
DM536
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

COURSE ORGANIZATION

June 2009 2

Course Elements

§  Lectures Monday 10-12 (every week)
§  Lectures Wednesday 12-14 (next 3 weeks)

§  4 sections:
§  ???: Mathematics-Economy (2nd year)
§  ???: Mathematics / Applied Mathematics / Physics (2nd year)
§  S7 & S17: Computer Science (1st year)

§  Discussion sections (marked “E” in your schedule)
§  Labs (marked “E” in your schedule)

§  Exam = 2 practical projects

June 2009 3

Course Goals

§  Solve problems by writing computer programs

§  To this end, you will learn
§  to view programming as a problem solving approach
§  principles of imperative & object-oriented programming
§  how to model, test, debug, and document programs

§  Focus on general principles, NOT on the language Python

June 2009 4

Practical Issues / Course Material

§  You need an IMADA account (≠ SDU account)

§  Regularly check the course home page:
§  http://imada.sdu.dk/~petersk/DM536/
§  Slides, weekly notes, definite schedule, additional notes

§  Reading material:
§  Allen B. Downey: Think Python, Green Tea Press, 2012.
§  Available as PDF and HTML from:

http://greenteapress.com/thinkpython/thinkpython.html

June 2009 5

Course Contract

§  I am offering you the following:
1.  I explain all needed concepts (as often as needed)
2.  I am available and always willing to help you
3.  I guide your learning by assigning exercises

§  From you I expect the following:
1.  You ask questions, when something is unclear
2.  You contact me (or a TA), when you need help
3.  You prepare for lectures and discussion sections

§  You and I have the right and duty to call upon the contract!

June 2009 6

PROGRAMMING

June 2009 7

Programming as Problem Solving

June 2009 8

Problem

Specification

Design

Implementation

Program

Customer

Product

analysis	

choices	

coding	

testing	

Real Life “Programming”
June 2009 9

Programming in a Nutshell

§  Computers only have very limited abilities
§  Computers are used to solve complex problems

§  Programmers needed to break down complex problems into
a sequence of simpler (sub-)problems

§  program = sequence of simple instructions
§  instructions = vocabulary of a programming language

§  Programmers needed to express problems as sequence of
instructions understandable to the computer

June 2009 10

Simple Instructions

§  Administrative: from math import sqrt

§  Input: a = input()
 b = input()

§  Arithmetic operations: c = sqrt(a**2+b**2)

§  Output: print "Result:", c

§  That is basically ALL a computer can do.

June 2009 11

Combining Instructions

§  Sequence: <instr1>; <instr2>; <instr3>

§  Conditional Execution: if <cond>:
 <instr1>; <instr2>
 else:
 <instr3>; <instr4>; <instr5>

§  Subprograms / Functions: def <function>(<argument>):
 <instr1>; <instr2>
 <var> = <function>(<input>)

§  Repetition: while <cond>:
 <instr1>; <instr2>; <instr3>

June 2009 12

Executing Programs

§  Program stored in a file (source code file)
§  Instructions in this file executed top-to-bottom
§  Interpreter executes each instruction

June 2009 13

Source
Code

Input

Interpreter

Output

Debugging

§  Any reasonably complex program contains errors
§  Three types of errors (in Python)

§  Syntax Errors a = input)(

§  Runtime Errors c = 42 / 0

§  Semantic Errors c = a**2+b**2

§  Debugging is finding out why an error occurred

June 2009 14

VARIABLES, EXPRESSIONS
& STATEMENTS

June 2009 15

Values and Types

§  Values = basic data objects 42 23.0 "Hello!"
§  Types = classes of values integer float string

§  Values can be printed:
§  print <value> print "Hello!"

§  Types can be determined:

§  type(<value>) type(23.0)

§  Values and types can be compared:
§  <value> == <value> type(3) == type(3.0)

June 2009 16

Variables

§  variable = name that refers to a value
§  program state = mapping from variables to values

§  values are assigned to variables using “=”:
§  <var> = <value> b = 4

§  the value referred to by a variable can be printed:
§  print <var> print b

§  the type of a variable is the type of the value it refers to:
§  type(b) == type(4)

June 2009 17

Variable Names

§  start with a letter (convention: a-z)
§  contain letters a-z and A-Z, digits 0-9, and underscore “_”

§  can be any such name except for 31 reserved names:
and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

June 2009 18

Multiple Assignment

§  variables can be assigned to different values at different times:
§  Example: x = 3

 x = 4
§  Instructions are executed top-to bottom => x refers to 4

§  be careful, e.g., when exchanging values serially:
§  Example: x = y

 y = x
§  later x and y refer to the same value
§  Solution 1 (new variable): z = y; y = x; x = z
§  Solution 2 (parallel assign.): x, y = y, x

June 2009 19

Operators & Operands

§  Operators represent computations: + * - / **
§  Example: 23+19 day+month*30 2**6-22

§  Addition “+”, Multiplication “*”, Subtraction “-” as usual
§  Exponentiation “**”: x**y means xy

§  Division “/” rounds down integers:
§  Example 1: 21/42 has value 0, NOT 0.5
§  Example 2: 21.0/42 has value 0.5
§  Example 3: 21/42.0 has value 0.5

June 2009 20

Expressions

§  Expressions can be:
§  Values: 42 23.0 "Hej med dig!"
§  Variables: x y name1234
§  built from operators: 19+23.0 x**2+y**2

§  grammar rule:
§  <expr> => <value> |

 <var> |
 <expr> <operator> <expr> |
 (<expr>)

§  every expression has a value:
§  replace variables by their values
§  perform operations

June 2009 21

Operator Precedence

§  expressions are evaluated left-to-right
§  Example: 64 - 24 + 2 == 42

§  BUT: like in mathematics, “*” binds more strongly than “+”
§  Example: 2 + 8 * 5 == 42

§  parentheses have highest precedence: 64 - (24 + 2) == 38

§  PEMDAS rule:
§  Parentheses “(<expr>)”
§  Exponentiation “**”
§  Multiplication “*” and Division “/”
§  Addition “+” and Subtraction “-”

June 2009 22

String Operations

§  Addition “+” works on strings:
§  Example 1: print "Hello w" + "orld!"
§  Example 2: print "4" + "2"

§  Multiplication “*” works on strings, if 2nd operands is integer:
§  Example: print "Hej!" * 10

§  Subtraction “-”, Division “/”, and Exponentiation “**” do NOT
work on strings

June 2009 23

