Chapter 10

Message Passing

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

Absence Of Shared Memory

In previous lectures interaction between threads has been via
shared memory

— In Java, we refer to shared objects.
— Usually encapsulate shared memory in Monitors.

In a distributed setting there is no shared memory

— Communication is achieved via passing messages between
concurrent threads.

— Same message passing abstraction can also be used in non-
distributed settings.

DM519 Concurrent Programming 2

Message Passing

COHCZPTS . synchronous message passing - channel

asynchronous message passing - port

- send and receive / selective receive
rendezvous bidirectional comm. - entry

- call and accept ... reply

Models: channel : relabelling, choice & guards
port . message queue, choice & guards
entry : port & channel

Practice: distributed computing (disjoint memory)
threads and monitors (shared memory)

DM519 Concurrent Programming

10.1 Synchronous Message Passing - Channel %’

Channel c

Sender 00

send(e,c)

one-to-one

¢ send(e,c) - sende to
channel c. The sender is
blocked until the message is
received from the channel.

Channel has no buffering

DM519 Concurrent Programming

Receiver

v=receive(c)

* vy =receive(c) - receivea
value into local variable v from

channel c. The calling process is
blocked until a message is sent
to the channel.

Corresponds fo "v = e"

Synchronous Message Passing - Applet W%'RNW

A sender
communicates with a
receiver using a
single channel.

I
I<

The sender sends a
sequence of integer

values from O to 9 start | Stop | Start]| stop |
and then restarts at
O again.

Channel<Integer> chan = new Channel<Integer>() ;
x.start (new Sender (chan,senddisp)) ;
rx.start (new Receiver (chan,kfecvdisp)) ;

/ 7/

Instances of ThreadPanel Instances of SlotCanvas

DM519 Concurrent Programming 5

Synchronous Message Passing In Java %’

Java has no built in message passing primitives
— Unlike Occam, Erlang, or Ada.

Can still do message passing in Java, but it’s clunky:
— Encapsulate message passing abstractions in monitor Channel:

class Channel<T> extends Selectable {
public synchronized void send (T v)
throws InterruptedException{...}

public synchronized T receive() {...}

}

DM519 Concurrent Programming 6

Java Implementation - Channel

UNIVERSITY OF ISOUTHERN DENMARK

T chan_ = null;

public synchronized wvoid send (T v)
throws InterruptedException {

}

public class Channel<T> extends Selectable {

Channel is a
monitor that has

chan = v synchronized

signal () ; access methods

while (chan != null) wait(); for send and
} receive.
public synchronized T receive ()

throws InterruptedException ({

block () ; clearReady() ; // part of Selectable

T tmp = chan ; chan = null;

notifyAll () ; // could be notify()

return (tmp) ;

Selectable is
described later.

DM519 Concurrent Programming

7

Java Implementation - Sender %’

class Sender implements Runnable {
private Channel<Integer> chan;
private SlotCanvas display;
Sender (Channel<Integer> ¢, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { int ei = O0;
while (true) {

display.enter (String.valueOf (ei)) ;
ThreadPanel.rotate (12) ;
chan.send (new Integer(ei));
display.leave (String.valueOf (ei)) ;
ei=(ei+l) %10; ThreadPanel.rotate(348);

}
} catch (InterruptedException e){}

}

DM519 Concurrent Programming 8

Java Implementation - Receiver %’

class Receiver implements Runnable ({
private Channel<Integer> chan;
private SlotCanvas display;
Receiver (Channel<Integer> ¢, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { Integer v=null;
while (true) {
ThreadPanel.rotate (180) ;
if (v'!'=null) display.leave(v.toString())
v = chan.receive() ;
display.enter (v.toString()) ;
ThreadPanel.rotate (180) ;

}
} catch (InterruptedException e){}

}

DM519 Concurrent Programming 9

I UNIVERSITY OF [SOUTHERN DENMARK

range M = 0..9 // messages with values up to 9

SENDER = SENDER[O0], // shared channel chan
SENDER[e:M] = (chan.send[e]-> SENDER][(e+1l)%10]).

RECEIVER = (chan.receive[v:M]-> RECEIVER) .

// relabeling to model synchronization
| |SyncMsg = (SENDER || RECEIVER)

/{chan/chan. {send, receive}}. LTS?
]
How could this be message operation FSP model
modeled directly send(e,chan) chan. [e]
quhouT. the need for » = receive(chan) chan. [v:M]
relabeling?

DM519 Concurrent Programming 10

UNIVERSITY OF ISOUTHERN DENMARK

Selective Receive

Channels
c1 00 should we deal
c2 00 with multiple
ende
Sen r[n] ch 0 channels?
send(en,cn)
select
when G, and v =receive(chan,;) => S ;
Select or :
statement. .. when G, and v =receive(chan,) => S,;
or
or
How would we model when G and v =receive(chan) => S ;
this in FSP? end

DM519 Concurrent Programming 11

Example: Selective Receive W%'RNW

ARRIVALS CARPARK | DEPARTURES

o O CONTROL

CARPARKCONTROL (N=4) = SPACES[N],

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]
| when (1<N) depart->SPACES[i+1]
) .

ARRIVALS = (arrive->ARRIVALS). Interpret as
DEPARTURES = (depart->DEPARTURES) . channels
| |CARPARK = (ARRIVALS||CARPARKCONTROL (4) |

Implementation
using message
passing?

DM519 Concurrent Programming 12

| | DEPARTURES) .

Java Implementation - Selective Receive %’

class MsgCarPark implements Runnable {
private Channel<Signal> arrive, depart;
private int spaces, N;
private StringCanvas disp;

public MsgCarPark (Channel<Signal> a,
Channel<Signal> 1,

StringCanvas d,int capacity) ({

depart=1; arrive=a; N=spaces=capacity,; disp=d;

}

Implement
public void run() {..} mplem
} CARPARKCONTROL as a

thread MsgCarPark
which receives signals
from channels arrive
and depart.

DM519 Concurrent Programming 13

Java Implementation - Selective Receive %’

public void run() ({
try {

Select sel = new Select();

sel.add (depart) ;

sel.add (arrive) ;

while (true) {
ThreadPanel.rotate (12) ;
arrive.guard (spaces>0) ;
depart.guard (spaces<N) ;
switch (sel.choose()) {
case l:depart.receive () ;display (++spaces);

break;
case 2:arrive.receive () ;display(--spaces) ;
break;
}
}
} catch InterrruptedException{} See applet

}

DM519 Concurrent Programming 14

10.2 Asynchronous Message Passing - Port %’

Port p
| ‘ ‘ ‘ Receiver
Sender'[n] v=receive(p)
send(e_,p)
many-to-one
* send(e,p) - sende toport p. * v =receive(p) - receivea
The calling process is not blocked. value into local variable v from
The message is .queued a.'r .’rhe port port p. The calling process is
if the receiver is not waiting. blocked if no messages queued to
the port.

DM519 Concurrent Programming 15

Two senders
communicate with a
receiver via an
“unbounded” port.

<
* R

\OIQ
-~

Asynchronous Message Passing - Applet W%'RNMA
Each sender sends
a sequence of

O to 9 Gﬂd Then | Runl Pauul Run| Paun| _l Pausol
restarts at O again.

Port<Integer> port = new Port<Integer> ()
txl.start (new Asender (port,sendldisp)) ;
tx2.start (new Asender (port fsend2disp)) ;
rx.start (new Areceiver (por ,fecvdisp));

1

Instances of ThreadPanel Instances of SlotCanvas

DM519 Concurrent Programming 16

Java Implementation - Port %’

class Port<T> extends Selectable { I
The
Queue<T> queue = new LinkedList<T>(); implementation of
public synchronized wvoid send (T v) { s [
queue. add (v) ; monitor that has
signal () ; synchronized
} access methods
public synchronized T receive () for send and
throws InterruptedException { receive.
block () ; clearReady() ;
return queue.remove() ;
}
}

DM519 Concurrent Programming 17

P O rt Fs p M Od e I UNIVERSITY OF E:FRN DENMARK

range M = 0..9 // messages with values up to 9
set S = {[M], [M] [M]} // queue of up to three messages

PORT // empty state, only send permitted
= (send[x:M]->PORT[x]),
PORT [h:M] // one message queued to port

= (send[x:M]->PORT|[x] [h]
| receive[h] ->PORT
)

PORT[t:S] [h:M] // two or more messages queued to port
= (send[x:M]->PORT[x] [t] [h]
| receive[h] ->PORT [t] LTS7

)- What happens if

you send 4 values?

// minimise to see result of abstracting from data values
| |APORT = PORT/{send/send[M], receive/receive[M]}.

DM519 Concurrent Programming 18

Model Of Applet T %'RNW

S[1..2]: _
ASENDER port:PORT ARECEIVER

@ (J
port.receive

ASENDER = ASENDER[O0],
ASENDER[e:M] = (port.send[e]->ASENDER][(e+1)%10]).

ARECEIVER = (port.receive[v:M]->ARECEIVER).

| |]AsyncMsg = (s[l1l..2] :ASENDER || ARECEIVER| |port:PORT)
/{s[l..2] .port.send/port.send}.

Safety?

DM519 Concurrent Programming 19

10.3 Rendezvous - Entry %’

Rendezvous is a form of request-reply to support client server
communication. Many clients may request service, but only one is
serviced at a time.

Client Server
|

)
»

res=call|Ventry, req) |

w |
message reqFaccept(entry)

suspended .
perform service

Reply reply(éntry,res)
message I

DM519 Concurrent Programming 20

Re n d ezvo u S UNIVERSITY OF étl RN DENMARK

¢ res=call(e,req) - send the : * req=accept(e) - receive
value 7eq as a request message the value of the request

which is queued to the entry e. message from the entry € info
local variable req. The calling
process is blocked if there are
no messages queued to the

. . entry.
*The calling process is blocked

until a reply message is received
into the local variable req.

* reply(e,res) - send the
value rés as a reply message to
entry €.

_

The model and implementation use a port for one direction and a
channel for the other. Which is which?

DM519 Concurrent Programming 21

Rendezvous - Applet Mﬁ'mm

s

Run| Pause | Run]|_pause | Run| Pause |

Two clients call a server
which services a request
at a time.

Entry<String,String> entry = new Entry<String,String>() ;
clA.start (new Client (entry,clientAdisp,"A")) ;
clBrstart (new Client (entry,clientBdisp,'B")) ;
SV. new Server (entry,serverdisp))

Instances of ThreadPanel Instances of SlotCanvas

DM519 Concurrent Programming 22

Java Implementation - Entry %’

Entries: implemem'ed as Select L Selectable
extensions of ports ool guard()
N
Channel Port
send() <, send()
receive() receive()
Ent
call() creates a channel clientChan Czng
object on which to receive e
the reply and passes a
references to this in the accept() keeps a copy of the channel
message to the server. reference;
It then awaits the reply on | |reply() sends the reply message to
the channel. this channel.

DM519 Concurrent Programming 23

Java Implementation - Entry %’

class Entry<R,P> extends Port<CallMsg<R,P>> {
private CallMsg<R,P> cm;

public P call (R req) throws InterruptedException {
Channel<P> clientChan = new Channel<P>() ;
this.send (new CallMsg<R,P>(req,clientChan)) ;
return clientChan.receive() ;

}

public R accept() throws InterruptedException ({
cm = this.receive() ;
return cm.request;

}

public void reply (P res) throws InterruptedException ({
cm.replychan.send(res) ;

}
private class CallMsg<R,P> {

R request;
Channel<P> replychan; Do call, accept and
CallMsg (R m, Channel<P> c)
{request=m; replychan=c;} reply heed fo be
b synchronized methods?

DM519 Concurrent Programming 24

Model Of Entry And Applet w%'mm

We reuse the models for ports and channels ..

CLIENT() | entry:ENTRY SERVER

set M = {replyA,replyB} // reply channels
| |[ENTRY = PORT/{call/send, accept/receive}.
CLIENT (CH='reply) = (entry.call[CH]->[CH]->CLIENT).

SERVER = (entry.accept[ch:M]->[ch]->SERVER) . Action labels
used in

| |EntryDemo = (CLIENT ('replyA) | |CLIENT ('replyB) |expressionsor

| | entry:ENTRY || SERVER). as parameter

values must be
prefixed with a
single quote.

DM519 Concurrent Programming 25

UNIVERSITY OF ISOUTHERN DENMARK

Rendezvous Vs Monitor Method Invocation

What is the difference?
.. from the point of view of the client?
.. from the point of view of the server?

... mutual exclusion?

Which implementation is more efficient?

.. in a local context (client and server in same computer)?

.. in a distributed context (in different computers)?

DM519 Concurrent Programming 26

Message Passing

COHCZPTS . synchronous message passing - channel

asynchronous message passing - port

- send and receive / selective receive
rendezvous bidirectional comm. - entry

- call and accept ... reply

Models: channel : relabelling, choice & guards
port . message queue, choice & guards
entry : port & channel

Practice: distributed computing (disjoint memory)
threads and monitors (shared memory)

DM519 Concurrent Programming

27

