
DM536 / DM550 Part 1
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

TURTLE WORLD &
INTERFACE DESIGN

June 2009 2

Turtle World

§  available from
§  http://www.greenteapress.com/thinkpython/swampy/install.html

§  basic elements of the library
§  can be imported using from swampy.TurtleWorld import *
§  w = TurtleWorld() creates new world w
§  t = Turtle() creates new turtle t
§  wait_for_user() can be used at the end of the program

June 2009 3

Simple Repetition

§  two basic commands to the turtle
§  fd(t, 100) advances turtle t by 100
§  lt(t) turns turtle t 90 degrees to the left

§  drawing a square requires 4x drawing a line and turning left
§  fd(t,100); lt(t); fd(t,100); lt(t); fd(t,100); lt(t); fd(t,100); lt(t)

§  simple repetition using for-loop for <var> in range(<expr>):
 <instr1>; <instr2>

§  Example: for i in range(4):
 print i

June 2009 4

Simple Repetition

§  two basic commands to the turtle
§  fd(t, 100) advances turtle t by 100
§  lt(t) turns turtle t 90 degrees to the left

§  drawing a square requires 4x drawing a line and turning left
§  fd(t,100); lt(t); fd(t,100); lt(t); fd(t,100); lt(t); fd(t,100); lt(t)

§  simple repetition using for-loop for <var> in range(<expr>):
 <instr1>; <instr2>

§  Example: for i in range(4):
 fd(t, 100)
 lt(t)

June 2009 5

Encapsulation

§  Idea: wrap up a block of code in a function
§  documents use of this block of code
§  allows reuse of code by using parameters

§  Example: def square(t):
 for i in range(4):
 fd(t, 100)
 lt(t)
 square(t)
 u = Turtle(); rt(u); fd(u,10); lt(u);
 square(u)

June 2009 6

Generalization

§  square(t) can be reused, but size of square is fixed

§  Idea: generalize function by adding parameters
§  more flexible functionality
§  more possibilities for reuse

§  Example 1: def square(t, length):
 for i in range(4):
 fd(t, length)
 lt(t)
 square(t, 100)
 square(t, 50)

June 2009 7

Generalization

§  Example 2: replace square by regular polygon with n sides

def square(t, length):
 for i in range(4):
 fd(t, length)
 lt(t)

June 2009 8

Generalization

§  Example 2: replace square by regular polygon with n sides

def polygon(t, length):
 for i in range(4):
 fd(t, length)
 lt(t)

June 2009 9

Generalization

§  Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
 for i in range(n):
 fd(t, length)
 lt(t)

June 2009 10

Generalization

§  Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
 for i in range(n):
 fd(t, length)
 lt(t, 360/n)

June 2009 11

Generalization

§  Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
 angle = 360/n
 for i in range(n):
 fd(t, length)
 lt(t, angle)

June 2009 12

Generalization

§  Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
 angle = 360/n
 for i in range(n):
 fd(t, length)
 lt(t, angle)
polygon(t, 4, 100)
polygon(t, 6, 50)

June 2009 13

Generalization

§  Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
 angle = 360/n
 for i in range(n):
 fd(t, length)
 lt(t, angle)
polygon(t, n=4, length=100)
polygon(t, n=6, length=50)

June 2009 14

Generalization

§  Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
 angle = 360/n
 for i in range(n):
 fd(t, length)
 lt(t, angle)

square(t, 100)

June 2009 15

Generalization

§  Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
 angle = 360/n
 for i in range(n):
 fd(t, length)
 lt(t, angle)
def square(t, length):
 polygon(t, 4, length)
square(t, 100)

June 2009 16

Interface Design

§  Idea: interface = parameters + semantics + return value
§  should be general (= easy to reuse)
§  but as simple as possible (= easy to read and debug)

§  Example:
 def circle(t, r):
 circumference = 2*math.pi*r
 n = 10
 length = circumference / n
 polygon(t, n, length)
 circle(t, 10)
 circle(t, 100)

June 2009 17

Interface Design

§  Idea: interface = parameters + semantics + return value
§  should be general (= easy to reuse)
§  but as simple as possible (= easy to read and debug)

§  Example:
 def circle(t, r, n):
 circumference = 2*math.pi*r

n = 10
 length = circumference / n
 polygon(t, n, length)
 circle(t, 10, 10)
 circle(t, 100, 40)

June 2009 18

Interface Design

§  Idea: interface = parameters + semantics + return value
§  should be general (= easy to reuse)
§  but as simple as possible (= easy to read and debug)

§  Example:
 def circle(t, r):
 circumference = 2*math.pi*r
 n = int(circumference / 3) + 1
 length = circumference / n
 polygon(t, n, length)
 circle(t, 10)
 circle(t, 100)

June 2009 19

Refactoring

§  we want to be able to draw arcs
§  Example:

 def arc(t, r, angle):
 arc_length = 2*math.pi*r*angle/360
 n = int(arc_length / 3) + 1
 step_length = arc_length / n
 step_angle = float(angle) / n

 for i in range(n):
 fd(t, step_length)
 lt(t, step_angle)

 June 2009 20

Refactoring

§  we want to be able to draw arcs
§  Example:

 def arc(t, r, angle):
 arc_length = 2*math.pi*r*angle/360
 n = int(arc_length / 3) + 1
 step_length = arc_length / n
 step_angle = float(angle) / n

 def polyline(t, n, length, angle):
 for i in range(n):
 fd(t, length)
 lt(t, angle)

 June 2009 21

Refactoring

§  we want to be able to draw arcs
§  Example:

 def arc(t, r, angle):
 arc_length = 2*math.pi*r*angle/360
 n = int(arc_length / 3) + 1
 step_length = arc_length / n
 step_angle = float(angle) / n
 polyline(t, n, step_length, step_angle)
 def polyline(t, n, length, angle):
 for i in range(n):
 fd(t, length)
 lt(t, angle)

 June 2009 22

Refactoring

§  we want to be able to draw arcs
§  Example:

 def polyline(t, n, length, angle):
 for i in range(n):
 fd(t, length)
 lt(t, angle)

June 2009 23

Refactoring

§  we want to be able to draw arcs
§  Example:

 def polyline(t, n, length, angle):
 for i in range(n):
 fd(t, length)
 lt(t, angle)
 def polygon(t, n, length):
 angle = 360/n
 polyline(t, n, length, angle):

June 2009 24

Refactoring

§  we want to be able to draw arcs
§  Example:

 def arc(t, r, angle):
 arc_length = 2*math.pi*r*angle/360
 n = int(arc_length / 3) + 1
 step_length = arc_length / n
 step_angle = float(angle) / n
 polyline(t, n, step_length, step_angle)

June 2009 25

Refactoring

§  we want to be able to draw arcs
§  Example:

 def arc(t, r, angle):
 arc_length = 2*math.pi*r*angle/360
 n = int(arc_length / 3) + 1
 step_length = arc_length / n
 step_angle = float(angle) / n
 polyline(t, n, step_length, step_angle)
 def circle(t, r):
 arc(t, r, 360)

June 2009 26

Simple Iterative Development

§  first structured approach to develop programs:
1.  write small program without functions
2.  encapsulate code in functions
3.  generalize functions (by adding parameters)
4.  repeat steps 1–3 until functions work
5.  refactor program (e.g. by finding similar code)

§  copy & paste helpful
§  reduces amount of typing
§  no need to debug same code twice

June 2009 27

Debugging Interfaces

§  interfaces simplify testing and debugging

1.  test if pre-conditions are given:
§  do the arguments have the right type?
§  are the values of the arguments ok?

2.  test if the post-conditions are given:
§  does the return value have the right type?
§  is the return value computed correctly?

3.  debug function, if pre- or post-conditions violated

June 2009 28

CONDITIONAL EXECUTION

June 2009 29

Boolean Expressions

§  expressions whose value is either True or False

§  logic operators for computing with Boolean values:
§  x and y True if, and only if, x is True and y is True
§  x or y True if (x is True or y is True)
§  not x True if, and only if, x is False

§  Python also treats numbers as Boolean expressions:
§  0 False
§  any other number True
§  Please, do NOT use this feature!

June 2009 30

Relational Operators

§  relational operators are operators, whose value is Boolean

§  important relational operators are:
 Example True Example False

§  x < y 23 < 42 "World" < "Hej!"
§  x <= y 42 <= 42.0 int(math.pi) <= 2
§  x == y 42 == 42.0 type(2) == type(2.0)
§  x >= y 42 >= 42 "Hej!" >= "Hello"
§  x > y "World" > "Hej!" 42 > 42

§  remember to use “==” instead of “=” (assignment)!

June 2009 31

Conditional Execution

§  the if-then statement executes code only if a condition holds

§  grammar rule:
 <if-then> => if <cond>:
 <instr1>; …; <instrk>

§  Example: if x <= 42:
 print "not more than the answer"
 if x > 42:
 print "sorry - too much!"

June 2009 32

Control Flow Graph

§  Example: if x <= 42:
 print "not more than the answer"
 if x > 42:
 print "sorry - too much!"

June 2009 33

x <= 42

x > 42

print "not more …"

print "sorry - too …"

True	

False	

True	

False	

Alternative Execution

§  the if-then-else statement executes one of two code blocks

§  grammar rule:
 <if-then-else> => if <cond>:
 <instr1>; …; <instrk>
 else:
 <instr’1>; …; <instr’k’>

§  Example: if x <= 42:
 print "not more than the answer"
 else:
 print "sorry - too much!"

June 2009 34

Control Flow Graph

§  Example: if x <= 42:
 print "not more than the answer"
 else:
 print "sorry - too much!"

June 2009 35

x <= 42 print "not more …"

print "sorry - too …"

True	

False	

Chained Conditionals

§  alternative execution a special case of chained conditionals

§  grammar rules:
 <if-chained> => if <cond1>:
 <instr1,1>; …; <instrk1,1>
 elif <cond2>:
 …
 else:
 <instr1,m>; …; <instrkm,m>

§  Example: if x > 0: print "positive"
 elif x < 0: print "negative"
 else: print "zero"

 June 2009 36

Control Flow Diagram

§  Example: if x > 0: print "positive"
 elif x < 0: print "negative"
 else: print "zero"

June 2009 37

x > 0

x < 0

print "positive"

print "negative"

True	

False	

True	

False	

print "zero"

Nested Conditionals

§  conditionals can be nested below conditionals:
 x = input()
 y = input()
 if x > 0:
 if y > 0: print "Quadrant 1"
 elif y < 0: print "Quadrant 4"
 else: print "positive x-Axis"
 elif x < 0:
 if y > 0: print "Quadrant 2"
 elif y < 0: print "Quadrant 3"
 else: print "negative x-Axis"
 else: print "y-Axis"
 June 2009 38

RECURSION

June 2009 39

Recursion

§  a function can call other functions
§  a function can call itself
§  such a function is called a recursive function

§  Example 1:
 def countdown(n):
 if n <= 0:
 print "Ka-Boooom!"
 else:
 print n, "seconds left!"
 countdown(n-1)
 countdown(3)

June 2009 40

Stack Diagrams for Recursion

 __main__

 countdown

 countdown

 countdown

 countdown

June 2009 41

n è 3

n è 2

n è 1

n è 0

Recursion

§  a function can call other functions
§  a function can call itself
§  such a function is called a recursive function

§  Example 2:
 def polyline(t, n, length, angle):
 for i in range(n):
 fd(t, length)
 lt(t, angle)

June 2009 42

Recursion

§  a function can call other functions
§  a function can call itself
§  such a function is called a recursive function

§  Example 2:
 def polyline(t, n, length, angle):
 if n > 0:
 fd(t, length)
 lt(t, angle)
 polyline(t, n-1, length, angle)

June 2009 43

Infinite Recursion

§  base case = no recursive function call reached
§  we say the function call terminates

§  Example 1: n == 0 in countdown / polyline

§  infinite recursion = no base case is reached
§  also called non-termination

§  Example:
 def infinitely_often():
 infinitely_often()

§  Python has recursion limit 1000 – ask sys.getrecursionlimit()

June 2009 44

Keyboard Input

§  so far we only know input()
§  what happens when we enter Hello?
§  input() treats all input as Python expression <expr>

§  for string input, use raw_input()
§  what happens when we enter 42?
§  raw_input() treats all input as string

§  both functions can take one argument prompt
§  Example 1: a = input("first side: ")
§  Example 2: name = raw_input("Your name:\n")
§  “\n” denotes a new line: print "Hello\nWorld\n!"

June 2009 45

Debugging using Tracebacks

§  error messages in Python give important information:
§  where did the error occur?
§  what kind of error occurred?

§  unfortunately often hard to localize real problem
§  Example:

 def determine_vat(base_price, vat_price):
 factor = base_price / vat_price
 reverse_factor = 1 / factor
 return reverse_factor - 1
 print determine_vat(400, 500)

June 2009 46

error
reported

real
problem

Debugging using Tracebacks

§  error messages in Python give important information:
§  where did the error occur?
§  what kind of error occurred?

§  unfortunately often hard to localize real problem
§  Example:

 def determine_vat(base_price, vat_price):
 factor = float(base_price) / vat_price
 reverse_factor = 1 / factor
 return reverse_factor - 1
 print determine_vat(400, 500)

June 2009 47

FRUITFUL FUNCTIONS

June 2009 48

Return Values

§  so far we have seen only functions with one or no return
§  sometimes more than one return makes sense

§  Example 1:
 def sign(x):
 if x < 0:
 return -1
 elif x == 0:
 return 0
 else:
 return 1

June 2009 49

Return Values

§  so far we have seen only functions with one or no return
§  sometimes more than one return makes sense

§  Example 1:
 def sign(x):
 if x < 0:
 return -1
 elif x == 0:
 return 0
 return 1

§  important that all paths reach one return

June 2009 50

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2

June 2009 51

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 print "dx:", dx

June 2009 52

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 print "dx:", dx
 dy = y2 - y1 # vertical distance
 print "dy:", dy

June 2009 53

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 print "dx:", dx
 dy = y2 - y1 # vertical distance
 print "dy:", dy
 dxs = dx**2; dys = dy**2
 print "dxs dys:", dxs, dys

June 2009 54

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 print "dxs dys:", dxs, dys

June 2009 55

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 print "dxs dys:", dxs, dys
 ds = dxs + dys # square of distance
 print "ds:", ds

June 2009 56

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 print "ds:", ds

June 2009 57

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 print "ds:", ds
 d = math.sqrt(ds) # distance
 print d

June 2009 58

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 d = math.sqrt(ds) # distance
 print d

June 2009 59

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 d = math.sqrt(ds) # distance
 print d
 return d

June 2009 60

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 d = math.sqrt(ds) # distance
 return d

June 2009 61

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 return math.sqrt(dx**2 + dy**2)

June 2009 62

Incremental Development

§  Idea: test code while writing it

1.  start with minimal function
2.  add functionality piece by piece
3.  use variables for intermediate values
4.  print those variables to follow your progress
5.  remove unnecessary output when function is finished

June 2009 63

Composition

§  function calls can be arguments to functions
§  direct consequence of arguments being expressions

§  Example: area of a circle from center and peripheral point

 def area(radius):
 return math.pi * radius**2

 def area_from_points(xc, yc, xp, yp):
 return area(distance(xc, yc, xp, yp))

June 2009 64

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 if y / x * x == y: # remainder of integer division is 0
 return True
 return False

June 2009 65

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 if y % x == 0: # remainder of integer division is 0
 return True
 return False

June 2009 66

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 return y % x == 0

June 2009 67

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 return y % x == 0

 def even(x):
 return divides(2, x)

June 2009 68

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 return y % x == 0

 def even(x):
 return divides(2, x)

 def odd(x):
 return not divides(2, x)

June 2009 69

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 return y % x == 0

 def even(x):
 return divides(2, x)

 def odd(x):
 return not even(x)

June 2009 70

