exposed....

USER = (acquire->use->release->USER)
 @{acquire,release}.

32
32

DM519 Concurrent Programming

Action Hiding

USER = (acquire->use->release->USER)
 \{use}.

USER = (acquire->use->release->USER)
 @{acquire,release}.

The following definitions are equivalent:

33
33

DM519 Concurrent Programming

Action Hiding

USER = (acquire->use->release->USER)
 \{use}.

USER = (acquire->use->release->USER)
 @{acquire,release}.

The following definitions are equivalent:

Minimisation removes hidden
tau actions to produce an
LTS with equivalent
observable behaviour.

33
33

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

34
34

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

Parallel Composition
(P||Q)

34
34

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

Parallel Composition
(P||Q)x

b Q
d
x

P a
c
x

34
34

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

Parallel Composition
(P||Q)x

b Q
d
x

P a
c
x

34

/ {m/a,m/b }

34

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

m
Parallel Composition
(P||Q)x

b Q
d
x

P a
c
x

34

/ {m/a,m/b }

34

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

m
Parallel Composition
(P||Q)x

b Q
d
x

P a
c
x

34

/ {m/a,m/b },c/d

34

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

m
Parallel Composition
(P||Q)

c
x

b Q
d
x

P a
c
x

34

/ {m/a,m/b },c/d

34

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

m
Parallel Composition
(P||Q)

c
x

b Q
d
x

P a
c
x

X Ya

S
yx

Composite process
||S = (X||Y) @ {x,y}

34

/ {m/a,m/b },c/d

34

DM519 Concurrent Programming

Structure Diagrams

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

35
35

DM519 Concurrent Programming

Structure Diagrams

We use structure diagrams
to capture the structure of
a model expressed by the
static combinators:
parallel composition,
relabelling and hiding.

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

35
35

DM519 Concurrent Programming

Structure Diagrams

We use structure diagrams
to capture the structure of
a model expressed by the
static combinators:
parallel composition,
relabelling and hiding.

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

||TWOBUF =

35
35

DM519 Concurrent Programming

Structure Diagrams

We use structure diagrams
to capture the structure of
a model expressed by the
static combinators:
parallel composition,
relabelling and hiding.

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

||TWOBUF =

(a:BUFF || b:BUFF)
 /{in/a.in, a.out/b.in, out/b.out}
 @{in,out}.

35
35

DM519 Concurrent Programming

Structure Diagrams

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

||CLIENT_SERVER = (CLIENT||SERVER)
 /{reply/wait,
 call/request}.

36
36

DM519 Concurrent Programming

Structure Diagrams

Structure diagram for CLIENT_SERVER ?

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

||CLIENT_SERVER = (CLIENT||SERVER)
 /{reply/wait,
 call/request}.

36
36

DM519 Concurrent Programming

Structure Diagrams

Structure diagram for CLIENT_SERVER ?

CLIENT call request SERVERcall

replywait reply servicecontinue

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

||CLIENT_SERVER = (CLIENT||SERVER)
 /{reply/wait,
 call/request}.

36
36

DM519 Concurrent Programming

Structure Diagrams

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).
CLIENTv2 = (call.request
 ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
 /{call/accept}.

37
37

DM519 Concurrent Programming

Structure Diagrams

Structure diagram for CLIENT_SERVERv2 ?

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).
CLIENTv2 = (call.request
 ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
 /{call/accept}.

37
37

DM519 Concurrent Programming

Structure Diagrams

Structure diagram for CLIENT_SERVERv2 ?

CLIENTv2 call accept SERVERv2call

servicecontinue

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).
CLIENTv2 = (call.request
 ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
 /{call/accept}.

37

Simply use the shared prefix.

37

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

38
38

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

38

RESOURCE = (acquire->release->RESOURCE).

38

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

38

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use->printer.release->USER).

38

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

38

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use->printer.release->USER).

||PRINTER_SHARE =
 (a:USER || b:USER || {a,b}::printer:RESOURCE).

38

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

38

a:USER
printer

b:USER
printer

printer:
RESOURCE

acquire
release

PRINTER_SHARE

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use->printer.release->USER).

||PRINTER_SHARE =
 (a:USER || b:USER || {a,b}::printer:RESOURCE).

Shared resources are shown as “rounded rectangles”:

38

DM519 Concurrent Programming

Java

39
39

DM519 Concurrent Programming

ThreadDemo Model

40
40

DM519 Concurrent Programming

ThreadDemo Model

THREAD = OFF,

OFF = (toggle->ON

40
40

DM519 Concurrent Programming

ThreadDemo Model

THREAD = OFF,

OFF = (toggle->ON
 |abort->STOP),

ON = (toggle->OFF
 |output->ON
 |abort->STOP).

40
40

DM519 Concurrent Programming

ThreadDemo Model

THREAD = OFF,

OFF = (toggle->ON
 |abort->STOP),

ON = (toggle->OFF
 |output->ON
 |abort->STOP).

||THREAD_DEMO =
 (a:THREAD || b:THREAD)
 /{stop/{a,b}.abort}.

40
40

DM519 Concurrent Programming

ThreadDemo Model

THREAD = OFF,

OFF = (toggle->ON
 |abort->STOP),

ON = (toggle->OFF
 |output->ON
 |abort->STOP).

||THREAD_DEMO =
 (a:THREAD || b:THREAD)
 /{stop/{a,b}.abort}.

40
40

DM519 Concurrent Programming

ThreadDemo Model

THREAD = OFF,

OFF = (toggle->ON
 |abort->STOP),

ON = (toggle->OFF
 |output->ON
 |abort->STOP).

||THREAD_DEMO =
 (a:THREAD || b:THREAD)
 /{stop/{a,b}.abort}. Interpret:

toggle, abort
 as inputs;

output
 as output

40
40

DM519 Concurrent Programming

ThreadDemo Model

THREAD = OFF,

OFF = (toggle->ON
 |abort->STOP),

ON = (toggle->OFF
 |output->ON
 |abort->STOP).

||THREAD_DEMO =
 (a:THREAD || b:THREAD)
 /{stop/{a,b}.abort}. Interpret:

toggle, abort
 as inputs;

output
 as output

a:T b:Tstop
a.toggle

a.output b.output

b.toggle
THREAD_DEMO

40
40

DM519 Concurrent Programming

ThreadDemo Code: MyThread

class MyThread extends Thread {
 private boolean on;

 MyThread(String name) { super(name); this.on = false; }

 public void toggle() { on = !on; }

 public void abort() { this.interrupt(); }

 private void output() {
 System.out.println(getName()+“: output”);
 }
 public void run() {
 try {
 while (!interrupted()) {
 if (on) output();
 sleep(500);
 }
 } catch(Int’Exc’ _) {}
 System.out.println(“Done!”);
 }}}

41
41

DM519 Concurrent Programming

ThreadDemo Code: ThreadDemo

class ThreadDemo {
 public static void main(String[] args) {
 MyThread a = new MyThread(“a”);
 MyThread b = new MyThread(“b”);
 a.start(); b.start();
 while (true) {
 switch (readChar()) {
 case ‘a’: a.toggle();
 break;
 case ‘b’: b.toggle();
 break;
 case ‘i’: stop(a,b);
 return;
 }
 }
 }
 private stop(MyThread a, MyThread b) {
 a.abort();
 b.abort();
 }
}

42
42

DM519 Concurrent Programming

Summary

43
43

DM519 Concurrent Programming

Summary

uConcepts

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

lAsynchronous (arbitrary speed) & interleaving (arbitrary order).

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

lAsynchronous (arbitrary speed) & interleaving (arbitrary order).

lParallel composition as a finite state process with action interleaving.

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

lAsynchronous (arbitrary speed) & interleaving (arbitrary order).

lParallel composition as a finite state process with action interleaving.

lProcess interaction by shared actions.

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

lAsynchronous (arbitrary speed) & interleaving (arbitrary order).

lParallel composition as a finite state process with action interleaving.

lProcess interaction by shared actions.

lProcess labelling and action relabelling and hiding.

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

lAsynchronous (arbitrary speed) & interleaving (arbitrary order).

lParallel composition as a finite state process with action interleaving.

lProcess interaction by shared actions.

lProcess labelling and action relabelling and hiding.

lStructure diagrams

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

lAsynchronous (arbitrary speed) & interleaving (arbitrary order).

lParallel composition as a finite state process with action interleaving.

lProcess interaction by shared actions.

lProcess labelling and action relabelling and hiding.

lStructure diagrams

uPractice

43
43

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

lAsynchronous (arbitrary speed) & interleaving (arbitrary order).

lParallel composition as a finite state process with action interleaving.

lProcess interaction by shared actions.

lProcess labelling and action relabelling and hiding.

lStructure diagrams

uPractice

lMultiple threads in Java.

43
43

