
DM526 � Operating Systems

Chapter 3:

 Operating Systems

Daniel Merkle

Based on Slides by J. Glenn Brookshear and

DM510 Slides

3-2DM526 � Operating Systems

Functions of Operating Systems

� Control overall operation of computer

� Store and retrieve files

� Schedule programs for execution

� Coordinate the execution of programs

� ...

DM526 � Operating Systems

What is an Operating System?

� A program that acts as an intermediary

between a user of a computer and the

computer hardware

� Operating system goals:

� Execute user programs and make solving user

problems easier

� Make the computer system convenient to use

� Use the computer hardware in an efficient

manner

DM526 � Operating Systems

A View of Operating System Services

 � Show Linux Kernel Map: http://www.makelinux.net/kernel_map

3-5DM526 � Operating Systems

Chapter 3: Operating Systems

� 3.1 The History of Operating Systems

� 3.2 Operating System Architecture

� 3.3 Coordinating the Machine�s Activities

� 3.4 Handling Competition Among Processes

� 3.5 Security

3-6DM526 � Operating Systems

Evolution of Shared Computing
� Batch processing

� Interactive processing

� Multitasking is a method by which multiple tasks,

also known as processes, share common

processing resources such as a CPU.

� Scheduling Strategies:

� Multiprogramming

� Time-sharing

� Real-time (strict deadlines)

� Multiprocessor machines

http://en.wikipedia.org/wiki/Computer_multitasking

3-7DM526 � Operating Systems

Figure 3.1 Batch processing

3-8DM526 � Operating Systems

Figure 3.2 Interactive processing

1.9 DM510 - 2009

System Call

3-10DM526 � Operating Systems

NERSC Franklin

� Used in DM818 � Parallel Computing

� NERSC Franklin massively parallel

 processing (MPP) system

 http://www.nersc.gov/nusers/systems/franklin/about.php

 http://www.top500.org/list/2009/06/100

� Batch Processing!

 Why?

3-11DM526 � Operating Systems

Types of Software

� Application software

� Performs specific tasks for users

� System software

� Provides infrastructure for application software

� Consists of operating system and utility

software

3-12DM526 � Operating Systems

Figure 3.3 Software classification

DM526 � Operating Systems

Four Components of a Computer System

3-14DM526 � Operating Systems

Operating System Components

� Shell: Communicates with users, provides

access to the services of a kernel

� Text based

� Graphical user interface (GUI)

� Kernel: Performs basic required functions

� File manager

� Device drivers

� Memory manager

� Scheduler and dispatcher

3-15DM526 � Operating Systems

Figure 3.4 The shell as an interface

between users and the operating

system

3-16DM526 � Operating Systems

File Manager

� Directory (or Folder): A user-created

bundle of files and other directories

(subdirectories)

� Directory Path: A sequence of directories

within directories

3-17DM526 � Operating Systems

Memory Manager

� Allocates space in main memory

� May create the illusion that the machine

has more memory than it actually does

(virtual memory) by moving blocks of data

(pages) back and forth between main

memory and mass storage

3-18DM526 � Operating Systems

Getting it Started (Bootstrapping)

� Bootstrap: Program in ROM (example of

firmware)

� Run by the CPU when power is turned on

� Transfers operating system from mass storage

to main memory

� Executes jump to operating system

� The term Bootstrapping is often attributed to Rudolf Erich

Raspe's story �The Surprising Adventures of Baron

Münchausen�, where the main character pulls himself out of a

swamp, though it's disputed whether it was done by his hair or by

his bootstraps.

3-19DM526 � Operating Systems

Figure 3.5 The booting process

3-20DM526 � Operating Systems

3.3 Coordinating the Machine's Activity

� Process: The activity of executing a

program

� Process State: Current status of the activity

(saved in the Process Control Block)

� Program counter

� General purpose registers

� ...

DM526 � Operating Systems

Process Control Block (PCB)

DM526 � Operating Systems

Diagram of Process State

 � Show http://www.it.uom.gr/teaching/opsysanimation/animations/PROCESS.SWF

3-23DM526 � Operating Systems

Process Administration

� Scheduler: Adds new processes to the

process table and removes completed

processes from the process table

� Dispatcher: Controls the allocation of time

slices to the processes in the process table

� The end of a time slice is signaled by an

interrupt.

� Note that other definitions of Scheduler /

Dispatcher exist (closer to reality).

3-24DM526 � Operating Systems

Figure 3.6 Time-sharing between

process A and process B

DM526 � Operating Systems

Context Switch

� When CPU switches to another process, the

system must save the state of the old process

and load the saved state for the new process

via a context switch

� Context of a process represented in the PCB

� Context-switch time is overhead; the system

does no useful work while switching,

therefore it has to be fast

DM526 � Operating Systems

CPU Switch From Process to Process

DM526 � Operating Systems

Interrupts

DM526 � Operating Systems

Computer System Organization

� Computer-system operation

� One or more CPUs, device controllers connect through

common bus providing access to shared memory

� Concurrent execution of CPUs and devices competing

for memory cycles

DM526 � Operating Systems

Computer-System Operation

� I/O (input/output) devices and the CPU can

execute concurrently

� Each device controller is in charge of a particular

device type

� Each device controller has a local buffer

� CPU moves data from/to main memory to/from

local buffers

� I/O is from the device to local buffer of controller

� Device controller informs CPU that it has

finished its operation by causing an interrupt

DM526 � Operating Systems

How a Modern Computer Works

DM526 � Operating Systems

Device Example: Hard Disk (+ Controller)

DM526 � Operating Systems

Interrupt Timeline

Interrupt timeline for a single process doing output

DM526 � Operating Systems

Scheduling Processes

� Select from among the processes in memory that are

ready to execute, and allocates the CPU to one of them

� CPU scheduling decisions may take place when a

process:

1.Switches from running to waiting state

2.Switches from running to ready state

3.Switches from waiting to ready

4.Terminates

� Scheduling under 1 and 4 is nonpreemptive

� All other scheduling is preemptive

 A� dditional reading material in the Blackboard System

DM526 � Operating Systems

Scheduling Criteria

� CPU utilization � keep the CPU as busy as possible

� Throughput � # of processes that complete their

execution per time unit

� Turnaround time � amount of time to execute a

particular process

� Waiting time � amount of time a process has been

waiting in the ready queue

� Response time � amount of time it takes from when

a request was submitted until the first response is

produced, not output (for time-sharing environment)

DM526 � Operating Systems

Scheduling Algorithm Optimization Criteria

� Max CPU utilization

� Max throughput

� Min turnaround time

� Min waiting time

� Min response time

DM526 � Operating Systems

First-Come, First-Served (FCFS) Scheduling
Process Burst Time (Length)

 P1 24

 P2 3

 P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

� Waiting time for P1 = 0; P2 = 24; P3 = 27

� Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

DM526 � Operating Systems

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order

 P2 , P3 , P1

� The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3

� Average waiting time: (6 + 0 + 3)/3 = 3

� Much better than previous case

� Convoy effect short process behind long process

P1P3P2

63 300

DM526 � Operating Systems

Shortest-Job-First (SJF) Scheduling

� Associate with each process the length of its

next CPU burst. Use these lengths to schedule

the process with the shortest time

� SJF is optimal � gives minimum average waiting

time for a given set of processes

� The difficulty is knowing the length of the next

CPU request (not discussed in this lecture)

DM526 � Operating Systems

Example of SJF
Process Burst Time

 P1 6

 P2 8

 P3 7

 P4 3

� SJF scheduling chart

� Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4
P3P1

3 160 9

P2

24

DM526 � Operating Systems

Priority Scheduling

� A priority number (integer) is associated with each process

� The CPU is allocated to the process with the highest

priority (smallest integer � highest priority)

� Preemptive

� nonpreemptive

� SJF is a priority scheduling where priority is the predicted

next CPU burst time

� Problem � Starvation � low priority processes may never

execute

� Solution � Aging � as time progresses increase the

priority of the process

DM526 � Operating Systems

Round Robin (RR)

� Each process gets a small unit of CPU time (time

quantum), usually 10-100 milliseconds. After this time has

elapsed, the process is preempted and added to the end

of the ready queue.

� If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time

in chunks of at most q time units at once. No process

waits more than (n-1)q time units.

� Performance

� q large � FIFO

� q small � q must be large with respect to context

switch, otherwise overhead is too high

DM526 � Operating Systems

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

 P2 3

 P3 3

� The Gantt chart is:

� Typically, higher average turnaround than SJF,
but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

DM526 � Operating Systems

Time Quantum and Context Switch Time

 � Show Solaris

1.44 DM510 - 2009

Excursus: Virtual Machines

 (a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

DM526 � Operating Systems

Example Solaris Dispatch Table

 � show dispadmin in OpenSolaris

3-46DM526 � Operating Systems

3.4 Handling Competition for Resources

� Semaphore: A �control flag�

� Critical Region: A group of instructions

that should be executed by only one

process at a time

� Mutual exclusion: Requirement for proper

implementation of a critical region

DM526 � Operating Systems

Simple Example

� Shared memory strategy:
� small number p << n=size(A) processes

� attached to same memory

� Assign n/p numbers to each process (or thread)
� Each computes independent �private� results and partial sum.

� Collect the p partial sums and compute a global sum.

�
i=0

n�1

f � A[i] �

DM526 � Operating Systems
48

Shared Memory �Code� for Computing a Sum

Thread 1

 for i = 0, n/2-1

 s = s + f(A[i])

Thread 2

 for i = n/2, n-1

 s = s + f(A[i])

static int s = 0;

� Problem is a race condition on variable s in the program

� A race condition or data race occurs when:

- two processors (or two threads) access the same

variable, and at least one does a write.

- The accesses are concurrent (not synchronized) so

they could happen simultaneously

DM526 � Operating Systems
49

Shared Memory �Code� for Computing a Sum

Thread 1

 �.

 compute f([A[i]) and put in reg0

 reg1 = s

 reg1 = reg1 + reg0

 s = reg1

 �

Thread 2

 �

 compute f([A[i]) and put in reg0

 reg1 = s

 reg1 = reg1 + reg0

 s = reg1

 �

static int s = 0;

� Assume A = [3,5], f(x) = x2, and s=0 initially

� For this program to work, s should be 32 + 52 = 34 at the end

� but it may be 34,9, or 25

9 25

0 0

9 25

259

3 5A= f (x) = x2

 � show gcc -S example

DM526 � Operating Systems
50

Improved Code for Computing a Sum

Thread 1

 local_s1= 0

 for i = 0, n/2-1

 local_s1 = local_s1 + f(A[i])

 s = s + local_s1

Thread 2

 local_s2 = 0

 for i = n/2, n-1

 local_s2= local_s2 + f(A[i])

 s = s +local_s2

static int s = 0;

� Most computation is on private variables
- Sharing frequency is also reduced, which might improve speed

- But there is still a race condition on the update of shared s

- The race condition can be fixed by adding locks (only one

thread can hold a lock at a time; others wait for it)

static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

3-51DM526 � Operating Systems

Deadlock

� Processes block each other from

continuing

� Conditions required for deadlock

1. Competition for non-sharable resources

2. Resources requested on a partial basis

3. An allocated resource can not be forcibly

retrieved

3-52DM526 � Operating Systems

Figure 3.7 A deadlock resulting from

competition for non-shareable railroad

intersections

DM526 � Operating Systems

Dining-Philosophers Problem

The dining philosophers problem is summarized

as five philosophers sitting at a table doing one

of two things: eating or thinking. While eating,

they are not thinking, and while thinking, they

are not eating. The five philosophers sit at a

circular table with a large bowl of spaghetti in the

center. A fork is placed in between each pair of

adjacent philosophers, and as such, each

philosopher has one fork to his left and one fork

to his right. As spaghetti is difficult to serve and

eat with a single fork, it is assumed that a

philosopher must eat with two forks. Each

philosopher can only use the forks on his

immediate left and immediate right. (Wikipedia)

 � show Philosopher Applet

DM526 � Operating Systems

Dining-Philosopher Problem

� If philosophers never speak to each other, this creates

a dangerous possibility of deadlock when every

philosopher holds a left fork and waits perpetually for a

right fork (or vice versa).

� Starvation might also occur independently of deadlock

if a philosopher is unable to acquire both forks because

of a timing problem.

DM526 � Operating Systems

Solutions?

How to avoid deadlocks?

How to avoid starvation?

3-56DM526 � Operating Systems

3.5 Security

� Attacks from outside

� Problems

� Insecure passwords

� Sniffing software

� Counter measures

� Auditing software

3-57DM526 � Operating Systems

Security (continued)

� Attacks from within

� Problem: Unruly processes

� Counter measures: Control process activities

via privileged modes and privileged

instructions

DM526 � Operating Systems

Security Violations

� Categories

� Breach of confidentiality (unauthorized reading of data)

� Breach of integrity (unauthorized modification of data)

� Breach of availability (unauthorized destruction of data)

� Theft of service (unauthorized use of resources)

� Denial of service (preventing legitimate use of a system)

� Methods

� Masquerading (breach authentication)

� Replay attack

� Message modification

� Man-in-the-middle attack

� Session hijacking

DM526 � Operating Systems

Standard Security Attacks

3-60DM526 � Operating Systems

Chapter 3: Operating Systems

� 3.1 The History of Operating Systems

� 3.2 Operating System Architecture

� 3.3 Coordinating the Machine�s Activities

� 3.4 Handling Competition Among Processes

� 3.5 Security

