
DM537
Object-Oriented Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM537/!

PROJECT PART 1

June 2009 2

Organizational Details

§  exam project consisting of 2 parts
§  both parts have to be passed to pass the course

§  projects must be done individually, so no co-operation
§  you may talk about the problem and ideas how to solve them

§  deliverables:
§  written 4 page report as specified in project description
§  handed in electronically as a SINGLE PDF file
§  deadline: Wednesday, December 5, 12:00

§  ENOUGH - now for the FUN part …

June 2009 3

Board Games: Tic Tac Toe & Co

§  Tic Tac Toe: simple 2 player board game played on a 3 x 3 grid

§  extended rules for n-way Tic Tac Toe:

§  n players
§  (n+1) x (n+1) grid
§  3 marks in a row, column, diagonal

§  Goal: complete an implementation of n-way Tic Tac Toe

§  Challenges: Interfaces, GUI, Array Programming

June 2009 4

Board Games: Tic Tac Toe & Co
§  Task 0: Preparation

§  download and understand existing framework
§  need to describe design in your report!

§  Task 1: Bounding and Shifting Coordinates
§  implement check whether position on board or not
§  implement shift with given differential vector

§  Task 2: Implementing the Board
§  get mark for a position or check if it is free
§  record the move of a player
§  check whether there are any moves left
§  check the winning condition

June 2009 5

Board Games: Tic Tac Toe & Co
§  Task 3: Testing the Game

§  test game play for standard 2 player 3 x 3 Tic Tac Toe
§  test game play for n-way Tic Tac Toe with n > 2

§  Task 4 (optional): Connect Four
§  different simple board game
§  can be implemented similar to Tic Tac Toe

§  Task 5 (optional): Go
§  rich board game in a league with chess
§  can be implemented like this, too
§  more challenging!

June 2009 6

ADVANCED
OBJECT-ORIENTATION

June 2009 7

Object-Oriented Design

§  classes often do not exist in isolation from each other
§  a vehicle database might have classes for cars and trucks
§  in such situation, having a common superclass useful
§  Example:
public class Vehicle {
 public String model;
 public int year;
 public Vehicle(String model, int year) {
 this.model = model; this.year = year;
 }
 public String toString() {return this.model+" from "+this.year;}
}

June 2009 8

Extending Classes

§  Car and Truck then extend the Vehicle class
§  Example:
public class Car extends Vehicle {
 public String colour;
 public Car(string model, int year, String colour) {
 this.colour = colour; // this makes NO SENSE
 }
 public String toString() { return this.colour; }
}
public class Truck extends Vehicle {
 public double maxLoad;
 … }

June 2009 9

Class Hierarchy

§  class hierarchies are parts of class diagrams
§  for our example we have:

June 2009 10

Vehicle

Car

is-a

Truck

is-a Object is-a

Abstract Classes

§  often, superclasses should not have instances
§  in our example, we want no objects of class Vehicle
§  can be achieved by declaring the class to be abstract
§  Example:
public abstract class Vehicle {
 public String model;
 public int year;
 public Vehicle(string model, int year) {
 this.model = model; this.year = year;
 }
 public String toString() {return this.model+" from "+this.year;}
}
 June 2009 11

Accessing Attributes

§  attributes of superclasses can be accessed using “this”
§  Example:
public class Car extends Vehicle {
 public String colour;
 public Car(string model, int year, String colour) {
 this.model = model; this.year = year; this.colour = colour;
 }
 public String toString() {
 return this.colour+" "+this.model+" from "+this.year;
 }
}

June 2009 12

Accessing Superclass

§  methods of superclasses can be accessed using “super”
§  Example:
public class Car extends Vehicle {
 public String colour;
 public Car(string model, int year, String colour) {
 this.model = model; this.year = year; this.colour = colour;
 }
 public String toString() {
 return this.colour+" "+super.toString();
 }
}

June 2009 13

Superclass Constructors

§  constructors of superclasses can be accessed using “super”
§  Example:
public class Car extends Vehicle {
 public String colour;
 public Car(string model, int year, String colour) {
 super(model, year);
 this.colour = colour;
 }
 public String toString() {
 return this.colour+" "+super.toString();
 }
}

June 2009 14

Abstract Methods

§  abstract method = method declared but not implemented
§  useful in abstract classes (and later interfaces)
§  Example:
public abstract class Vehicle {
 public String model;
 public int year;
 public Vehicle(string model, int year) {
 this.model = model; this.year = year;
 }
 public String toString() {return this.model+" from "+this.year;}
 public abstract computeResaleValue();
}
 June 2009 15

Interfaces

§  different superclasses could have different implementations
§  to avoid conflicts, classes can only extend one (abstract) class
§  interfaces = abstract classes without implementation
§  only contain public abstract methods (abstract left out)
§  no conflict possible with different interfaces
§  Example:
public interface HasValueAddedTax {
 public double getValueAddedTax(double percentage);
}
public class Car implements HasValueAddedTax {
 public double getValueAddedTax(double p) { return 42000; }
 … }

June 2009 16

Interfaces

§  Example:
public interface HasValueAddedTax {
 public double getValueAddedTax(double percentage);
}
public interface Destructible {
 public void destroy();
}
public class Car implements HasValueAddedTax, Destructible {
 public double getValueAddedTax(double p) { return 42000; }
 public void destroy() { this.model = "BROKEN"; }
 …
}

June 2009 17

Interface and Class Hierarchy

§  interfaces outside normal class hierarchy

June 2009 18

Vehicle

Car Truck

HasValueAddedTax Destructible

GRAPHICAL
USER INTERFACES

June 2009 19

HelloWorld Reloaded

§  Java standard GUI package is Swing
§  from popup message to professional user interface
§  Example:
import javax.swing.*;
public class HelloWorldSimple {
 public static void main(String[] args) {
 JOptionPane.showMessageDialog(null, "Hello World!");
 }
}
§  more challenging to do anything more complicated
§  multi-threaded event-driven model-based UI design :-o

June 2009 20

Dialogs

§  user dialogs are created using JDialog class
§  basically like JFrame (next slide), but with a parent window
§  often used via static JOptionPane methods
§  Example:
Object[] options = {1, 2, 3, 4, 5, 10, 23, 42};
Object result = JOptionPane.showInputDialog(null,
 "Select number", "Input”,
 JOptionPane.INFORMATION_MESSAGE, null,
 options, options[0]);
int selectedInt = (Integer) result;

June 2009 21

Creating a Window

§  windows are represented by objects of class JFrame
§  constructor gets title displayed at top of window
§  Example:
JFrame window = new JFrame("My first window!");

window.setSize(400, 250); // set size of window to 700x400
window.setLocation(50, 50); // top-left corner at (50, 50)

// exit program when window is closed
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

window.setVisible(true); // show window on the screen

June 2009 22

Creating Content

§  content is placed in objects of class JPanel
§  on these we can either

§  draw directly on it using the paintComponent method
§  add ready-made components using the add method

§  every window has a JPanel as its main “content pane”
§  Example 1 (draw directly):
public class MyPanel extends JPanel {
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawString("My first panel!”, 100, 100);
 }
}

June 2009 23

Creating Content

§  content is placed in objects of class JPanel
§  on these we can either

§  draw directly on it using the paintComponent method
§  add ready-made components using the add method

§  every window has a JPanel as its main “content pane”
§  Example 2 (add a button):
JButton button = new JButton("My first button!");
button.addActionListener(new ButtonHandler());
JPanel panel = new JPanel();
panel.add(button);
window.setContentPane(panel);
window.pack();

June 2009 24

Listeners and Events

§  events = changes in the user interface
§  mouse movement, key pressed, button clicked, …

§  listeners = objects that respond to events
§  Example (ActionListener for button from previous slide):
import java.awt.*;
import java.awt.event.*;
public class ButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
}

June 2009 25

Mouse Events

§  interface MouseListener for mouse events
§  needs to be added using addMouseListener methods
§  often component class implementing the interface itself
§  Example (panel that changes color during click):
public class Clicky extends JPanel implements MouseListener {
 public Clicky() { this.addMouseListener(this); }
 public void mousePressed(MouseEvent event) {
 this.setBackground(Color.RED);
 }
 public void mouseReleased(MouseEvent evt) {
 this.setBackground(Color.GRAY);
 } … }

June 2009 26

Colors

§  colors are represented by objects of class Color
§  define by RGB values or use pre-defined constants
§  Example:
import java.awt.*;
…
JPanel panel = new JPanel(new BorderLayout());
JPanel panelA = new JPanel();
panelA.setBackground(new Color(192, 64,128)); // strange color
JPanel panelB = new JPanel();
panelB.setBackground(Color.RED));
panel.add(panelA, BorderLayout.NORTH);
panel.add(panelB, BorderLayout.SOUTH);

June 2009 27

Labels

§  simple component to display strings or images
§  labels are objects of class JLabel
§  text, colors, fonts etc. can be changed during runtime
§  Example:
JLabel label = new JLabel("My first label!", JLabel.CENTER);
…
label.setText("something more interesting");
label.setForeground(Color.BLUE);
label.setBackground(Color.YELLOW);
label.setOpaque(true); // background filled
label.setFont(new Font("Serif", Font.ITALIC, 15));

June 2009 28

Fonts

§  fonts represented by objects of class Font
§  constructor takes name, style, and point size
§  see Java API documentation for more examples
§  Example:
import java.awt.*;
…
Font font = new Font("Arial", Font.BOLD, 42);
JButton button = new JButton("Click me!");
button.setFont(font);
…

June 2009 29

Borders

§  borders are represented by objects of class Border
§  borders can be added to any component
§  typically created using static methods in BorderFactory
§  Example:
JPanel panel = new JPanel(new GridLayout(3,3));
for (int i = 0; i < 9; i++) {
 JPanel subPanel = new JPanel();
 subPanel.setBorder(BorderFactory.createLineBorder(
 Color.BLACK));
 panel.add(subPanel);
}

June 2009 30

Panel Layout

§  layout = spatial organization of components
§  components can be either

§  organized by absolute coordinates
§  organized by an object of class LayoutManager

§  Example 1 (layout with BorderLayout):
JPanel panel = new JPanel(new BorderLayout());
panel.add(new JButton("North"), BorderLayout.NORTH);
panel.add(new JButton("Center"), BorderLayout.CENTER);
panel.add(new JButton("West"), BorderLayout.WEST);
panel.add(new JButton("South"), BorderLayout.SOUTH);
panel.add(new JButton("East"), BorderLayout.EAST);

June 2009 31

Panel Layout

§  layout = spatial organization of components
§  components can be either

§  organized by absolute coordinates
§  organized by an object of class LayoutManager

§  Example 2 (layout with GridLayout):
JPanel panel = new JPanel(new GridLayout(2,3));
panel.add(new JButton("North"));
panel.add(new JButton("Center"));
panel.add(new JButton("West"));
panel.add(new JButton("South"));
panel.add(new JButton("East"));

June 2009 32

Basic Components

§  buttons represented by objects of class JButton
§  Example (disabled button with text label):
JButton button = new JButton("Big, bad, and ugly!");
button.addActionListener(new MyButtonHandler());
button.setEnabled(false);

§  check boxes represented by objects of class JCheckBox
§  Example (initially selected two-state check box):
JCheckBox checkBox = new JCheckBox("more money!", true);
…
boolean wantsMore = checkBox.isSelected();

June 2009 33

Basic Components

§  selectable options represented by objects of class JComboBox
§  Example (select from a list of numbers):
Object[] options = {1, 2, 3, 4, 5, 10, 23, 42};
JComboBox optionBox = new JComboBox(options);
optionBox.setSelected(6);
optionBox.addActionListener(new MySelectionHandler());
…
int selectedInt = (Integer) optionBox.getSelectedItem();

June 2009 34

Basic Components

§  selection on a range of values by objects of class JSlider
§  Example (select percentage from 0 to 100, initally 50):
JSlider percent = new JSlider(0, 100, 50);
percent.setMajorTickSpacing(25);
percent.setMinorTickSpacing(5);
percent.setPaintTicks(true);
percent.setPaintLabels(true);
percent.addChangeListener(new MyChangeHandler());

June 2009 35

Text Components

§  text fields represented by objects of class JTextField
§  Example (text field for email input):
JTextField email = new JTextField();
…
String userEmail = checkRFC5322(email.getText());

§  text areas represented by objects of class JTextArea
§  Example (full-window scrollable editable text entry area):
JTextArea entryArea = new JTextArea(5, 20);
textArea.setEditable(true);
JScrollPane scrollPane = new JScrollPane(textArea);
window.getContentPane().add(scrollPane);

June 2009 36

Menus

§  menus represented by JMenuBar, JMenu, and JMenuItem
§  Example (menu bar with a single file menu with three items):
JMenu file = new JMenu("File"); // create drop down menu
JMenuItem open = new JMenuItem("Open");
file.add(open); open.addActionListener(this);
JMenuItem save = new JMenuItem("Save");
file.add(save); save.addActionListener(this);
JMenuItem saveas = new JMenuItem("Save as ...");
file.add(saveas); saveas.addActionListener(this);
JMenuBar menuBar = new JMenuBar(); // menu bar
menuBar.add(file);

June 2009 37

Menus

§  menus represented by JMenuBar, JMenu, and JMenuItem
§  Example (menu bar with a single file menu with three items):
public class MyMenu implements ActionListener {
 public MyMenu() {
 … // see previous slide
 }
 public void actionPerformed(ActionEvent e) {
 … // check which menu item was clicked and react
 }
}

June 2009 38

ABSTRACT DATATYPES

June 2009 39

Abstract Datatype (ADT)

§  abstract datatype = data + operations on the data
§  Idea: encapsulate data + operations with uniform interface

§  operations of a datatype
§  at least one constructor
§  modifiers / setters
§  readers / getters
§  computations

§  ADTs typically specified by interfaces in Java

June 2009 40

Abstract Datatype (ADT)

§  abstract datatype = data + operations on the data

§  when specifying an ADT, we describe
§  the data and its logical organization
§  which operations we want to be able to perform
§  what the results of the operations should be

§  we do NOT describe
§  where and how the data is stored
§  how the operations are performed

§  ADTs are independent of the implementation (& language)
§  one ADT can have many different implementations!

June 2009 41

Examples for ADTs

§  Numbers: (integer, rational or real)
§  addition, subtraction, multiplication, division, …

§  Collections: (collections of elements)
§  List: (ordered collections of elements)

§  Stack (insert & remove elements at one end)
§ Queue (insert at one end, remove at the other)

§  Set: (unordered collection without duplicates)
§  SortedSet (ordered collection without duplicates)

§  Map: (mapping from keys to values)

June 2009 42

Developing ADTs

§  three steps (like in programming!)
1.  specification of an ADT by mathematical means

§  focus on WHAT we want
2.  design (still independent of implementation & language)

§  which data structures to use
§  which algorithms to use
§  focus on efficiency of representation and algorithms
§  different data structures give different efficiency for

operations
3.  implementation (language dependent)

§  select “right” programming language!
§  implement design in that programming language

June 2009 43

Specification of an ADT

§  mathematically precise!

§  data is represented by mathematical objects
§  Example: real numbers

§  operations are mathematical functions
§  explicit specifications
§  Example:

§  indirect specifications
§  Example:

June 2009 44

sqrt : x ∈ℜ≥0 y ∈ℜ≥0

x = y2 ∧ y ≥ 0

f (x) = x2

ℜ

Integer ADT

§  specification:
§  data: all
§  operations: addition +, subtraction -, negation -,

 multiplication *, division /

§  Design 1: use primitive data type int
 use primitive operations

§  Implementation 1: nothing to implement when using Java

§  Design 2: use array of bytes to store bit
 provide all relevant operations

§  Implementation 2: see class java.math.BigInteger

June 2009 45

n ∈ Ν

Integer ADT

§  specifying by mathematics often cumbersome
§  alternatively use interfaces to specify operations
§  alternative specification:

§  data: all
§  operations:

public interface MyInteger {
 public MyInteger add(MyInteger val); // addition
 public MyInteger sub(MyInteger val); // subtraction
 public MyInteger neg(); // negation
 public MyInteger mul(MyInteger val); // multplication
 public MyInteger div(MyInteger val); // division
}

June 2009 46

n ∈ Ν

