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Introduction to Computer Science
E09 — Week 8

Announcement: Lab hours moved to Fridays 10-12

The lab hours for the second quarter are rescheduled from Thursdays 14-
16 to Fridays 10-12. This change affects the labs in the Weeks 46, 48, and
50. If there are any problems with this rescheduling, please contact Peter
Schneider-Kamp as soon as possible.

Announcement regarding Assignment due November 12

For the solution of the third task, you are advised to consult the excerpt on
Hamming Codes available from the Course Documents folder in Blackboard.
Lecture: Monday, November 2

Tao Gu lectured on Networking, Internet, and error-correcting codes based

on Chapters 4 and 1.9.

Lecture: Wednesday, November 4

Daniel Merkle lectured on Bioinformatics.

Lecture: Monday, November 9, 12-14 (U140)

Lone Borgersen will give an introduction to software engineering based on
Chapter 7.



Lecture: Monday, November 16, 12-14

Jeergen Bang-Jensen will start to lecture on the theory of computation based
on Chapters 12.1 to 12.5.

Lecture: Wednesday, November 18, 14-16

Joergen Bang-Jensen will finish to lecture on the theory of computation and
start lecturing on combinatorial optimization based on notes.

Discussion section: November 10, 10:15-12 (U37)

Consider the error-correcting code based on Hamming distance described in
the document Hamming Code available from the Course Documents folder
in Blackboard. Suppose we want to transmit messages of 7 bits.

1. How many redundant bits are required?

2. What will be the codeword transmitted by the sender if the message is
11011107

The rest of the discussion section will deal with software engineering:

e Page 347, Problem 4.

Page 351, Problems 1, 2, and 3.

Page 354, Problem 1.

Page 362, Problems 1, 3, and 4.

Page 371, Problem 2.

The library example distributed in class shows a little web application
that can be used to search for books, to reserve books, to show status
for borrowers, and to renew borrowing periods. Extend the distributed
use case diagram to a library system that can also be used to borrow
and return books. Make a description of the return process and discuss
how changes of the use case diagram influence the other distributed
diagrams.



(Danish original: Det udleverede bibliotekseksempel viser en lille netap-
plikation der kan benyttes til sgning efter bger, reservation af bger, vis-
ning af Inerstatus og til fornyelse af In. Udbyg det udleverede brugsmn-
sterdiagram (use case diagram) til et bibliotekssystem, der ogs kan
benyttes til udln og aflevering. Lav en beskrivelse af aflevering og
diskuter hvordan ndringen af brugsmnsterdiagrammet (use case dia-
grammet) kommer til at pvirke de vrige udleverede diagrammer.)

e Page 375, Problems 2, 3, and 4.

Lab: November 13, 10:15-12 (terminal room above U49)

Discuss the following problems in groups of two or three.

First, you will be using the program gpg to try encryption. Usage information
can be obtained by typing gpg -h | more (hitting the space bar will get the
rest of it; the vertical line says pipe the output through the next program,
and more shows a page at a time).

1.

Create a public and private key using gpg --gen-key. You should
choose DSA and El Gamal, and size 2048. Go to the directory .gnupg
using cd .gnupg. List what is in the directory using 1s -al. Try
the commands gpg --list-keys and gpg --fingerprint to list the
keys you have, with the fingerprints, which make it easier for you to
check that you have the correct key from someone. How would you use
fingerprints?

. You can save your public key in a file in a form that can be seen on a

screen using gpg --export -a Your Name >filename. You are “ex-
porting” your key and specifying where the output should go. Then
look at it using more filename; the —a made it possible to see it rea-
sonably on your screen, since it changes it to ASCII.

Mail this file to someone else (either in another group or within your
own group) or upload it to a public key server.

Try to figure out how to use gpg to “import” the public key you got
from someone else. Check the fingerprint.

Create a little file and encrypt it. You can use gpg -sea filename.

What does this do?



6. Mail your file to whoever has your public key. Read their file using the
command gpg -d inputfile >outputfile. Then look at the output
file you created.

7. You can also encrypt a file for your own use using a symmetric key
system protected by a pass phrase. Try using gpg --force-mdc -ca
filename. Then try decrypting as with the file you decrypted previ-
ously. Why might you want to do this?

8. The best known public key cryptographic system, RSA, was presented
in lectures. It is one of the systems included in PGP and GPG. Its
security is based on the assumption that factoring large integers is hard.
(The system you are using in GPG is based on discrete logarithms,
rather than factoring, but the problems are similar in many ways. The
factoring is easier to understand and test in Maple.)

A user’s public key consists of a large integer n (currently numbers with
at least 1024 bits are recommended, and 2048 is being recommended by
many experts) and an exponent e. The integer n should be a product
of two prime numbers p and ¢, both of which should be about half as
long as n. Thus, in order to implement the system it must be possible
to find two large primes and multiply them together in a reasonable
amount of time. For the security of the system, it must be the case
that no one who does not know p or ¢ could factor n.

At first glance this seems strange, that one should be able to determine
if a number is prime or not, but not be able to factor it. However,
there are algorithms for testing primality, which can discover that a
number is composite (not prime) without finding any of its factors.
(The ones most commonly used are probabilistic, so they could with
small probability declare a composite number prime; the probability of
this happening can be made arbitrarily small.)

Using Maple, you should try producing primes and composites and try
factoring.

In the following, you will be using the program xmaple:

(a) Small numbers.

Start your Maple program, using the command xmaple. Type
restart; at the beginning to make it easier to execute your work-



sheet after you have made changes. You can do this from Execute
in the Edit menu.

Use help to find out about the function ithprime. Experiment
to find out approximately how big a prime it can find. When it
cannot find such a big prime, you can use the STOP button in
order to continue (it is a hand in a red background). To assign
a value to a variable, you use the assignment operator :=; for
example x:= ithprime(4);. Multiply two of the large primes
it finds together, and try to factor the result, using the function
ifactor. Notice how quickly the factors are found for these small
numbers. (Large numbers are clearly necessary for security.)
Finding larger primes.

In order to find good prime factors p and ¢ for use in RSA, one
can choose random numbers of the required length and check each
one for primality until finding a prime.

Maple contains a function isprime which will test for primal-
ity. Try it on some some small numbers, such as 3, 4, 7, 10.
Maple has another function rand which returns a random 12-
digit number. Try typing x:=rand(); and check if your result
is prime. Rather than executing these commands until you find
a prime, you can use a while loop. You want to continue cre-
ating new random numbers until you get a prime, so you can
type while (not isprime(x)) do, followed by x:=rand(); and
end do;. To get this to function together, you can either use the
ESC key to input a while loop, or you can ignore the warnings and
join the execution groups through the Edit menu. How many dif-
ferent values were chosen before a prime was found? (I got 33,
but you could get another number.) Now create a second prime
called y (remember that y will need some value before your start
your while loop). Multiply = and y together and try factoring the
result. This should also go relatively quickly.

Finding even larger primes.

To get random numbers which are twice as long, you can create
three random numbers a, b and ¢ and create 10%* xa + 102 x b+ ¢
(10 raised to the power 24 times a, plus 10 raised to the power 12
time b, plus ¢). Unfortunately, two calls to rand in the same state-
ment will give the same result both times, so you need to choose



values for @ and b independently and then combine them. (Sup-
pose you typed m1 := 10"12*xrand() + rand();. Why wouldn’t
you ever find a prime testing values found this way?) Try finding
two primes, each 36 digits long. The first can be found by start-
ing with m1:=4; so you start out with a composite. Then use the
following: while (not isprime(ml)) do

a := rand();

b := rand();

c := rand();

ml := 10724 x a + 10712 * b + c;
end do;.

Multiply the two primes together and try to factor the result. If
your machine is not fast enough, use the STOP button on the
toolbar after a few minutes; the computation takes too long. Oth-
erwise, create even longer primes and try factoring them. As you
might imagine, no known algorithm would factor a 1024-bit (about
300 digits) number on your PC in your lifetime. It is easy to find
the primes and multiply them together, but it is very difficult to
factor the result! (Or RSA would not be secure.)

Try to get a feeling for how long it takes to factor numbers of
different lengths; you can try changing the 10'? or 10** in your
while loops to larger or smaller values.

Find the multiplicative inverse of 25 modulo 43 (a number be-
tween 0 and 42, which when multiplied by 25 gives the result 1
modulo 43). You could try using xmaple and finding out about
the function for computing the Extended Euclidean Algorithm by
typing ?igcdex. Does it help?



