
Termination Analysis by Dependency Pairs and

Inductive Theorem Proving⋆

S. Swiderski1, M. Parting1, J. Giesl1, C. Fuhs1, and P. Schneider-Kamp2

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Dept. of Mathematics & CS, University of Southern Denmark, Odense, Denmark

Abstract. Current techniques and tools for automated termination
analysis of term rewrite systems (TRSs) are already very powerful. How-
ever, they fail for algorithms whose termination is essentially due to
an inductive argument. Therefore, we show how to couple the depen-

dency pair method for TRS termination with inductive theorem prov-
ing. As confirmed by the implementation of our new approach in the
tool AProVE, now TRS termination techniques are also successful on
this important class of algorithms.

1 Introduction

There are many powerful techniques and tools to prove termination of TRSs au-
tomatically. Moreover, TRS tools are also very successful in termination analysis
of real programming languages like, e.g., Haskell and Prolog [12, 31]. To measure
their performance, there is an annual International Competition of Termination
Provers,3 where the tools compete on a large data base of TRSs. Nevertheless,
there exist natural algorithms like the following one where all these tools fail.

Example 1. Consider the following TRS Rsort.

ge(x, 0) → true eq(0, 0) → true

ge(0, s(y)) → false eq(s(x), 0) → false

ge(s(x), s(y)) → ge(x, y) eq(0, s(y)) → false

eq(s(x), s(y)) → eq(x, y)
max(nil) → 0

max(co(x, nil)) → x if1(true, x, y, xs) → max(co(x, xs))
max(co(x, co(y, xs))) → if1(ge(x, y), x, y, xs) if1(false, x, y, xs) → max(co(y, xs))

del(x,nil) → nil if2(true, x, y, xs) → xs

del(x, co(y, xs)) → if2(eq(x, y), x, y, xs) if2(false, x, y, xs) → co(y,del(x, xs))

sort(nil) → nil

sort(co(x, xs)) → co(max(co(x, xs)), sort(del(max(co(x, xs)), co(x, xs))))

Here, numbers are represented with 0 and s (for the successor function) and lists
are represented with nil (for the empty list) and co (for list insertion). For any list
xs, max(xs) computes its maximum (where max(nil) is 0), and del(n, xs) deletes

⋆ In Proc. CADE’09, LNAI, 2009. Supported by the DFG Research Training Group
1298 (AlgoSyn), the DFG grant GI 274/5-2, and the G.I.F. grant 966-116.6.

3 http://termination-portal.org/wiki/Termination Competition

the first occurrence of n from the list xs. If n does not occur in xs , then del(n, xs)
returns xs. Algorithms like max and del are often expressed with conditions.
Such conditional rules can be automatically transformed into unconditional ones
(cf. e.g. [27]) and we already did this transformation in our example. To sort
a non-empty list ys (i.e., a list of the form “co(x, xs)”), sort(ys) reduces to
“co(max(ys), sort(del(max(ys), ys))”. So sort(ys) starts with the maximum of ys
and then sort is called recursively on the list that results from ys by deleting the
first occurrence of its maximum. Note that

every non-empty list contains its maximum. (1)

Hence, the list del(max(ys), ys) is shorter than ys and thus, Rsort is terminating.

So (1) is the main argument needed for termination of Rsort. Thus, when try-
ing to prove termination of TRSs like Rsort automatically, one faces 2 problems:

(a) One has to detect the main argument needed for termination and one has to
find out that the TRS is terminating provided that this argument is valid.

(b) One has to prove that the argument detected in (a) is valid.

In our example, (1) requires a non-trivial induction proof that relies on the
max- and del-rules. Such proofs cannot be done by TRS termination techniques,
but they could be performed by state-of-the-art inductive theorem provers [4,
5, 7, 8, 20, 21, 33, 34, 36]. So to solve Problem (b), we would like to couple ter-
mination techniques for TRSs (like the dependency pair (DP) method which is
implemented in virtually every current TRS termination tool) with an induc-
tive theorem prover. Ideally, this prover should perform the validity proof in (b)
fully automatically, but of course it is also possible to have user interaction here.
However, it still remains to solve Problem (a). Thus, one has to extend the TRS
termination techniques such that they can automatically synthesize an argument
like (1) and find out that this argument is sufficient in order to complete the
termination proof. This is the subject of the current paper.

There is already work on applying inductive reasoning in termination proofs.
Some approaches like [6, 15, 16, 28] integrate special forms of inductive reasoning
into the termination method itself. These approaches are successful on certain
forms of algorithms, but they cannot handle examples like Ex. 1 where one needs
more general forms of inductive reasoning. Therefore, in this paper our goal is to
couple the termination method with an arbitrary (black-box) inductive theorem
prover which may use any kind of proof techniques.

There exist also approaches like [5, 10, 22, 25, 32] where a full inductive the-
orem prover is used to perform the whole termination proof of a functional
program. Such approaches could potentially handle algorithms like Ex. 1 and
indeed, Ex. 1 is similar to an algorithm from [10, 32]. In general, to prove termi-
nation one has to solve two tasks: (i) one has to synthesize suitable well-founded
orders and (ii) one has to prove that recursive calls decrease w.r.t. these orders.
If there is just an inductive theorem prover available for the termination proof,
then for Task (i) one can only use a fixed small set of orders or otherwise, ask

2

the user to provide suitable well-founded orders manually. Moreover, then Task
(ii) has to be tackled by the full theorem prover which may often pose problems
for automation. In contrast, there are many TRS techniques and tools available
that are extremely powerful for Task (i) and that offer several specialized meth-
ods to perform Task (ii) fully automatically in a very efficient way. So in most
cases, no inductive theorem prover is needed for Task (ii). Nevertheless, there
exist important algorithms (like Rsort) where Task (ii) indeed requires inductive
theorem proving. Thus, we propose to use the “best of both worlds”, i.e., to ap-
ply TRS techniques whenever possible, but to use an inductive theorem prover
for those parts where it is needed.

After recapitulating the DP method in Sect. 2, in Sect. 3 we present the main
idea for our improvement. To make this improvement powerful in practice, we
need the new result that innermost termination of many-sorted term rewriting
and of unsorted term rewriting is equivalent. We expect that this observation will
be useful also for other applications in term rewriting, since TRSs are usually
considered to be unsorted. We use this result in Sect. 4 where we show how the
DP method can be coupled with inductive theorem proving in order to prove
termination of TRSs like Rsort automatically.

We implemented our new technique in the termination prover AProVE [13].
Here, we used a small inductive theorem prover inspired by [5, 7, 21, 33, 34, 36]
which had already been implemented in AProVE before. Although this inductive
theorem prover is less powerful than the more elaborated full theorem provers
in the literature, it suffices for many of those inductive arguments that typically
arise in termination proofs. This is confirmed by the experimental evaluation of
our contributions in Sect. 5. Note that the results of this paper allow to couple
any termination prover implementing DPs with any inductive theorem prover.
Thus, by using a more powerful inductive theorem prover than the one integrated
in AProVE, the power of the resulting tool could even be increased further.

2 Dependency Pairs

We assume familiarity with term rewriting [3] and briefly recapitulate the DP
method. See e.g. [2, 11, 14, 18, 19] for further motivations and extensions.

Definition 2 (Dependency Pairs). For a TRS R, the defined symbols DR

are the root symbols of left-hand sides of rules. All other function symbols are
called constructors. For every defined symbol f ∈ DR, we introduce a fresh tuple
symbol f ♯ with the same arity. To ease readability, we often write F instead of f ♯,
etc. If t = f(t1, . . . , tn) with f ∈ DR, we write t♯ for f ♯(t1, . . . , tn). If ℓ → r ∈ R
and t is a subterm of r with defined root symbol, then the rule ℓ♯ → t♯ is a
dependency pair of R. The set of all dependency pairs of R is denoted DP(R).

We get the following set DP(Rsort), where GE is ge’s tuple symbol, etc.

GE(s(x), s(y)) → GE(x, y) (2)
EQ(s(x), s(y)) → EQ(x, y) (3)

MAX(co(x, co(y, xs))) → IF1(ge(x, y), x, y, xs) (4)
MAX(co(x, co(y, xs))) → GE(x, y) (5)

3

IF1(true, x, y, xs) → MAX(co(x, xs)) (6)
IF1(false, x, y, xs) → MAX(co(y, xs)) (7)
DEL(x, co(y, xs)) → IF2(eq(x, y), x, y, xs) (8)
DEL(x, co(y, xs)) → EQ(x, y) (9)
IF2(false, x, y, xs) → DEL(x, xs) (10)
SORT(co(x, xs)) → SORT(del(max(co(x, xs)), co(x, xs))) (11)
SORT(co(x, xs)) → DEL(max(co(x, xs)), co(x, xs)) (12)
SORT(co(x, xs)) → MAX(co(x, xs)) (13)

In this paper, we only regard the innermost rewrite relation i→ and prove
innermost termination, since techniques for innermost termination are consid-
erably more powerful than those for full termination. For large classes of TRSs
(e.g., TRSs resulting from programming languages [12, 31] or non-overlapping
TRSs like Ex. 1), innermost termination is sufficient for termination.

For 2 TRSs P and R (where P usually consists of DPs), an innermost (P ,R)-
chain is a sequence of (variable-renamed) pairs s1 → t1, s2 → t2, . . . from P such
that there is a substitution σ (with possibly infinite domain) where tiσ

i→∗
R

si+1σ
and siσ is in normal form w.r.t. R, for all i.4 The main result on DPs states that
R is innermost terminating iff there is no infinite innermost (DP(R),R)-chain.

As an example for a chain, consider “(11), (11)”, i.e.,

SORT(co(x , xs)) → SORT(del(max(co(x , xs)), co(x , xs))),
SORT(co(x′, xs ′)) → SORT(del(max(co(x′, xs ′)), co(x′, xs ′))).

Indeed, if σ(x) = σ(x′) = 0, σ(xs) = co(s(0), nil), and σ(xs ′) = nil, then

SORT(del(max(co(x, xs)), co(x, xs)))σ i→∗
Rsort

SORT(co(x′, xs ′))σ.

Termination techniques are now called DP processors and they operate on
pairs of TRSs (P ,R) (which are called DP problems).5 Formally, a DP pro-
cessor Proc takes a DP problem as input and returns a set of new DP prob-
lems which then have to be solved instead. A processor Proc is sound if for
all DP problems (P ,R) with an infinite innermost (P ,R)-chain there is also a
(P ′,R′) ∈ Proc((P ,R)) with an infinite innermost (P ′,R′)-chain. Soundness of
a DP processor is required to prove innermost termination and in particular, to
conclude that there is no infinite innermost (P ,R)-chain if Proc((P ,R)) = ∅.

So innermost termination proofs in the DP framework start with the initial
problem (DP(R),R). Then the problem is simplified repeatedly by sound DP
processors. If all DP problems have been simplified to ∅, then innermost termi-
nation is proved. Thm. 3-5 recapitulate three of the most important processors.

Thm. 3 allows us to replace the TRS R in a DP problem (P ,R) by the usable
rules. These include all rules that can be used to reduce the terms in right-hand
sides of P when their variables are instantiated with normal forms.

Theorem 3 (Usable Rule Processor [2, 11]). Let R be a TRS. For any
function symbol f , let Rls(f) = {ℓ → r ∈ R | root(ℓ) = f}. For any term t, the

4 All results of the present paper also hold if one regards minimal instead of ordinary
innermost chains, i.e., chains where all tiσ are innermost terminating.

5 To ease readability we use a simpler definition of DP problems than [11], since this
simple definition suffices for the presentation of the new results of this paper.

4

usable rules U(t) are the smallest set such that

• U(x) = ∅ for every variable x and
• U(f(t1, . . . , tn)) = Rls(f) ∪

⋃

ℓ→r∈Rls(f) U(r) ∪
⋃n

i=1 U(ti)

For a TRS P, its usable rules are U(P) =
⋃

s→t∈P
U(t). Then the following DP

processor Proc is sound: Proc((P ,R)) = { (P , U(P)) }.

In Ex. 1, this processor transforms the initial DP problem (DP(Rsort),Rsort)
into (DP(Rsort),R

′
sort). R

′
sort is Rsort without the two sort-rules, since sort does

not occur in the right-hand side of any DP and thus, its rules are not usable.
The next processor decomposes a DP problem into several sub-problems. To

this end, one determines which pairs can follow each other in innermost chains
by constructing an innermost dependency graph. For a DP problem (P ,R), the
nodes of the innermost dependency graph are the pairs of P , and there is an arc
from s → t to v → w iff s → t, v → w is an innermost (P ,R)-chain. The graph
obtained in our example is depicted on the side. (4)

�� %%

(8)

��
(6)

QQ

��
(7)

ee

||yyy
(10)

QQ

��
(5)

��
(13)oo

pp

(12) //

66

(9)

��
(2)

SS
(11)

KK

ccGGG OO

(3)
KK

In general, the innermost dependency graph is not
computable, but there exist many techniques to over-
approximate this graph automatically, cf. e.g. [2, 18].
In our example, these estimations would even yield
the exact innermost dependency graph.

A set P ′ 6= ∅ of DPs is a cycle if for every s→ t,
v → w ∈ P ′, there is a non-empty path from s → t
to v → w traversing only pairs of P ′. A cycle P ′ is a (non-trivial) strongly
connected component (SCC) if P ′ is not a proper subset of another cycle.
The next processor allows us to prove termination separately for each SCC.

Theorem 4 (Dependency Graph Processor [2, 11]). The following DP
processor Proc is sound: Proc((P ,R)) = {(P1,R), . . . , (Pn,R)}, where P1, . . . ,
Pn are the SCCs of the innermost dependency graph.

Our graph has the SCCs P1 = {(2)}, P2 = {(3)}, P3 = {(4), (6), (7)}, P4 =
{(8), (10)}, P5 = {(11)}. Thus, (DP(Rsort),R

′
sort) is transformed into the 5 new

DP problems (Pi,R
′
sort) for 1 ≤ i ≤ 5 that have to be solved instead. For all

problems except ({(11)},R′
sort) this is easily possible by the DP processors of this

section (and this can also be done automatically by current termination tools).
Therefore, we now concentrate on the remaining DP problem ({(11)},R′

sort).
A reduction pair (%,≻) consists of a stable monotonic quasi-order % and a

stable well-founded order ≻, where % and ≻ are compatible (i.e., % ◦ ≻ ◦ %

⊆ ≻). For a DP problem (P ,R), the following processor requires that all DPs in
P are strictly or weakly decreasing and all rules R are weakly decreasing. Then
one can delete all strictly decreasing DPs. Note that both TRSs and relations
can be seen as sets of pairs of terms. Thus, P \≻ denotes {s → t ∈ P | s 6≻ t}.

Theorem 5 (Reduction Pair Processor [2, 11, 18]). Let (%,≻) be a reduc-
tion pair. Then the following DP processor Proc is sound.

Proc((P ,R)) =

{

{ (P \≻,R) }, if P ⊆ %∪ ≻ and R ⊆ %
{ (P ,R) }, otherwise

5

For the problem ({(11)},R′
sort), we search for a reduction pair where (11) is

strictly decreasing (w.r.t. ≻) and the rules in R′
sort are weakly decreasing (w.r.t.

%). However, this is not satisfied by the orders available in current termination
tools. That is not surprising, because termination of this DP problem essentially
relies on the argument (1) that every non-empty list contains its maximum.

3 Many-Sorted Rewriting

Recall that our goal is to prove the absence of infinite innermost (P ,R)-chains.
Each such chain would correspond to a reduction of the following form

s1σ →P t1σ
i→!
R s2σ →P t2σ

i→!
R s3σ →P t3σ

i→!
R . . .

where si → ti are variable-renamed DPs from P and “ i→!
R

” denotes zero or more
reduction steps to a normal form. The reduction pair processor ensures

s1σ (
%

)
t1σ % s2σ (

%
)
t2σ % s3σ (

%
)
t3σ % . . .

Hence, strictly decreasing DPs (i.e., where siσ ≻ tiσ) cannot occur infinitely
often in innermost chains and thus, they can be removed from the DP problem.

However, instead of requiring a strict decrease when going from the left-hand
side siσ of a DP to the right-hand side tiσ, it would also be sufficient to require
a strict decrease when going from the right-hand side tiσ to the next left-hand
side si+1σ. In other words, if every reduction of tiσ to normal form makes the
term strictly smaller w.r.t. ≻, then we would have tiσ ≻ si+1σ. Hence, then the
DP si → ti cannot occur infinitely often and could be removed from the DP
problem. Our goal is to formulate a new processor based on this idea.

So essentially, we can remove a DP s → t from the DP problem, if

for every normal substitution σ, tσ i→!
R

q implies tσ ≻ q. (14)

In addition, all DPs and rules still have to be weakly decreasing. A substitution
σ is called normal iff σ(x) is in normal form w.r.t. R for all variables x.

So to remove (11) from the remaining DP problem ({(11)},R′
sort) of Ex. 1

with the criterion above, we have to use a reduction pair satisfying (14). Here, t
is the right-hand side of (11), i.e., t = SORT(del(max(co(x, xs)), co(x, xs))).

Now we will weaken the requirement (14) step by step to obtain a condition
amenable to automation. The current requirement (14) is still unnecessarily hard.
For instance, in our example we also have to regard substitutions like σ(x) =
σ(xs) = true and require that tσ ≻ q holds, although intuitively, here x stands for
a natural number and xs stands for a list (and not a Boolean value). We will show
that one does not have to require (14) for all normal substitutions, but only for
“well-typed” ones. The reason is that if there is an infinite innermost reduction,
then there is also an infinite innermost reduction of “well-typed” terms.

First, we make precise what we mean by “well-typed”. Recall that up to now
we regarded ordinary TRSs over untyped signatures F . The following definition
shows how to extend such signatures by (monomorphic) types, cf. e.g. [35].

Definition 6 (Typing). Let F be an (untyped) signature. A many-sorted sig-
nature F ′ is a typed variant of F if it contains the same function symbols as F ,

6

with the same arities. So f is a symbol of F with arity n iff f is a symbol of F ′

with a type of the form τ1 × . . . × τn → τ . Similarly, a typed variant V ′ of the
set of variables V contains the same variables as V, but now every variable has
a sort τ . We always assume that for every sort τ , V ′ contains infinitely many
variables of sort τ . A term over F and V is well typed w.r.t. F ′ and V ′ iff

• t is a variable (of some type τ in V ′) or
• t = f(t1, . . . , tn) with n ≥ 0, where all ti are well typed and have some type

τi, and where f has type τ1 × . . . × τn → τ in F ′. Then t has type τ .

We only permit typed variants F ′ where there exist well-typed ground terms
of types τ1, . . . , τn over F ′, whenever some f ∈ F ′ has type τ1 × . . .× τn → τ .6

A TRS R over7 F and V is well typed w.r.t. F ′ and V ′ if for all ℓ → r ∈ R,
we have that ℓ and r are well typed and that they have the same type.8

For any TRS R over a signature F , one can use a standard type inference
algorithm to compute a typed variant F ′ of F automatically such that R is well
typed. Of course, a trivial solution is to use a many-sorted signature with just
one sort (then every term and every TRS are trivially well typed). But to make
our approach more powerful, it is advantageous to use the most general typed
variant where R is well typed instead. Here, the set of terms is decomposed into
as many sorts as possible. Then fewer terms are considered to be “well typed”
and hence, the condition (14) has to be required for fewer substitutions σ.

For example, let F = {0, s, true, false, nil, co, ge, eq, max, if1, del, if2, SORT}. To
make {(11)} ∪ R′

sort well typed, we obtain the typed variant F ′ of F with the
sorts nat, bool, list, and tuple. Here the function symbols have the following types.

0 : nat ge, eq : nat × nat → bool

s : nat → nat max : list → nat

true, false : bool if1, if2 : bool × nat × nat × list → list

nil : list SORT : list → tuple

co, del : nat × list → list

Now we show that innermost termination is a persistent property, i.e., a TRS
is innermost terminating iff it is innermost terminating on well-typed terms.
Here, one can use any typed variant where the TRS is well typed. As noted
by [26], persistence of innermost termination follows from results of [30], but to
our knowledge, it has never been explicitly stated or applied in the literature
before. Note that in contrast to innermost termination, full termination is only
persistent for very restricted classes of TRSs, cf. [35].

Theorem 7 (Persistence). Let R be a TRS over F and V and let R be well
typed w.r.t. the typed variants F ′ and V ′. R is innermost terminating for all
well-typed terms w.r.t. F ′ and V ′ iff R is innermost terminating (for all terms).

6 This is not a restriction, as one can simply add new constants to F and F ′.
7 Note that F may well contain function symbols that do not occur in R.
8 W.l.o.g., here one may rename the variables in every rule. Then it is not a problem

if the variable x is used with type τ1 in one rule and with type τ2 in another rule.

7

Proof. For persistence, it suffices to show component closedness and sorted modu-
larity [30]. A property is component closed if (a) ⇔ (b) holds for all TRSs R.

(a) →R has the property for all terms
(b) for every equivalence class Cl w.r.t. ↔∗

R, the restriction of →R to Cl has the
property

Innermost termination is clearly component closed, since all terms occurring in
an innermost reduction are from the same equivalence class.

A property is sorted modular if (c) and (d) are equivalent for all TRSs R1

and R2 forming a disjoint combination. So each Ri is a TRS over Fi and V , F ′
i

and V ′ are typed variants of Fi and V where Ri is well typed, and F1 ∩F2 = ∅.

(c) for both i, Ri has the property for all well-typed terms w.r.t. F ′
i and V ′

(d) R1 ∪R2 has the property for all well-typed terms w.r.t. F ′
1 ∪ F ′

2 and V ′

For innermost termination, (d) ⇒ (c) is trivial. To show (c) ⇒ (d), we adapt the
proof for (unsorted) modularity of innermost termination in [17]. Assume there
is a well-typed term t over F ′

1∪F
′
2 and V ′ with infinite innermost R1∪R2-reduc-

tion. Then there is also a minimal such term (its proper subterms are innermost
terminating w.r.t. R1 ∪R2). The reduction has the form t i→∗

R1∪R2
t1

i→
R1∪R2

t2
i→
R1∪R2

. . . where the step from t1 to t2 is the first root step. Such a root
step must exist since t is minimal. Due to the innermost strategy, all proper
subterms of t1 are in R1 ∪ R2-normal form. W.l.o.g., let root(t1) ∈ F1. Then
t1 = C[s1, . . . , sm] with m ≥ 0, where C is a context without symbols from F2

and the roots of s1, . . . , sm are from F2. Since s1, . . . , sm are irreducible, the
reduction from t1 onwards is an R1-reduction, i.e., t1

i→
R1

t2
i→
R1

. . . Let tj
result from tj by replacing s1, . . . , sm by fresh variables9 x1, . . . , xm. Thus, the
tj are well-typed terms over F ′

1 and V ′ with t1
i→
R1

t2
i→
R1

. . . which shows
that t1 starts an infinite innermost R1-reduction. ⊓⊔

We expect that there exist several points where Thm. 7 could simplify inner-
most termination proofs.10 In this paper, we use Thm. 7 to weaken the condition
(14) required to remove a DP from a DP problem (P ,R). Now one can use any
typed variant where P ∪R is well typed. To remove s → t from P , it suffices if

for every normal σ where tσ is well typed, tσ i→!
R

q implies tσ ≻ q. (15)

4 Coupling DPs and Inductive Theorem Proving

Condition (15) is still too hard, because up to now, tσ does not have to be ground.
We show (in Thm. 12) that for DP problems (P ,R) satisfying suitable non-over-
lappingness requirements and where R is already innermost terminating, (15)
can be relaxed to ground substitutions σ. Then s → t can be removed from P if

for every normal substitution σ where tσ is a well-typed ground term,
tσ i→!

R
q implies tσ ≻ q.

(16)

9 Recall that V ′ has infinitely many variables for every sort.
10 E.g., by Thm. 7 one could switch to termination methods like [24] exploiting sorts.

8

Example 8. Innermost termination of R is really needed to replace (15) by (16).
To see this, consider the DP problem (P ,R) with P = {F(x) → F(x)} and the
non-innermost terminating TRS R = {a → a}.11 Let F = {F, a}. We use a typed
variant F ′ where F : τ1 → τ2 and a : τ1. For the right-hand side t = F(x) of
the DP, the only well-typed ground instantiation is F(a). Since this term has no
normal form q, the condition (16) holds. Nevertheless, it is not sound to remove
the only DP from P , since F(x1) → F(x1), F(x2) → F(x2), . . . is an infinite
innermost (P ,R)-chain (but there is no infinite innermost ground chain).

To see the reason for the non-overlappingness requirement, consider (P ,R)
with P = {F(f(x)) → F(f(x))} and R = {f(a) → a}. Now F = {F, f, a} and in
the typed variant we have F : τ1 → τ2, f : τ1 → τ1, and a : τ1. For the right-hand
side t = F(f(x)) of the DP, the only well-typed ground instantiations are F(fn(a))
with n ≥ 1. If we take the embedding order ≻emb, then all well-typed ground
instantiations of t are ≻emb-greater than their normal form F(a). So Condition
(16) would allow us to remove the only DP from P . But again, this is unsound,
since there is an infinite innermost (P ,R)-chain (but no such ground chain).

To prove a condition like (16), we replace (16) by the following condition
(17), which is easier to check. Here, we require that for all instantiations tσ as
above, every reduction of tσ to its normal form uses a strictly decreasing rule
ℓ → r (i.e., a rule with ℓ ≻ r) on a strongly monotonic position π. A position π
in a term u is strongly monotonic w.r.t. ≻ iff t1 ≻ t2 implies u[t1]π ≻ u[t2]π for
all terms t1 and t2. So to remove s → t from P , now it suffices if

for every normal substitution σ where tσ is a well-typed ground term,
every reduction “tσ i→!

R q” has the form

tσ i→∗
R s[ℓδ]π

i→R s[rδ]π
i→!
R q

for a rule ℓ → r ∈ R where ℓ ≻ r
and where the position π in s is strongly monotonic w.r.t. ≻.12

(17)

For example, for Rsort’s termination proof one may use a reduction pair
(%,≻) based on a polynomial interpretation [9, 23]. A polynomial interpretation
Pol maps every n-ary function symbol f to a polynomial fPol over n vari-

11 One cannot assume that DP problems (P ,R) always have a specific form, e.g., that
P includes A → A whenever R includes a → a. The reason is that a DP problem
(P ,R) can result from arbitrary DP processors that were applied before. Hence, one
really has to make sure that processors are sound for arbitrary DP problems (P ,R).

12 In special cases, condition (17) can be automated by k-times narrowing the DP s → t

[14]. However, this only works if for any substitution σ, the reduction tσ i→∗
R s[ℓδ]π

is shorter than a fixed number k. So it fails for TRSs like Rsort where termination
relies on an inductive property. Here, the reduction

SORT(del(max(co(x, xs)), co(x, xs)))σ i→∗

Rsort
SORT(if2(true, . . . , . . .))

can be arbitrarily long, depending on σ. Therefore, narrowing the DP (11) a fixed
number of times does not help.

9

ables x1, . . . , xn with coefficients from N. This mapping is extended to terms by
[x]Pol = x for all variables x and [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol).
Now s ≻Pol t (resp. s %Pol t) iff [s]Pol > [t]Pol (resp. [s]Pol ≥ [t]Pol) holds for
all instantiations of the variables with natural numbers. For instance, consider
the interpretation Pol1 with

0Pol1 = nilPol1 = truePol1 = falsePol1 = gePol1
= eqPol1

= 0 sPol1 = 1 + x1

coPol1 = 1 + x1 + x2 maxPol1 = x1

if1Pol1 = 1 + x2 + x3 + x4 delPol1 = x2

if2Pol1 = 1 + x3 + x4 SORTPol1 = x1

When using the reduction pair (%Pol1 ,≻Pol1), the DP (11) and all rules
of R′

sort are weakly decreasing. Moreover, then Condition (17) is indeed sat-
isfied for the right-hand side t of (11). To see this, note that in every re-
duction tσ i→!

R
q where tσ is a well-typed ground term, eventually one has

to apply the rule “if2(true, x, y, xs) → xs” which is strictly decreasing w.r.t.
≻Pol1 . This rule is used by the del-algorithm to delete an element, i.e., to reduce
the length of the list. Moreover, the rule is used within a context of the form
SORT(co(..., co(..., . . . co(..., �)))). Note that the polynomial SORTPol1 resp.
coPol1 is strongly monotonic in its first resp. second argument. Thus, the strictly
decreasing rule is indeed used on a strongly monotonic position.

To check automatically whether every reduction of tσ to normal form uses a
strictly decreasing rule on a strongly monotonic position, we add new rules and
function symbols to the TRS R which results in an extended TRS R≻. Moreover,
for every term u we define a corresponding term u≻. For non-overlapping TRSs
R, we have the following property, cf. Lemma 10: if u≻ i→∗

R≻ tt, then for every
reduction u i→!

R
q, we have u ≻ q. We now explain how to construct R≻.

For every f ∈ DR, we introduce a new symbol f≻. Now f≻(u1, ..., un) should
reduce to tt in the new TRS R≻ whenever the reduction of f(u1, ..., un) in
the original TRS R uses a strictly decreasing rule on a strongly monotonic
position. Thus, if a rule f(ℓ1, ..., ℓn) → r of R was strictly decreasing (i.e.,
f(ℓ1, ..., ℓn) ≻ r), then we add the rule f≻(ℓ1, ..., ℓn) → tt in R≻. Otherwise, a
strictly decreasing rule will be used on a strongly monotonic position to reduce an
instance of f(ℓ1, . . . , ℓn) if this holds for the corresponding instance of the right-
hand side r. Hence, then we add the rule f≻(ℓ1, ..., ℓn) → r≻ in R≻ instead. It
remains to define u≻ for any term u over the signature of R. If u = f(u1, ..., un),
then we regard the subterms on the strongly monotonic positions of u and check
whether their reduction uses a strictly decreasing rule. For any n-ary symbol f ,
let mon≻(f) contain those positions from {1, . . . , n} where the term f(x1, ..., xn)
is strongly monotonic. If mon≻(f) = {i1, . . . , im}, then for u = f(u1, ..., un) we
obtain u≻ = u≻

i1
∨ . . . ∨ u≻

im
, if f is a constructor. If f is defined, then a strictly

decreasing rule could also be applied on the root position of u. Hence, then we
have u≻ = u≻

i1
∨. . .∨u≻

im
∨f≻(u1, ..., un). Of course, R≻ also contains appropriate

rules for the disjunction “∨”.13 The empty disjunction is represented by ff.

13 It suffices to include just the rules “tt ∨ b → tt” and “ff ∨ b → b”, since R≻ is only
used for inductive proofs and “b∨tt = tt” and “b∨ff = b” are inductive consequences.

10

Definition 9 (R≻). Let ≻ be an order on terms and let R be a TRS over F
and V. We extend F to a new signature F≻ = F ⊎ {f≻ | f ∈ DR} ⊎ {tt, ff,∨}.
For any term u over F and V, we define the term u≻ over F≻ and V:

u≻ =

∨

i∈mon≻(f) u≻

i , if u = f(u1, . . . , un) and f /∈ DR
∨

i∈mon≻(f) u≻

i ∨ f≻(u1, . . . , un), if u = f(u1, . . . , un) and f ∈ DR

ff, if u ∈ V

Moreover, we define R≻ = {f≻(ℓ1, ..., ℓn) → tt | f(ℓ1, ..., ℓn) → r ∈ R∩ ≻}
∪ {f≻(ℓ1, ..., ℓn) → r≻ | f(ℓ1, ..., ℓn) → r ∈ R \ ≻}
∪ R ∪ {tt ∨ b → tt, ff ∨ b → b}.

In our example, the only rules of R′
sort which are strictly decreasing w.r.t.

≻Pol1 are the last two max-rules and the rule “if2(true, x, y, xs) → xs”. So ac-

cording to Def. 9, the TRS R′≻Pol1
sort contains R′

sort ∪{tt∨ b → tt, ff ∨ b → b} and
the following rules. Here, we already simplified disjunctions of the form “ff ∨ t”
or “t ∨ ff” to t. To ease readability, we wrote “ge≻” instead of “ge≻Pol1”, etc.

ge≻(x, 0) → ff eq≻(0, 0) → ff

ge≻(0, s(y)) → ff eq≻(s(x), 0) → ff

ge≻(s(x), s(y)) → ge≻(x, y) eq≻(0, s(y)) → ff

eq≻(s(x), s(y)) → eq≻(x, y)
max≻(nil) → ff

max≻(co(x, nil)) → tt if≻1 (true, x, y, xs) → max≻(co(x, xs))
max≻(co(x, co(y, xs))) → tt if≻1 (false, x, y, xs) → max≻(co(y, xs))

del≻(x, nil) → ff if≻2 (true, x, y, xs) → tt

del≻(x, co(y, xs)) → if≻2 (eq(x, y), x, y, xs) if≻2 (false, x, y, xs) → del≻(x, xs)

Lemma 10 (Soundness of R≻). Let (%,≻) be a reduction pair and let R be
a non-overlapping TRS over F and V with R ⊆ %. For any terms u and q over
F and V with u≻ i→∗

R≻ tt and u i→!
R

q, we have u ≻ q.

Proof. We use induction on the lexicographic combination of the length of the
reduction u i→!

R
q and of the structure of u.

First let u be a variable. Here, u≻ = ff and thus, u≻ i→∗
R≻ tt is impossible.

Now let u = f(u1, ..., un). The reduction u i→!
R

q starts with u = f(u1, ..., un)
i→∗
R≻ f(q1, ..., qn) where the reductions ui

i→!
R

qi are at most as long as u i→!
R

q.
If there is a j ∈ mon≻(f) with u≻

j
i→∗
R≻ tt, then uj ≻ qj by induction hypothesis.

So u=f(u1, ..., uj, ..., un)≻f(u1, ..., qj , ..., un)%f(q1, ..., qj , ..., qn)%q, as R⊆%.
Otherwise, u≻ i→∗

R≻ tt means that f≻(u1, . . . , un) i→∗
R≻ tt. As R ⊆ R≻, we

have f≻(u1, . . . , un) i→∗
R≻ f≻(q1, . . . , qn). Since R is non-overlapping, R≻ is

non-overlapping as well. This implies confluence of i→R≻ , cf. [29]. Hence, we also
get f≻(q1, . . . , qn) i→∗

R≻ tt. There is a rule f(ℓ1, . . . , ℓn) → r ∈ R and a normal
substitution δ with f≻(q1, . . . , qn) = f(ℓ1, . . . , ℓn)δ i→R rδ i→!

R
q. Note that the

qi only contain symbols of F . Thus, as the qi are normal forms w.r.t. R, they
are also normal forms w.r.t. R≻. Therefore, as R≻ is non-overlapping, the only
rule of R≻ applicable to f≻(q1, . . . , qn) is the one resulting from f(ℓ1, . . . , ℓn) →
r ∈ R. If f(ℓ1, . . . , ℓn) ≻ r, then that rule would be “f≻(ℓ1, . . . , ℓn) → tt” and

u = f(u1, . . . , un) % f(q1, . . . , qn) = f(ℓ1, . . . , ℓn)δ ≻ rδ % q.

11

Otherwise, the rule is “f≻(ℓ1, ..., ℓn) → r≻”, i.e., f≻(q1, ..., qn) = f≻(ℓ1, ..., ℓn)δ
i→R≻ r≻δ i→∗

R≻ tt. Since the reduction rδ i→!
R

q is shorter than the original
reduction u i→!

R q, the induction hypothesis implies rδ ≻ q. Thus,

u = f(u1, . . . , un) % f(q1, . . . , qn) = f(ℓ1, . . . , ℓn)δ % rδ ≻ q. ⊓⊔

With Lemma 10, the condition (17) needed to remove a DP from a DP
problem can again be reformulated. To remove s → t from P , now it suffices if

for every normal substitution σ where tσ is a well-typed ground term,
we have t≻σ i→∗

R≻ tt.
(18)

So in our example, to remove the DP (11) using the reduction pair (%Pol1 ,
≻Pol1), we require “t≻Pol1 σ i→∗

R′
≻Pol1

sort

tt”, where t is the right-hand side of (11),

i.e., t = SORT(del(max(co(x, xs)), co(x, xs))). Since mon≻Pol1
(SORT) = {1},

mon≻Pol1
(del)={2}, mon≻Pol1

(co)={1, 2}, and x≻Pol1 = xs≻Pol1 = ff, t≻Pol1 is

del≻Pol1 (max(co(x, xs)), co(x, xs)) when simplifying disjunctions with ff. So to
remove (11), we require the following for all normal substitutions σ where tσ is
well typed and ground.14

del≻Pol1 (max(co(x, xs)), co(x, xs))σ i→∗

R′
≻Pol1

sort

tt (19)

Note that the rules for del≻Pol1 (given before Lemma 10) compute the mem-
ber -function. In other words, del≻Pol1 (x, xs) holds iff x occurs in the list xs.
Thus, (19) is equivalent to the main termination argument (1) of Ex. 1, i.e., to
the observation that every non-empty list contains its maximum. Thus, now we
can detect and express termination arguments like (1) within the DP framework.

Our goal is to use inductive theorem provers to verify arguments like (1) or,
equivalently, to verify conditions like (18). Indeed, (18) corresponds to the ques-
tion whether a suitable conjecture is inductively valid [4, 5, 7, 8, 20, 21, 33, 34, 36].

Definition 11 (Inductive Validity). Let R be a TRS and let s, t be terms over
F and V. We say that t = s is inductively valid in R (denoted R |=ind t = s)
iff there exist typed variants F ′ and V ′ such that R, t, s are well typed where t
and s have the same type, and such that tσ i↔∗

R
sσ holds for all substitutions σ

over F ′ where tσ and sσ are well-typed ground terms. To make the specific typed

variants explicit, we also write “R |=F
′,V′

ind t = s”.

Of course, in general R |=ind t = s is undecidable, but it can often be proved
automatically by inductive theorem provers. By reformulating Condition (18),
we now obtain that in a DP problem (P ,R), s → t can be removed from P if

R≻ |=ind t≻ = tt. (20)

Of course, in addition all DPs P and all rules R have to be weakly decreasing.
Now we formulate a new DP processor based on Condition (20). Recall that

to derive (20) we required a non-overlappingness condition and innermost ter-

14 Note that the restriction to well-typed ground terms is crucial. Indeed, (19) does not
hold for non-ground or non-well-typed substitutions like σ(x) = σ(xs) = true.

12

mination of R. (These requirements ensure that it suffices to regard only ground
instantiations when proving that reductions of tσ to normal form are strictly
decreasing, cf. Ex. 8. Moreover, non-overlappingness is needed for Lemma 10 to
make sure that t≻σ i→∗

R≻ tt really guarantees that all reductions of tσ to normal
form are strictly decreasing. Non-overlappingness also ensures that t≻σ i→∗

R≻ tt

in Condition (18) is equivalent to t≻σ i↔∗
R≻ tt in Condition (20).)

To ensure innermost termination of R, the following processor transforms
(P ,R) not only into the new DP problem (P \{s → t},R), but it also generates
the problem (DP (R),R). Absence of infinite innermost (DP (R),R)-chains is
equivalent to innermost termination of R. Note that in practice R only contains
the usable rules of P (since one should have applied the usable rule processor of
Thm. 3 before). Then the DP problem (DP (R),R) means that the TRS consist-
ing just of the usable rules must be innermost terminating. An application of the
dependency graph processor of Thm. 4 will therefore transform (DP (R),R) into
DP problems that have already been generated before. So (except for algorithms
with nested or mutual recursion), the DP problem (DP (R),R) obtained by the
following processor does not lead to new proof obligations.

In Thm. 12, we restrict ourselves to DP problems (P ,R) with the tuple
property. This means that for all s → t ∈ P , root(s) and root(t) are tuple
symbols and tuple symbols neither occur anywhere else in s or t nor in R. This
is always satisfied for the initial DP problem and it is maintained by almost all
DP processors in the literature (including all processors of this paper).

Theorem 12 (Induction Processor).Let (%,≻) be a reduction pair, let (P ,R)
have the tuple property, let R be non-overlapping and let there be no critical pairs
between R and P.15 Let F ′, V ′ be typed variants of P ∪R’s signature such that
P ∪R is well typed. Then the following DP processor Proc is sound.

Proc((P ,R)) =

8

>

<

>

:

{ (P \ {s → t}, R), (DP(R), R) }, if R≻ |=F
′,V′

ind t≻ = tt

and P∪R ⊆ %

{ (P ,R) }, otherwise

Proof. Suppose there is an infinite innermost (P ,R)-chain, i.e., P ∪ R is not
innermost terminating. By persistence of innermost termination (Thm. 7), there
is a well-typed term that is not innermost terminating w.r.t. P ∪R. Let q be a
minimal such term (i.e., q’s proper subterms are innermost terminating). Due to
the tuple property, w.l.o.g. q either contains no tuple symbol or q contains a tuple
symbol only at the root. In the first case, only R-rules can reduce q. Thus, R is
not innermost terminating and there is an infinite innermost (DP(R), R)-chain.

Now let R be innermost terminating. So root(q) is a tuple symbol and q con-
tains no further tuple symbol. Hence, in q’s infinite innermost P ∪R-reduction,
R-rules are only applied below the root and P-rules are only applied on the
root position. Moreover, there are infinitely many P-steps. Hence, this infinite
reduction corresponds to an infinite innermost (P ,R)-chain s1 → t1, s2 → t2, . . .
where tiσ

i→!
R

si+1σ for all i and all occurring terms are well typed.

15 More precisely, for all v → w in P , non-variable subterms of v may not unify with
left-hand sides of rules from R (after variable renaming).

13

Next we show that due to innermost termination of R, there is even an
infinite innermost (P ,R)-chain on well-typed ground terms. Let δ instantiate all
variables in s1σ by ground terms of the corresponding sort. (Recall that in any
typed variant there are such ground terms.) We define the normal substitution
σ′ such that σ′(x) is the R-normal form of xσδ for all variables x. This normal
form must exist since R is innermost terminating and it is unique since R is
non-overlapping. Clearly, tiσ

i→∗
R

si+1σ implies tiσδ →∗
R

si+1σδ, i.e., tiσ
′ →∗

R

si+1σ
′. As left-hand sides si of DPs do not overlap with rules of R, all siσ

′ are in
normal form. Due to non-overlappingness of R, si+1σ

′ is the only normal form
of tiσ

′ and thus, it can also be reached by innermost steps, i.e., tiσ
′ i→!

R
si+1σ

′.
Hence, there is an infinite innermost (P ,R)-chain on well-typed ground terms.

If this chain does not contain infinitely many variable-renamed copies of the
DP s → t, then its tail is an infinite innermost (P\{s → t}, R)-chain. Otherwise,
si1 → ti1 , si2 → ti2 , . . . are variable-renamed copies of s → t and thus, ti1σ

′, ti2σ
′,

. . . are well-typed ground instantiations of t. As R≻ |=ind t≻ = tt, we have
(tij

σ′)≻ = t≻ij
σ′ i→∗

R≻ tt for all j. Since tij
σ′ i→!

R
sij+1σ

′, Lemma 10 implies

tij
σ′ ≻ sij+1σ

′ for all (infinitely many) j. Moreover, siσ
′ % tiσ

′ and tiσ
′ % si+1σ

′

for all i, since P ∪R ⊆ %. This contradicts the well-foundedness of ≻. ⊓⊔

In our example, we ended up with the DP problem ({(11)},R′
sort). To remove

the DP (11) from the DP problem, we use an inductive theorem prover to prove

R′≻Pol1
sort |=ind del≻Pol1 (max(co(x, xs)), co(x, xs)) = tt, (21)

i.e., that every non-empty list contains its maximum. The tuple property and the
non-overlappingness requirements in Thm. 12 are clearly fulfilled. Moreover, all
rules decrease w.r.t. %Pol1 . Hence, the induction processor results in the trivial
problem (∅,R′

sort) and the problem (DP(R′
sort),R

′
sort) = ({(2), ..., (10)},R′

sort).
The dependency graph processor transforms the latter problem into the problems
(Pi,R

′
sort) with 1 ≤ i ≤ 4 that had already been solved before, cf. Sect. 2. For

example, the induction prover in AProVE proves (21) automatically and thus, it
can easily perform the above proof and verify termination of the TRS Rsort.

5 Experiments and Conclusion

We introduced a new processor in the DP framework which can handle TRSs
that terminate because of inductive properties of their algorithms. This processor
automatically tries to extract these properties and transforms them into conjec-
tures which are passed to an inductive theorem prover for verification. To obtain
a powerful method, we showed that it suffices to prove these conjectures only for
well-typed terms, even though the original TRSs under examination are untyped.

We implemented the new processor of Thm. 12 in our termination tool
AProVE [13] and coupled it with the small inductive theorem prover that was
already available in AProVE. To automate Thm. 12, AProVE selects a DP s → t
and searches for a reduction pair (%,≻) which orients at least one rule of U(t)
strictly (on a strongly monotonic position). Then AProVE tests if t≻ = tt is
inductively valid. So in contrast to previous approaches that use inductive the-

14

orem provers for termination analysis (cf. Sect. 1), our automation can search
for arbitrary reduction pairs instead of being restricted to a fixed small set of
orders. The search for the reduction pair is guided by the fact that there has to
be a strictly decreasing usable rule on a strongly monotonic position.

To demonstrate the power of our method, [1] features a collection of 19 typi-
cal TRSs where an inductive argument is needed for the termination proof. This
collection contains several TRSs computing classical arithmetical algorithms as
well as many TRSs with standard algorithms for list manipulation like sorting,
reversing, etc. The previous version of AProVE was the most powerful tool for
termination of term rewriting at the International Competition of Termination
Provers. Nevertheless, this previous AProVE version as well as all other tools in
the competition failed on all of these examples. In contrast, with a time limit
of 60 seconds per example, our new version of AProVE automatically proves
termination of 16 of them. At the same time, the new version of AProVE is as
successful as the previous one on the remaining examples of the Termination
Problem Data Base, which is the collection of examples used in the termina-
tion competition. Thus, the present paper is a substantial advance in automated
termination proving, since it allows the first combination of powerful TRS ter-
mination tools with inductive theorem provers. For details on our experiments
and to access our implementation via a web-interface, we refer to [1].

Acknowledgements. We are very grateful to Aart Middeldorp and Hans Zan-
tema for suggesting the proof idea of Thm. 7 and for pointing us to [30].

References

1. AProVE website http://aprove.informatik.rwth-aachen.de/eval/Induction/
2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133-178, 2000.
3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
4. A. Bouhoula and M. Rusinowitch. SPIKE: A system for automatic inductive proofs.

In Proc. AMAST’95, LNCS 936, pp. 576-577, 1995.
5. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
6. J. Brauburger and J. Giesl. Termination analysis by inductive evaluation. In Proc.

CADE’98, LNAI 1421, pp. 254-269, 1998.
7. A. Bundy. The automation of proof by mathematical induction. In Handbook of

Automated Reasoning, Vol. 1, pp. 845-911, Robinson and Voronkov (eds.), 2001.
8. H. Comon. Inductionless induction. In Handbook of Automated Reasoning, Vol. 1,

pp. 913-962, J. A. Robinson and A. Voronkov (eds.), Elsevier & MIT, 2001.
9. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.

SAT solving for termination analysis with polynomial interpretations. In Proc.

SAT’07, LNCS 4501, pp. 340-354, 2007.
10. J. Giesl. Termination analysis for functional programs using term orderings. In

Proc. SAS’95, LNCS 983, pp. 154-171, 1995.
11. J. Giesl, R. Thiemann, P. Schneider-Kamp. The DP framework: Combining tech-

niques for automated termination proofs. LPAR’04, LNAI 3452, p. 301-331, 2005.
12. J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termina-

tion analysis for Haskell: From term rewriting to programming languages. In Proc.

RTA’06, LNCS 4098, pp. 297-312, 2006.

15

13. J. Giesl, P. Schneider-Kamp, R. Thiemann. AProVE 1.2: Automatic termination
proofs in the DP framework. In Proc. IJCAR’06, LNAI 4130, pp. 281-286, 2006.

14. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155-203, 2006.

15. J. Giesl, R. Thiemann, S. Swiderski, and P. Schneider-Kamp. Proving termination
by bounded increase. In Proc. CADE’07, LNAI 4603, pp. 443-459, 2007.

16. I. Gnaedig and H. Kirchner. Termination of rewriting under strategies. ACM

Transactions on Computational Logic, 10(3), 2008.
17. B. Gramlich. Abstract relations between restricted termination and confluence

properties of rewrite systems. Fundamenta Informaticae, 24(1,2):2-23, 1995.
18. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-

formation and Computation, 199(1,2):172-199, 2005.
19. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and fea-

tures. Information and Computation, 205(4):474-511, 2007.
20. D. Kapur and D. R. Musser. Proof by consistency. Artif. Int., 31(2):125-157, 1987.
21. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Ap-

proach. Kluwer, 2000.
22. A. Krauss. Certified size-change termination. In Proc. CADE’07, LNAI 4603, pp.

460-475, 2007.
23. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report

MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
24. S. Lucas and J. Meseguer. Order-sorted dependency pairs. In Proc. PPDP’08, pp.

108-119, ACM Press, 2008.
25. P. Manolios and D. Vroon. Termination analysis with calling context graphs. In

Proc. CAV’06, LNCS 4144, pp. 401-414, 2006.
26. A. Middeldorp and H. Zantema. Personal communication, 2008.
27. E. Ohlebusch. Termination of logic programs: Transformational approaches revis-

ited. Appl. Algebra in Engineering, Comm. and Computing, 12:73-116, 2001.
28. S. E. Panitz and M. Schmidt-Schauß. TEA: Automatically proving termination of

programs in a non-strict higher-order functional language. In Proc. SAS’97, LNCS
1302, pp. 345-360, 1997.

29. D. A. Plaisted. Equational reasoning and term rewriting systems. In Handbook of

Logic in Artificial Intelligence and Logic Programming, Vol. 1, pp. 273-364, D. M.
Gabbay, C. J. Hogger, and J. A. Robinson (eds.), Oxford, 1993.

30. J. van de Pol. Modularity in many-sorted term rewriting. Master’s Thesis, Utrecht
University, 1992. Available from http://homepages.cwi.nl/~vdpol/papers/.

31. P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated termi-
nation proofs for logic programs by term rewriting. ACM Transactions on Com-

putational Logic, 2009. To appear.
32. C. Walther. On proving the termination of algorithms by machine. Artificial In-

telligence, 71(1): 101-157, 1994.
33. C. Walther. Mathematical induction. In Handbook of Logic in AI and Logic Pro-

gramming, Vol. 2, pp. 127-228, Gabbay, Hogger, Robinson (eds.), Oxford, 1994.
34. C. Walther and S. Schweitzer. About VeriFun. In Proc. CADE’03, LNAI 2741, pp.

322-327, 2003.
35. H. Zantema. Termination of term rewriting: Interpretation and type elimination.

Journal of Symbolic Computation 17(1): 23-50, 1994.
36. H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction princi-

ple for equational specifications. In Proc. CADE’88, LNAI 310, pp. 162-181, 1988.

16

