
DM550 / DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

COURSE ORGANIZATION

June 20092

Course Elements

§ Lectures Mondays 12-14 in all weeks
§ Lectures Thursdays 14-16 in all weeks except 38, 41, 46, 48, 49

§ Exercises (marked “TE” in your schedule)

§ Labs (marked “TL” in your schedule)

§ Exam = project consisting of 2 practical project assignments
and 3 project qualification tests

June 20093

Sections

§ 5 sections
§ H7 (ABM), H8 (TF), & H9 (MGK):

§ Computer Science (1st year)

§ H1 (KA) & M1 (TF):
§ Mathematics-Economy (2nd year)
§ Applied Mathematics (2nd year)
§ Minor in Computer Science (2nd year)

§ 4 teaching assistants
§ ABM = Anders Bjørn Moeslund
§ KA = Kristoffer Abell
§ MGK = Mads Grau Kristensen
§ TF = Tobias Frisch

June 20094

Single Point of Contact

§ First point of contact is the teaching assistant of your section

§ Anders Bjørn Moeslund is the Head Teaching Assistant

§ Special mail adress for (almost) all further questions/issues:
§ prog@imada.sdu.dk

§ Contact Peter Schneider-Kamp directly in case of:
§ Complaints about/issues with teaching assistants

June 20095

Practical Issues / Course Material

§ You need an IMADA account (≠ SDU account), IF you want to
use the terminal room.

§ Regularly check one of the (identical) course home pages:
§ http://imada.sdu.dk/~petersk/DM550/
§ http://imada.sdu.dk/~petersk/DM857/
§ Slides, weekly notes, projects, additional notes

§ Reading material for the Python part:
§ Allen B. Downey: Think Python, 2nd edition, version 2.2.21,

Green Tea Press, 2017.
§ Available as PDF and HTML from:

http://greenteapress.com/wp/think-python-2e/

June 20096

Code Café

§ manned Code Cafe for students
§ first time Wednesday, September 6
§ last time Wednesday, December 20
§ closed in Week 42 (efterårsferie)

§ Mondays, 15.00 – 17.00, Nicky Cordua Mattsson
§ Wednesdays, 15.00 – 17.00, Troels RisumVigsøe Frimer
§

§ Nicky and Troels can help with any coding related issues
§ issues have to be related to some IMADA course (fx this one)

June 20097

Expected Workload

§ Prepare/attend/process lecture: 1+2+1 hour

§ Prepare/attend exercise/lab: 2+2 hours

§ Project: 2+50+2+50+2

§ Total: 21*4 + 21*4 + = 274 hours (10 ECTS)

June 20098

Course Goals

§ Solve problems by writing computer programs

§ To this end, you will learn
§ to view programming as a problem solving approach
§ principles of imperative & object-oriented programming
§ how to model, implement, test, debug, and document

programs

§ Focus on general principles, NOT on the languages Python
and Java

June 20099

Course Contract

§ I am offering you the following:
1. I explain all needed concepts (as often as needed)
2. I answer your questions (in class and during breaks)
3. I guide your learning by assigning exercises

§ From you I expect the following:
1. You ask questions, when something is unclear
2. You contact your TA (or head TA) early, when you need help
3. You prepare for lectures and discussion sections

§ You and I have the right and duty to call upon the contract!

June 200910

PROGRAMMING

June 200911

Programming as Problem Solving

June 200912

Problem

Specification

Design

Implementation

Program

Customer

Product

analysis

choices

coding

testing

Real Life “Programming”
June 200913

Programming in a Nutshell

§ Computers only have very limited abilities
§ Computers are used to solve complex problems

§ Programmers needed to break down complex problems into
a sequence of simpler (sub-)problems

§ program = sequence of simple instructions
§ instructions = vocabulary of a programming language

§ Programmers needed to express problems as sequence of
instructions understandable to the computer

June 200914

Simple Instructions

§ Administrative: from math import sqrt

§ Input: a = float(input())
b = float(input())

§ Arithmetic operations: c = sqrt(a**2+b**2)

§ Output: print("Result:", c)

§ That is basically ALL a computer can do.

June 200915

Combining Instructions

§ Sequence: <instr1>; <instr2>; <instr3>

§ Conditional Execution: if <cond>:
<instr1>; <instr2>

else:
<instr3>; <instr4>; <instr5>

§ Subprograms / Functions: def <function>(<argument>):
<instr1>; <instr2>

<var> = <function>(<input>)

§ Repetition: while <cond>:
<instr1>; <instr2>; <instr3>

June 200916

Executing Programs

§ Program stored in a file (source code file)
§ Instructions in this file executed top-to-bottom
§ Interpreter executes each instruction

June 200917

Source
Code

Input

Interpreter

Output

Debugging

§ Any reasonably complex program contains errors
§ Three types of errors (in Python)

§ Syntax Errors a = input)(

§ Runtime Errors c = 42 / 0

§ Semantic Errors c = a**2+b**2

§ Debugging is finding out why an error occurred

June 200918

VARIABLES, EXPRESSIONS
& STATEMENTS

June 200919

Values and Types

§ Values = basic data objects 42 23.0 "Hello!"
§ Types = classes of values integer float string

§ Values can be printed:
§ print(<value>) print("Hello!")

§ Types can be determined:
§ type(<value>) type(23.0)

§ Values and types can be compared:
§ <value> == <value> type(3) == type(3.0)

June 200920

Variables

§ variable = name that refers to a value
§ program state = mapping from variables to values

§ values are assigned to variables using “=”:
§ <var> = <value> b = 4

§ the value referred to by a variable can be printed:
§ print(<var>) print(b)

§ the type of a variable is the type of the value it refers to:
§ type(b) == type(4)

June 200921

Variable Names

§ start with a letter (convention: a-z)
§ contain letters a-z and A-Z, digits 0-9, and underscore “_”

§ can be any such name except for 33 reserved names:
and del from None True
as elif global nonlocal try
assert else if not while
break except import or with
class False in pass yield
continue finally is raise
def for lambda return

June 200922

Multiple Assignment

§ variables can be assigned to different values at different times:
§ Example: x = 3

x = 4
§ Instructions are executed top-to bottom => x refers to 4

§ be careful, e.g., when exchanging values serially:
§ Example: x = y

y = x
§ later x and y refer to the same value
§ Solution 1 (new variable): z = y; y = x; x = z
§ Solution 2 (parallel assign.): x, y = y, x

June 200923

Operators & Operands

§ Operators represent computations: + * - / // % **
§ Example: 23+19 day+month*30 2**6-22

§ Addition “+”, Multiplication “*”, Subtraction “-” as usual
§ Exponentiation “**”: x**y means xy

§ Division “//” rounds down integers:
§ Example 1: 21//42 has value 0, NOT 0.5
§ Example 2: -21//42 has value -1

§ For modulo "%" and "//": x == (x//y)*y + (x%y)

June 200924

Expressions

§ Expressions can be:
§ Values: 42 23.0 "Hej med dig!"
§ Variables: x y name1234
§ built from operators: 19+23.0 x**2+y**2

§ grammar rule:
§ <expr> => <value> |

<var> |
<expr> <operator> <expr> |
(<expr>)

§ every expression has a value:
§ replace variables by their values
§ perform operations

June 200925

