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uConcepts:

lWe adopt a model-based approach for the design and 

construction of concurrent programs

u Safe model => safe program

uModels:

lWe use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

uPractice:

lWe use Java for constructing concurrent programs
2
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Repetition (Models; LTS, FSP)

Model = simplified representation of the real world

uBased on Labelled Transition Systems  (LTS ):

uDescribed textually as Finite State Processes  

(FSP): EngineOff = (engineOn  -> EngineOn), 
EngineOn  = (engineOff -> EngineOff
            |speed     -> EngineOn).

Focuses on concurrency aspects (of the program)
- everything else abstracted away

3
3



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard
  : P | P’    // choice

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard
  : P | P’    // choice
  : P +{ … }    // alphabet extension

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard
  : P | P’    // choice
  : P +{ … }    // alphabet extension
  : X   // process variable

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard
  : P | P’    // choice
  : P +{ … }    // alphabet extension
  : X   // process variable

♦ action indexing   x[i:1..N] -> P   or   x[i] -> P

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard
  : P | P’    // choice
  : P +{ … }    // alphabet extension
  : X   // process variable

♦ action indexing   x[i:1..N] -> P   or   x[i] -> P

♦ process parameters  P(N=3) = …

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard
  : P | P’    // choice
  : P +{ … }    // alphabet extension
  : X   // process variable

♦ action indexing   x[i:1..N] -> P   or   x[i] -> P

♦ process parameters  P(N=3) = …

♦ constant definitions  const N = 3

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard
  : P | P’    // choice
  : P +{ … }    // alphabet extension
  : X   // process variable

♦ action indexing   x[i:1..N] -> P   or   x[i] -> P

♦ process parameters  P(N=3) = …

♦ constant definitions  const N = 3

♦ range definitions   range R = 0..N

4
4



DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P  : STOP    // termination
  : (x -> P)    // action prefix
  : (when (…) x -> P)  // guard
  : P | P’    // choice
  : P +{ … }    // alphabet extension
  : X   // process variable

♦ action indexing   x[i:1..N] -> P   or   x[i] -> P

♦ process parameters  P(N=3) = …

♦ constant definitions  const N = 3

♦ range definitions   range R = 0..N
Which constructions do not add expressive power?
(and are thus only "syntactic sugar").
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Repetition (Java Threads)

Subclassing java.lang.Thread:

Implementing java.lang.Runnable:

class MyThread extends Thread {
    public void run() {
        // ...
    }
}

class MyRun implements Runnable {
    public void run() {
        // ...
    }
}

Thread t = new MyThread();
t.start();
// ...

Thread t = new Thread(new MyRun());
t.start();
// ...
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Chapter 3: Concurrent Execution

Concepts: processes - concurrent execution 
    and interleaving
   process interaction

Models: parallel composition of asynchronous processes 
                     interleaving

 interaction  - shared actions
 process labelling, and action relabelling and hiding

  structure diagrams

Practice:  Multithreaded Java programs
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Definition: Parallelism

uParallelism (aka. Real/True Concurrent Execution)

lPhysically simultaneous processing

uInvolves multiple processing elements (PEs) 

and/or independent device operations

A

Time

B
C
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Parallelism vs Concurrency

Both concurrency and parallelism require controlled access to shared 
resources. 

We use the terms parallel and concurrent interchangeably (and generally
do not distinguish between real and pseudo-concurrent execution).

Also, creating software independent of the physical setup, makes us 
capable of deploying it on any  platform.

uParallelism uConcurrency

A

Time

B
C

A

Time

B
C
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3.1  Modelling Concurrency

uHow do we model concurrency?

lArbitrary relative order of actions from different processes 

(interleaving but preservation of each process order)

x

Possible execution sequences?

  

y

Asynchronous
model of execution

•  x ; y
•  y ; x
•  x || y
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DM519 Concurrent Programming

3.1  Modelling Concurrency

u How should we model process execution speed?

lWe choose to abstract away time:

uArbitrary speed!

+:  independent of architecture, processor speed, 
    scheduling policies, …

-:  we can say nothing of real-time properties

a

b

x

y

11
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Parallel Composition - Action Interleaving

2 states 3 states

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH
2 x 3 states

Cartesian product?
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Modelling Interaction - Example

3 states
3 states

MAKE1 = (make->ready->STOP).
USE1  = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

make

ready

use

Interaction 
may constrain 
the overall 
behaviour !

4 states!

ready

make

make

ready

ready

readyreadyready

use use
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Modelling Interaction - Example

MAKER = (make->ready->MAKER).
USER  = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

LTS?   Traces?

Can we make sure the MAKER does not “get ahead of” the USER
(i.e. never make before use); and if so, how?
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Multi-party synchronisation:
MAKE_A   = (makeA->ready->used->MAKE_A).
MAKE_B   = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).
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Composite Processes

A composite process is a parallel composition of primitive processes. 
These composite processes can be used in the definition of further 
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compositions.

||MAKERS  = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

||FACTORY = ((MAKE_A || MAKE_B)|| ASSEMBLE).

substitution of 
def’n of MAKERS

associativity!

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).
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Process Labelling By A Set Of Prefix Labels

{a1,..,an}::P replaces every action label x in the alphabet of P 
with the labels a1.x,…,an.x.
Further, every transition (x -> X) in the definition of P is 
replaced with the transitions ({a1.x,…,an.x} -> X).
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RESOURCE = (acquire->release->RESOURCE). 

USER     = (acquire->use->release->USER).
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Process Prefix Labels For Shared Resources

RESOURCE = (acquire->release->RESOURCE). 
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Example

X  =  (x -> STOP).

LTS?   Traces?   Number of states? 

||SYS_1 = {a,b}:X.

||SYS_2 = {a,b}::X.

LTS?   Traces?   Number of states? 

27

{a...}:X creates one process per prefix

{a...}::X creates one process with all prefixes

27
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Action Relabelling

Relabelling functions are applied to processes to change the 
names of action labels. The general form of the relabelling 
function is:
           /{newlabel1/oldlabel1,… newlabeln/oldlabeln}.
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Action Relabelling

||C_S = (C || S).

CLIENT = (call->wait->continue->CLIENT).
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C_S
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Action Relabelling - Prefix Labels

SERVERv2 = (accept.request
            ->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request
            ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
                    /{call/accept}.

An alternative formulation of the client server system is described 
below using qualified or prefixed labels:
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Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the hiding operator \{a1,..,ax} 
removes the action names a1..ax from the alphabet of P and makes 
these concealed actions "silent".
These silent actions are labelled tau.
Silent actions in different processes are not shared.
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Action Hiding

USER = (acquire->use->release->USER)
       \{use}.

USER = (acquire->use->release->USER)
  @{acquire,release}.

The following definitions are equivalent:
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Action Hiding

USER = (acquire->use->release->USER)
       \{use}.

USER = (acquire->use->release->USER)
  @{acquire,release}.

The following definitions are equivalent:

Minimisation removes hidden 
tau actions to produce an 
LTS with equivalent 
observable behaviour.
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to capture the structure of 
a model expressed by the 
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relabelling and hiding.

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

||TWOBUF =

 

(a:BUFF || b:BUFF)
   /{in/a.in, a.out/b.in, out/b.out}
      @{in,out}.
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Structure Diagrams

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

||CLIENT_SERVER = (CLIENT||SERVER)
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Structure Diagrams

Structure diagram for CLIENT_SERVERv2 ?

CLIENTv2 call accept SERVERv2call

servicecontinue

SERVERv2 = (accept.request
            ->service->accept.reply->SERVERv2).
CLIENTv2 = (call.request
            ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
                    /{call/accept}.

37

Simply use the shared prefix.
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Structure Diagrams - Resource Sharing

38

a:USER
printer

b:USER
printer

printer:
RESOURCE

acquire
release

PRINTER_SHARE

RESOURCE = (acquire->release->RESOURCE).
USER     = (printer.acquire->use->printer.release->USER).

||PRINTER_SHARE =
   (a:USER || b:USER || {a,b}::printer:RESOURCE).

Shared resources are shown as “rounded rectangles”:
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ThreadDemo Model

THREAD = OFF,

OFF = (toggle->ON 
      |abort->STOP),

ON  = (toggle->OFF
      |output->ON
      |abort->STOP).

||THREAD_DEMO = 
      (a:THREAD || b:THREAD)
         /{stop/{a,b}.abort}. Interpret:

toggle, abort 
      as inputs;

output 
      as output

a:T b:Tstop
a.toggle

a.output b.output

b.toggle
THREAD_DEMO
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ThreadDemo Code: MyThread

class MyThread extends Thread {
    private boolean on;

    MyThread(String name) { super(name); this.on = false; }

    public void toggle() { on = !on; }

    public void abort() { this.interrupt(); }

    private void output() {
                     System.out.println(getName()+“: output”);
    }  
    public void run() {
        try {
            while (!interrupted()) {
                if (on) output();
                sleep(500);
            }
        } catch(Int’Exc’ _) {}
        System.out.println(“Done!”);
    }}}
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ThreadDemo Code: ThreadDemo

class ThreadDemo {
    public static void main(String[] args) {
        MyThread a = new MyThread(“a”);
        MyThread b = new MyThread(“b”);
        a.start(); b.start();
        while (true) {
            switch (readChar()) {
                case ‘a’: a.toggle(); 
                          break;
                case ‘b’: b.toggle(); 
                          break;                 
                case ‘i’: stop(a,b); 
                          return;
            }
        }
    }
    private stop(MyThread a, MyThread b) {
        a.abort();
        b.abort();
    }
}
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lMultiple threads in Java.
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