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Turtle World 

§  available from 
§  http://www.greenteapress.com/thinkpython/swampy/install.html 

 

§  basic elements of the library 
§  can be imported using from swampy.TurtleWorld import * 
§  w = TurtleWorld() creates new world w 
§  t = Turtle() creates new turtle t 
§  wait_for_user() can be used at the end of the program 
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Simple Repetition 

§  two basic commands to the turtle 
§  fd(t, 100) advances turtle t by 100 
§  lt(t) turns turtle t 90 degrees to the left 

§  drawing a square requires 4x drawing a line and turning left 
§  fd(t,100); lt(t);  fd(t,100); lt(t);  fd(t,100); lt(t);  fd(t,100); lt(t) 

§  simple repetition using for-loop  for <var> in range(<expr>): 
        <instr1>;  <instr2> 

§  Example:   for i in range(4): 
       print i 
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Simple Repetition 

§  two basic commands to the turtle 
§  fd(t, 100) advances turtle t by 100 
§  lt(t) turns turtle t 90 degrees to the left 

§  drawing a square requires 4x drawing a line and turning left 
§  fd(t,100); lt(t);  fd(t,100); lt(t);  fd(t,100); lt(t);  fd(t,100); lt(t) 

§  simple repetition using for-loop  for <var> in range(<expr>): 
        <instr1>;  <instr2> 

§  Example:   for i in range(4): 
       fd(t, 100) 
       lt(t) 
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Encapsulation 

§  Idea: wrap up a block of code in a function 
§  documents use of this block of code 
§  allows reuse of code by using parameters 

§  Example:   def square(t): 
       for i in range(4): 
           fd(t, 100) 
           lt(t) 
   square(t) 
   u = Turtle(); rt(u); fd(u,10); lt(u); 
   square(u) 
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Generalization 

§  square(t) can be reused, but size of square is fixed 

§  Idea: generalize function by adding parameters 
§  more flexible functionality 
§  more possibilities for reuse 

§  Example 1:   def square(t, length): 
       for i in range(4): 
           fd(t, length) 
           lt(t) 
   square(t, 100) 
   square(t, 50) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def square(t, length): 
    for i in range(4): 
        fd(t, length) 
        lt(t) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def polygon(t, length): 
    for i in range(4): 
        fd(t, length) 
        lt(t) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def polygon(t, n, length): 
    for i in range(n): 
        fd(t, length) 
        lt(t) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def polygon(t, n, length): 
    for i in range(n): 
        fd(t, length) 
        lt(t, 360/n) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def polygon(t, n, length): 
    angle = 360/n 
    for i in range(n): 
        fd(t, length) 
        lt(t, angle) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def polygon(t, n, length): 
    angle = 360/n 
    for i in range(n): 
        fd(t, length) 
        lt(t, angle) 
polygon(t, 4, 100) 
polygon(t, 6, 50) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def polygon(t, n, length): 
    angle = 360/n 
    for i in range(n): 
        fd(t, length) 
        lt(t, angle) 
polygon(t, n=4, length=100) 
polygon(t, n=6, length=50) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def polygon(t, n, length): 
    angle = 360/n 
    for i in range(n): 
        fd(t, length) 
        lt(t, angle) 
 
 
square(t, 100) 
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Generalization 

§  Example 2:  replace square by regular polygon with n sides 
 
def polygon(t, n, length): 
    angle = 360/n 
    for i in range(n): 
        fd(t, length) 
        lt(t, angle) 
def square(t, length): 
    polygon(t, 4, length) 
square(t, 100) 
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Interface Design 

§  Idea: interface = parameters + semantics + return value 
§  should be general (= easy to reuse) 
§  but as simple as possible (= easy to read and debug) 

§  Example: 
 def circle(t, r): 
     circumference = 2*math.pi*r 
     n = 10 
     length = circumference / n 
     polygon(t, n, length) 
 circle(t, 10) 
 circle(t, 100) 
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Interface Design 

§  Idea: interface = parameters + semantics + return value 
§  should be general (= easy to reuse) 
§  but as simple as possible (= easy to read and debug) 

§  Example: 
 def circle(t, r, n): 
     circumference = 2*math.pi*r 

#      n = 10 
     length = circumference / n 
     polygon(t, n, length) 
 circle(t, 10, 10) 
 circle(t, 100, 40) 
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Interface Design 

§  Idea: interface = parameters + semantics + return value 
§  should be general (= easy to reuse) 
§  but as simple as possible (= easy to read and debug) 

§  Example: 
 def circle(t, r): 
     circumference = 2*math.pi*r 
     n = int(circumference / 3) + 1 
     length = circumference / n 
     polygon(t, n, length) 
 circle(t, 10) 
 circle(t, 100) 
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Refactoring 

§  we want to be able to draw arcs 
§  Example: 

 def arc(t, r, angle): 
     arc_length = 2*math.pi*r*angle/360 
     n = int(arc_length / 3) + 1 
     step_length = arc_length / n 
     step_angle = float(angle) / n 

 
 

     for i in range(n): 
         fd(t, step_length) 
         lt(t, step_angle) 
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Refactoring 

§  we want to be able to draw arcs 
§  Example: 

 def arc(t, r, angle): 
     arc_length = 2*math.pi*r*angle/360 
     n = int(arc_length / 3) + 1 
     step_length = arc_length / n 
     step_angle = float(angle) / n 

 
 def polyline(t, n, length, angle): 
     for i in range(n): 
         fd(t, length) 
         lt(t, angle) 
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Refactoring 

§  we want to be able to draw arcs 
§  Example: 

 def arc(t, r, angle): 
     arc_length = 2*math.pi*r*angle/360 
     n = int(arc_length / 3) + 1 
     step_length = arc_length / n 
     step_angle = float(angle) / n 
     polyline(t, n, step_length, step_angle) 
 def polyline(t, n, length, angle): 
     for i in range(n): 
         fd(t, length) 
         lt(t, angle) 
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Refactoring 

§  we want to be able to draw arcs 
§  Example: 

 def polyline(t, n, length, angle): 
     for i in range(n): 
         fd(t, length) 
         lt(t, angle) 
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Refactoring 

§  we want to be able to draw arcs 
§  Example: 

 def polyline(t, n, length, angle): 
     for i in range(n): 
         fd(t, length) 
         lt(t, angle) 
 def polygon(t, n, length): 
     angle = 360/n 
     polyline(t, n, length, angle): 
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Refactoring 

§  we want to be able to draw arcs 
§  Example: 

 def arc(t, r, angle): 
     arc_length = 2*math.pi*r*angle/360 
     n = int(arc_length / 3) + 1 
     step_length = arc_length / n 
     step_angle = float(angle) / n 
     polyline(t, n, step_length, step_angle) 
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Refactoring 

§  we want to be able to draw arcs 
§  Example: 

 def arc(t, r, angle): 
     arc_length = 2*math.pi*r*angle/360 
     n = int(arc_length / 3) + 1 
     step_length = arc_length / n 
     step_angle = float(angle) / n 
     polyline(t, n, step_length, step_angle) 
 def circle(t, r): 
     arc(t, r, 360) 
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Simple Iterative Development 

§  first structured approach to develop programs: 
1.  write small program without functions 
2.  encapsulate code in functions 
3.  generalize functions (by adding parameters) 
4.  repeat steps 1–3 until functions work 
5.  refactor program (e.g. by finding similar code) 

§  copy & paste helpful 
§  reduces amount of typing 
§  no need to debug same code twice 
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Debugging Interfaces 

§  interfaces simplify testing and debugging 

1.  test if pre-conditions are given: 
§  do the arguments have the right type? 
§  are the values of the arguments ok? 

2.  test if the post-conditions are given: 
§  does the return value have the right type? 
§  is the return value computed correctly? 

3.  debug function, if pre- or post-conditions violated 
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CONDITIONAL EXECUTION 
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Boolean Expressions 

§  expressions whose value is either True or False 

§  logic operators for computing with Boolean values: 
§  x and y   True if, and only if, x is True and y is True 
§  x or y   True if (x is True or y is True) 
§  not x   True if, and only if, x is False 

§  Python also treats numbers as Boolean expressions: 
§  0     False 
§  any other number   True 
§  Please, do NOT use this feature! 
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Relational Operators 

§  relational operators are operators, whose value is Boolean 

§  important relational operators are: 
   Example True   Example False 

§  x <   y   23 < 42   "World" < "Hej!" 
§  x <=   y  42 <= 42.0   int(math.pi) <= 2 
§  x == y   42 == 42.0   type(2) == type(2.0)  
§  x >= y   42 >= 42   "Hej!" >= "Hello" 
§  x >   y   "World" > "Hej!"  42 > 42 

§  remember to use “==” instead of “=” (assignment)! 
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Conditional Execution 

§  the if-then statement executes code only if a condition holds 

§  grammar rule: 
 <if-then>          =>  if <cond>: 
          <instr1>;  …;  <instrk> 

 
 

§  Example:    if x <= 42: 
           print "not more than the answer" 
    if x  >  42: 
          print "sorry - too much!" 
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Control Flow Graph 

§  Example:    if x <= 42: 
           print "not more than the answer" 
    if x  >  42: 
          print "sorry - too much!" 
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Alternative Execution 

§  the if-then-else statement executes one of two code blocks 

§  grammar rule: 
 <if-then-else>   =>  if <cond>: 
          <instr1>;  …;  <instrk> 
    else: 
          <instr’1>;  …;  <instr’k’> 

 

§  Example:    if x <= 42: 
           print "not more than the answer" 
    else: 
          print "sorry - too much!" 
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Control Flow Graph 

§  Example:    if x <= 42: 
           print "not more than the answer" 
    else: 
          print "sorry - too much!" 
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Chained Conditionals 

§  alternative execution a special case of chained conditionals 

§  grammar rules: 
 <if-chained>      =>  if <cond1>: 
          <instr1,1>; …; <instrk1,1> 
    elif <cond2>: 
          … 
    else: 
          <instr1,m>; …; <instrkm,m> 

§  Example:  if x > 0:  print "positive" 
  elif x < 0:  print "negative" 
  else:   print "zero" 
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Control Flow Diagram 

§  Example:   if x > 0:  print "positive" 
   elif x < 0:  print "negative" 
   else:   print "zero" 
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Nested Conditionals 

§  conditionals can be nested below conditionals: 
 x = input() 
 y = input() 
 if x > 0: 
  if y > 0:  print "Quadrant 1" 
  elif y < 0:  print "Quadrant 4" 
  else:   print "positive x-Axis" 
 elif x < 0: 
  if y > 0:  print "Quadrant 2" 
  elif y < 0:  print "Quadrant 3" 
  else:   print "negative x-Axis" 
 else:  print "y-Axis" 
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RECURSION 
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Recursion 

§  a function can call other functions 
§  a function can call itself 
§  such a function is called a recursive function 

§  Example 1: 
 def countdown(n): 
     if n <= 0: 
         print "Ka-Boooom!" 
     else: 
         print n, "seconds left!" 
         countdown(n-1) 
 countdown(3) 
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Stack Diagrams for Recursion 

 __main__ 

 
 countdown 

 
 countdown 

 
 countdown 

 
 countdown 
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Recursion 

§  a function can call other functions 
§  a function can call itself 
§  such a function is called a recursive function 

§  Example 2: 
 def polyline(t, n, length, angle): 
     for i in range(n): 
         fd(t, length) 
         lt(t, angle) 

June 2009 42 



Recursion 

§  a function can call other functions 
§  a function can call itself 
§  such a function is called a recursive function 

§  Example 2: 
 def polyline(t, n, length, angle): 
     if n > 0: 
         fd(t, length) 
         lt(t, angle) 
         polyline(t, n-1, length, angle) 
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Infinite Recursion 

§  base case   =   no recursive function call reached 
§  we say the function call terminates 

§  Example 1:   n == 0 in countdown / polyline 

§  infinite recursion  =   no base case is reached 
§  also called non-termination 

§  Example: 
 def infinitely_often(): 
     infinitely_often() 

 

§  Python has recursion limit 1000 – ask sys.getrecursionlimit() 
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Keyboard Input 

§  so far we only know input() 
§  what happens when we enter Hello? 
§  input() treats all input as Python expression <expr> 

§  for string input, use raw_input() 
§  what happens when we enter 42? 
§  raw_input() treats all input as string 

§  both functions can take one argument prompt 
§  Example 1:  a = input("first side: ") 
§  Example 2:  name = raw_input("Your name:\n") 
§  “\n” denotes a new line:  print "Hello\nWorld\n!" 
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Debugging using Tracebacks 

§  error messages in Python give important information: 
§  where did the error occur? 
§  what kind of error occurred? 

§  unfortunately often hard to localize real problem 
§  Example:  

   def determine_vat(base_price, vat_price): 
       factor = base_price / vat_price 
       reverse_factor = 1 / factor 
       return reverse_factor - 1 
   print determine_vat(400, 500) 
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Debugging using Tracebacks 

§  error messages in Python give important information: 
§  where did the error occur? 
§  what kind of error occurred? 

§  unfortunately often hard to localize real problem 
§  Example:  

   def determine_vat(base_price, vat_price): 
       factor = float(base_price) / vat_price 
       reverse_factor = 1 / factor 
       return reverse_factor - 1 
   print determine_vat(400, 500) 
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FRUITFUL FUNCTIONS 
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Return Values 

§  so far we have seen only functions with one or no return 
§  sometimes more than one return makes sense 

§  Example 1:   
 def sign(x): 
     if x < 0: 
         return -1 
     elif x == 0: 
         return 0 
     else: 
         return 1 
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Return Values 

§  so far we have seen only functions with one or no return 
§  sometimes more than one return makes sense 

§  Example 1:   
 def sign(x): 
     if x < 0: 
         return -1 
     elif x == 0: 
         return 0 
     return 1 

§  important that all paths reach one return 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     print "dx:", dx 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     print "dx:", dx 
     dy = y2 - y1  # vertical distance 
     print "dy:", dy 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     print "dx:", dx 
     dy = y2 - y1  # vertical distance 
     print "dy:", dy 
     dxs = dx**2;  dys = dy**2 
     print "dxs dys:", dxs, dys 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     print "dxs dys:", dxs, dys 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     print "dxs dys:", dxs, dys 
     ds = dxs + dys  # square of distance 
     print "ds:", ds 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     print "ds:", ds 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     print "ds:", ds 
     d = math.sqrt(ds)  # distance 
     print d 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     d = math.sqrt(ds)  # distance 
     print d 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     d = math.sqrt(ds)  # distance 
     print d 
     return d 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     d = math.sqrt(ds)  # distance 
     return d 

June 2009 61 



Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     return math.sqrt(dx**2 + dy**2) 
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Incremental Development 

§  Idea:   test code while writing it 

1.  start with minimal function 
2.  add functionality piece by piece 
3.  use variables for intermediate values 
4.  print those variables to follow your progress 
5.  remove unnecessary output when function is finished 
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Composition 

§  function calls can be arguments to functions 
§  direct consequence of arguments being expressions 

§  Example:  area of a circle from center and peripheral point 
 

 def area(radius): 
     return math.pi * radius**2 

 
 def area_from_points(xc, yc, xp, yp): 
     return area(distance(xc, yc, xp, yp)) 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     if y / x * x == y:  # remainder of integer division is 0 
         return True 
     return False 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     if y % x == 0:  # remainder of integer division is 0 
         return True 
     return False 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     return y % x == 0 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     return y % x == 0 

 
 def even(x): 
     return divides(2, x) 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     return y % x == 0 

 
 def even(x): 
     return divides(2, x) 

 
 def odd(x): 
     return not divides(2, x) 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     return y % x == 0 

 
 def even(x): 
     return divides(2, x) 

 
 def odd(x): 
     return not even(x) 
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