
DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk
Subject 8: Erlang

Bjørn Madsen

IMADA, SDU

April 29, 2009

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

What is Erlang?

Erlang is...

a general purpose programming language and runtime
environment

built for concurrency, distribution and fault tolerance

a functional programming language with syntax reminiscent of
Prolog

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

What is Erlang?

Erlang is...

a general purpose programming language and runtime
environment

built for concurrency, distribution and fault tolerance

a functional programming language with syntax reminiscent of
Prolog

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

What is Erlang?

Erlang is...

a general purpose programming language and runtime
environment

built for concurrency, distribution and fault tolerance

a functional programming language with syntax reminiscent of
Prolog

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

What is Erlang?

Erlang is...

a general purpose programming language and runtime
environment

built for concurrency, distribution and fault tolerance

a functional programming language with syntax reminiscent of
Prolog

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Functional programming

Variables start with a capital letter: X, Item, People, Count

Atoms are names, and start with a non-capital letter: apple,
item, job

Lists contain a sequence of other elements, of any type:
[1,X,ok], [], [2,4,8,16]

Tuples group related elements into one unit:
{name, ”John”, ”Doe”}, {count, apples, 255}
Variables can be bound to a value only once

Strings are just lists of integers representing printable
ascii-characters

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Functional programming

Variables start with a capital letter: X, Item, People, Count

Atoms are names, and start with a non-capital letter: apple,
item, job

Lists contain a sequence of other elements, of any type:
[1,X,ok], [], [2,4,8,16]

Tuples group related elements into one unit:
{name, ”John”, ”Doe”}, {count, apples, 255}
Variables can be bound to a value only once

Strings are just lists of integers representing printable
ascii-characters

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Functional programming

Variables start with a capital letter: X, Item, People, Count

Atoms are names, and start with a non-capital letter: apple,
item, job

Lists contain a sequence of other elements, of any type:
[1,X,ok], [], [2,4,8,16]

Tuples group related elements into one unit:
{name, ”John”, ”Doe”}, {count, apples, 255}
Variables can be bound to a value only once

Strings are just lists of integers representing printable
ascii-characters

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Functional programming

Variables start with a capital letter: X, Item, People, Count

Atoms are names, and start with a non-capital letter: apple,
item, job

Lists contain a sequence of other elements, of any type:
[1,X,ok], [], [2,4,8,16]

Tuples group related elements into one unit:
{name, ”John”, ”Doe”}, {count, apples, 255}
Variables can be bound to a value only once

Strings are just lists of integers representing printable
ascii-characters

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Functional programming

Variables start with a capital letter: X, Item, People, Count

Atoms are names, and start with a non-capital letter: apple,
item, job

Lists contain a sequence of other elements, of any type:
[1,X,ok], [], [2,4,8,16]

Tuples group related elements into one unit:
{name, ”John”, ”Doe”}, {count, apples, 255}

Variables can be bound to a value only once

Strings are just lists of integers representing printable
ascii-characters

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Functional programming

Variables start with a capital letter: X, Item, People, Count

Atoms are names, and start with a non-capital letter: apple,
item, job

Lists contain a sequence of other elements, of any type:
[1,X,ok], [], [2,4,8,16]

Tuples group related elements into one unit:
{name, ”John”, ”Doe”}, {count, apples, 255}
Variables can be bound to a value only once

Strings are just lists of integers representing printable
ascii-characters

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Functional programming

Variables start with a capital letter: X, Item, People, Count

Atoms are names, and start with a non-capital letter: apple,
item, job

Lists contain a sequence of other elements, of any type:
[1,X,ok], [], [2,4,8,16]

Tuples group related elements into one unit:
{name, ”John”, ”Doe”}, {count, apples, 255}
Variables can be bound to a value only once

Strings are just lists of integers representing printable
ascii-characters

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Hello, world
”Hello, world”in Erlang.

First an erlang module, hello.erl:

−module (h e l l o) .
−export ([h e l l o w o r l d /0]) .

h e l l o w o r l d () −> i o : fo rmat (” He l l o , wor ld ˜n”) .

Then we use it from the erlang shell:

1> c (h e l l o) . %% Compi le the module h e l l o
{ok , h e l l o }
2> h e l l o : h e l l o w o r l d () . %% Ca l l the h e l l o w o r l d /0 f u n c t i o n
He l l o , wor ld
ok

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Hello, world
”Hello, world”in Erlang.

First an erlang module, hello.erl:

−module (h e l l o) .
−export ([h e l l o w o r l d /0]) .

h e l l o w o r l d () −> i o : fo rmat (” He l l o , wor ld ˜n”) .

Then we use it from the erlang shell:

1> c (h e l l o) . %% Compi le the module h e l l o
{ok , h e l l o }
2> h e l l o : h e l l o w o r l d () . %% Ca l l the h e l l o w o r l d /0 f u n c t i o n
He l l o , wor ld
ok

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Hello, world
”Hello, world”in Erlang.

First an erlang module, hello.erl:

−module (h e l l o) .
−export ([h e l l o w o r l d /0]) .

h e l l o w o r l d () −> i o : fo rmat (” He l l o , wor ld ˜n”) .

Then we use it from the erlang shell:

1> c (h e l l o) . %% Compi le the module h e l l o
{ok , h e l l o }
2> h e l l o : h e l l o w o r l d () . %% Ca l l the h e l l o w o r l d /0 f u n c t i o n
He l l o , wor ld
ok

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Shopping list

Suppose we have a shopping list, comprised of tuples of the item
we need ot buy and the amount we need ot buy of it:

Buy = [{ app l e s , 5} , {newspaper , 1} , { oranges , 42}] .

We also have a mapping from an item to the price of a single unit
of that item:

c o s t (a pp l e s) −> 3 ;
c o s t (newspaper) −> 15 ;
c o s t (o range s) −> 2 .

We can use this to compute the total price of the items we have to
buy:

Tota l = co s t (a pp l e s) ∗ 5 + co s t (newspaper) ∗ 1 + co s t (o range s) ∗ 42 .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Shopping list

Suppose we have a shopping list, comprised of tuples of the item
we need ot buy and the amount we need ot buy of it:

Buy = [{ app l e s , 5} , {newspaper , 1} , { oranges , 42}] .

We also have a mapping from an item to the price of a single unit
of that item:

c o s t (a pp l e s) −> 3 ;
c o s t (newspaper) −> 15 ;
c o s t (o range s) −> 2 .

We can use this to compute the total price of the items we have to
buy:

Tota l = co s t (a pp l e s) ∗ 5 + co s t (newspaper) ∗ 1 + co s t (o range s) ∗ 42 .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Shopping list

Suppose we have a shopping list, comprised of tuples of the item
we need ot buy and the amount we need ot buy of it:

Buy = [{ app l e s , 5} , {newspaper , 1} , { oranges , 42}] .

We also have a mapping from an item to the price of a single unit
of that item:

c o s t (a pp l e s) −> 3 ;
c o s t (newspaper) −> 15 ;
c o s t (o range s) −> 2 .

We can use this to compute the total price of the items we have to
buy:

Tota l = co s t (a pp l e s) ∗ 5 + co s t (newspaper) ∗ 1 + co s t (o range s) ∗ 42 .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Shopping list

Suppose we have a shopping list, comprised of tuples of the item
we need ot buy and the amount we need ot buy of it:

Buy = [{ app l e s , 5} , {newspaper , 1} , { oranges , 42}] .

We also have a mapping from an item to the price of a single unit
of that item:

c o s t (a pp l e s) −> 3 ;
c o s t (newspaper) −> 15 ;
c o s t (o range s) −> 2 .

We can use this to compute the total price of the items we have to
buy:

Tota l = co s t (a pp l e s) ∗ 5 + co s t (newspaper) ∗ 1 + co s t (o range s) ∗ 42 .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Computing the total

How can we do this smarter

t o t a l ([{What , N} |T]) −> c o s t (What) ∗ N + t o t a l (T) ;
t o t a l ([]) −> 0 .

But it can be done shorter with functional programming tools map,
and sum:

t o t a l (L) −>
sum(map(fun ({What , N}) −> c o s t (What) ∗ N end , L)) .

If we use list comprehensions it can be done even shorter still:

t o t a l (L) −>
sum([c o s t (What) ∗ N | | {What , N} <− L]) .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Computing the total

How can we do this smarter

t o t a l ([{What , N} |T]) −> c o s t (What) ∗ N + t o t a l (T) ;
t o t a l ([]) −> 0 .

But it can be done shorter with functional programming tools map,
and sum:

t o t a l (L) −>
sum(map(fun ({What , N}) −> c o s t (What) ∗ N end , L)) .

If we use list comprehensions it can be done even shorter still:

t o t a l (L) −>
sum([c o s t (What) ∗ N | | {What , N} <− L]) .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Computing the total

How can we do this smarter

t o t a l ([{What , N} |T]) −> c o s t (What) ∗ N + t o t a l (T) ;
t o t a l ([]) −> 0 .

But it can be done shorter with functional programming tools map,
and sum:

t o t a l (L) −>
sum(map(fun ({What , N}) −> c o s t (What) ∗ N end , L)) .

If we use list comprehensions it can be done even shorter still:

t o t a l (L) −>
sum([c o s t (What) ∗ N | | {What , N} <− L]) .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Computing the total

How can we do this smarter

t o t a l ([{What , N} |T]) −> c o s t (What) ∗ N + t o t a l (T) ;
t o t a l ([]) −> 0 .

But it can be done shorter with functional programming tools map,
and sum:

t o t a l (L) −>
sum(map(fun ({What , N}) −> c o s t (What) ∗ N end , L)) .

If we use list comprehensions it can be done even shorter still:

t o t a l (L) −>
sum([c o s t (What) ∗ N | | {What , N} <− L]) .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

A larger example
Computing the total

How can we do this smarter

t o t a l ([{What , N} |T]) −> c o s t (What) ∗ N + t o t a l (T) ;
t o t a l ([]) −> 0 .

But it can be done shorter with functional programming tools map,
and sum:

t o t a l (L) −>
sum(map(fun ({What , N}) −> c o s t (What) ∗ N end , L)) .

If we use list comprehensions it can be done even shorter still:

t o t a l (L) −>
sum([c o s t (What) ∗ N | | {What , N} <− L]) .

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Distributed programming

Passing messages in Erlang is easy:

Rece i v e r P ID ! An y v a l i d e r l a n g t e rm

Receiving them is just as easy:

l oop () −>
r e c e i v e
{ok , } −> l oop () ;
{ e r r o r , Msg} −> i o : fo rmat (” E r r o r : ˜w˜n” , [Msg])
end .

Since the PID of an Erlang light-weight process includes
information on the node at which it is running, a PID is enough to
send a message to a process on another computing node.

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Distributed programming

Passing messages in Erlang is easy:

Rece i v e r P ID ! An y v a l i d e r l a n g t e rm

Receiving them is just as easy:

l oop () −>
r e c e i v e
{ok , } −> l oop () ;
{ e r r o r , Msg} −> i o : fo rmat (” E r r o r : ˜w˜n” , [Msg])
end .

Since the PID of an Erlang light-weight process includes
information on the node at which it is running, a PID is enough to
send a message to a process on another computing node.

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

Distributed programming

Passing messages in Erlang is easy:

Rece i v e r P ID ! An y v a l i d e r l a n g t e rm

Receiving them is just as easy:

l oop () −>
r e c e i v e
{ok , } −> l oop () ;
{ e r r o r , Msg} −> i o : fo rmat (” E r r o r : ˜w˜n” , [Msg])
end .

Since the PID of an Erlang light-weight process includes
information on the node at which it is running, a PID is enough to
send a message to a process on another computing node.

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

My project
A distributed TSP-solver

As part of an earlier project a distributed TSP-solver in Java was
developed.
In this project I will develop a distributed TSP-solver in Erlang and
compare it to the Java-version.

Compare speed on a single, multi-core computer

Compare speed distributed to several computers

Comparison of the code, which is easier to understand, which
is easier to write?

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

My project
A distributed TSP-solver

As part of an earlier project a distributed TSP-solver in Java was
developed.
In this project I will develop a distributed TSP-solver in Erlang and
compare it to the Java-version.

Compare speed on a single, multi-core computer

Compare speed distributed to several computers

Comparison of the code, which is easier to understand, which
is easier to write?

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

My project
A distributed TSP-solver

As part of an earlier project a distributed TSP-solver in Java was
developed.
In this project I will develop a distributed TSP-solver in Erlang and
compare it to the Java-version.

Compare speed on a single, multi-core computer

Compare speed distributed to several computers

Comparison of the code, which is easier to understand, which
is easier to write?

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

DM8XX Proposal Talk Subject 8: Erlang

My project
A distributed TSP-solver

As part of an earlier project a distributed TSP-solver in Java was
developed.
In this project I will develop a distributed TSP-solver in Erlang and
compare it to the Java-version.

Compare speed on a single, multi-core computer

Compare speed distributed to several computers

Comparison of the code, which is easier to understand, which
is easier to write?

Bjørn Madsen DM8XX Proposal Talk Subject 8: Erlang

