python

powered

DM550/DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Project Qualification Assessment

= first assessment on Monday, September 18, 12:15-14:00

= 3 assessments in total

= sum of points from all 3 assessments at least 50% of total

" in class assessment using your own computer

= please test BEFORE next Monday!

= Blackboard multiple choice

= Magic numbers generated using online python version at:
http://lynx.imada.sdu.dk/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Code Café

* manned Code Cafe for students
= first time VWednesday, September 6
" last time Wednesday, December 20

= closed in Week 42 (efterarsferie)

= Mondays, 15.00 — 17.00, Nicky Cordua Mattsson
* Wednesdays, 15.00 — 17.00, Troels Risum Vigsge Frimer

* Nicky and Troels can help with any coding related issues

= issues have to be related to some IMADA course (fx this one)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

GETTINGYOUR
HANDS DIRTY

Accessing Web Services

= any http URL can be retrieved using the requests module
= install using: pip3 install requests

= easy access to standard HTTP requests such as GET, POST, ...

= Retrieve a web:
import requests
requests.get("http://www.sdu.dk/")

= Access a web service:
url="http://lynx.imada.sdu.dk/osrm/route/v1/driving/-73,40;-73,40.1"
print(requests.get(url).json()["routes"]1[0])

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Jelling Stones to Little Mermaid

import requests

db = "http://dbpedia.org/"
stones = "Jelling_stones"
mermaid = "The_Little_Mermaid_(statue)"

stones = requests.get(db+"data/"+stones+".json").json()[db+"resource/"+stones]
mermaid = requests.get(db+"data/"+mermaid+".json").json()[db+"resource/"+mermaid]

stones_long = str(stones["http://www.w3.0rg/2003/01/geo/wgs84 posttlong"][0]["value"])
stones_lat = str(stones["http://www.w3.0rg/2003/01/geo/wgs84 pos#lat"][0]["value"])
mermaid_long = str(mermaid["http://www.w3.0rg/2003/01/geo/wgs84 postlong"][0]["value"])
mermaid_lat = str(mermaid["http://www.w3.0rg/2003/01/geo/wgs84 pos#lat"][0]["value"])

url = "http://lynx.imada.sdu.dk/osrm/route/v | /driving/"
res = requests.get(url+stones_long+"," " "

, +stones_lat+";"+mermaid_long+","+mermaid_|lat).json()
print(res["routes"][0]["distance"])

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

CONDITIONAL EXECUTION

Boolean Expressions

= expressions whose value is either True or False

* logic operators for computing with Boolean values:

" xandy True if,and only if, x is True and y is True
" Xory True if at least one of x and y is True
" not X True if,and only if, x is False

= Python also treats numbers as Boolean expressions:
= 0 False

= any other number True
* Please,do NOT use this feature!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Relational Operators

= relational operators are operators, whose value is Boolean

= important relational operators are:

Example True Example False
" x< 'y 23 <42 "World" < "Hej!"
" x<=y 42 <=42.0 int(math.pi) <=2
" X==y 42 ==420 type(2) == type(2.0)
"X>=y 42 >= 42 "Hej!" >= "Hello"
"X>y "World" > "Hej!" 42 > 42
" remember to use “==" instead of “=" (assignment)!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Conditional Execution

= the if-then statement executes code only if a condition holds

= grammar rule:

<if-then> => if <cond>:
<instr,>; ...; <instr, >
= Example: if x <= 42:

print("not more than the
answer"

if x > 42:

print("sorry - too much!")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Graph

= Example: if x <=42:
print("not more than the
answer
if x > 42:
print("sorry - too much!")
True

—> print('"'not more ...")

True

—> print ("'sorry - too ..."")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Alternative Execution

= the if-then-else statement executes one of two code blocks

= grammar rule:
<if-then-else> => if <cond>:

<instr,>; ..., <instr, >
else:
<instr’;>; ...; <instr’,,>
= Example: if x <= 42:

print("not more than the
answer"

else:

print("sorry - too much!")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Graph

= Example: if x <=42:
print("not more than the
answer"
else:
print("sorry - too much!")
True
X <= 42 —> print("'not more ...")
False
print ("'sorry - too ...""): Y

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Chained Conditionals

= alternative execution a special case of chained conditionals

= grammar rules:
<if-chained> => if <cond >:
<instr, ,>;...; <instr, ,>

elif <cond,>:

else:

<instr, .>;...; <instr >

* Example: ifx>0: print("positive")
elif x < 0: print("negative")
else: print("zero")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Diagram

= Example: if x > 0: print("positive")
elif x < 0O: print("negative")

else: print("zero")

True

-> print("positive)

False

ok

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

print(‘'negative)

alse

—> print(‘'zero")

Nested Conditionals

= conditionals can be nested below conditionals:
x = float(input())
y = float(input())

if x > 0:
ify > 0: print("Quadrant |")
elify <0: print("Quadrant 4")
else: print("positive x-Axis")

elif x < 0:
ify > 0: print("Quadrant 2")
elify <O: print("Quadrant 3")
else: print("negative x-Axis")

else: print("y-Axis")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

RECURSION

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions
= a function can call itself

= such a function is called a recursive function

= Example I:
def countdown(n):
if n <=0:
print("Ka-Boooom!")
else:
print(n, "seconds left!")
countdown(n-1)

countdown(3)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagrams for Recursion

__main__

countdown n > 3
countdown n > 2
countdown n > |
countdown n > 0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions
= a function can call itself

= such a function is called a recursive function

= Example 2:
def polyline(t, n, length, angle):
for i in range(n):
t.fd(length)
t.It(angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions
= a function can call itself

= such a function is called a recursive function

= Example 2:
def polyline(t, n, length, angle):
if n > 0:
t.fd(length)
t.It(angle)
polyline(t, n-1, length, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Infinite Recursion

* base case = no recursive function call reached
= we say the function call terminates

= Example I: n == 0 in countdown / polyline

= infinite recursion = no base case is reached

= also called non-termination

= Example:
def infinitely often():
infinitely _often()

= Python has recursion limit 1000 — ask sys.getrecursionlimit()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Keyboard Input

= so far we only know input()
= what happens when we enter Hello?

= what happens when we enter 42?

= the input function can take one optional argument prompt

= Example |: a = float(input("first side: "))
= Example 2: name = input(" Your name:\n")
* ‘“An” denotes a new line: print("Hello\nWorld\n!")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging using Tracebacks

= error messages in Python give important information:
= where did the error occur?

= what kind of error occurred!?

= unfortunately often hard to localize real problem

= Example:

def determine_vat(base_price, vat_price):
real : :
BEa kT factor = base_price // vat_price
reverse factor = | / factor

return reverse_factor - |
print(determine_vat(400, 500))

error
reported

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging using Tracebacks

= error messages in Python give important information:
= where did the error occur?

= what kind of error occurred!?

= unfortunately often hard to localize real problem
= Example:
def determine_vat(base_price, vat_price):
factor = base_price / vat_price
reverse factor = | / factor

return reverse_factor - |
print(determine_vat(400, 500))

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

FRUITFUL FUNCTIONS

Return Values

= so far we have seen only functions with one or no return

= sometimes more than one return makes sense

= Example I:
def sign(x):
if x <O:
return - |
elif x == 0:
return 0
else:

return |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Return Values

= so far we have seen only functions with one or no return

= sometimes more than one return makes sense

= Example I:
def sign(x):
if x <O:
return - |
if x ==0:
return 0

return |

= important that all paths reach one return

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)
dx = x2 - x| # horizontal distance
print("dx:", dx)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)
dx = x2 - x| # horizontal distance
print("dx:", dx)
dy =y2 -yl # vertical distance

print("dy:", dy)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)
dx = x2 - x| # horizontal distance
print("dx:", dx)
dy =y2 -yl # vertical distance
print("dy:", dy)
dxs = dx**2; dys = dy**2
print("dxs dys:", dxs, dys)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx**2; dys = dy**2
print("dxs dys:", dxs, dys)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx**2; dys = dy**2
print("dxs dys:", dxs, dys)
ds = dxs + dys # square of distance
print("ds:", ds)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx**2; dys = dy**2

ds = dxs + dys # square of distance

print("ds:", ds)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx**2; dys = dy**2

ds = dxs + dys # square of distance

print("ds:", ds)
d = math.sqrt(ds) # distance
print(d)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx**2; dys = dy**2

ds = dxs + dys # square of distance
d = math.sqrt(ds) # distance

print(d)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
print("x| yl x2 y2:", xl,yl, x2,y2)

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx**2; dys = dy**2

ds = dxs + dys # square of distance
d = math.sqrt(ds) # distance

print(d)

return d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)

def distance(x |, yl, x2, y2):

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx**2; dys = dy**2

ds = dxs + dys # square of distance

d = math.sqrt(ds) # distance

return d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X5,Y,)
def distance(x |, yl, x2, y2):
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
return math.sqrt(dx**2 + dy**2) # use Pythagoras

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it

|. start with minimal function
add functionality piece by piece
use variables for intermediate values

print those variables to follow your progress

o bk w

remove unnecessary output when function is finished

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Composition

= function calls can be arguments to functions

= direct consequence of arguments being expressions

* Example: area of a circle from center and peripheral point

def area(radius):

return math.pi * radius™*2

def area_from_ points(xc, yc, xp, Yp):

return area(distance(xc, yc, xp, yp))

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

* boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:
def divides(x, y):
ify // x*x==y: # remainder of integer division is 0
return True

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

* boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:
def divides(x, y):
ify % x==0: # remainder of integer division is 0
return True

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

" boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:

def divides(x, y):

returny % x ==

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

" boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:

def divides(x, y):

returny % x ==

def even(x):

return divides(2, x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

* boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution

= Example:
def divides(x, y):

returny % x ==

def even(x):

return divides(2, x)

def odd(x):

return not divides(2, x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

* boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution

= Example:
def divides(x, y):

returny % x ==

def even(x):

return divides(2, x)

def odd(x):

return not even(x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

