Group Communication Patterns for
High Performance Computing in Scala

Felix P. Hargreaves

Daniel Merkle

Peter Schneider-Kamp

Department of Mathematics and Computer Science, University of Southern Denmark

{hargreaves,daniel ,petersk}@imada.sdu.dk

Abstract

We developed a Functional Object-Oriented PARallel framework
(FOOPAR) for high-level high-performance computing in Scala.
Central to this framework are Distributed Memory Parallel Data
structures (DPDs), i.e., collections of data distributed in a shared
nothing system together with parallel operations on these data.

In this paper, we first present FOOPAR’s architecture and the
idea of DPDs and group communications. Then, we show how
DPDs can be implemented elegantly and efficiently in Scala
based on the Traversable/Builder pattern, unifying Functional and
Object-Oriented Programming.

We prove the correctness and safety of one communication
algorithm and show how specification testing (via ScalaCheck)
can be used to bridge the gap between proof and implementation.
Furthermore, we show that the group communication operations of
FOOPAR outperform those of the MPJ Express open source MPI-
bindings for Java, both asymptotically and empirically.

FOOPAR has already been shown to be capable of achieving
close-to-optimal performance for dense matrix-matrix multiplica-
tion via JNL In this article, we present results on a parallel imple-
mentation of the Floyd-Warshall algorithm in FOOPAR, achieving
more than 94% efficiency compared to the serial version on a clus-
ter using 100 cores for matrices of dimension 38000 x 38000.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.3 [Program-
ming Techniques]: Concurrent Programming—Parallel Program-
ming; D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks

General Terms Performance, Design, Languages

Keywords High-Performance-Computing, Scala

1. Introduction

Building scalable systems in the presence of several thousands,
even millions, of computational cores asks for new programming
paradigms in order to meet obvious goals such as performance
exploitation, correctness, portability, fault tolerance, and usability.
It is well foreseeable that the programming model underlying the
Message Passing Interface (MPI), the current de-facto standard for
programming distributed memory systems, will not be able to ad-
dress the challenges for the necessary next steps in High Perfor-
mance Computing (HPC). Reasons for this include that MPI ig-
nores memory hierarchies and that reaching a high productivity
(i.e., performance, expressivity, portability, and robustness) is chal-
lenging based on the error-prone low-level programming model [3].

It is no surprise that new programming languages for simplify-
ing the programming on peta- and exascale parallel systems are cur-
rently developed and studied. IBM’s X10 [17]], Cray’s Chapel [5],

and Sun’s Fortress [2] are three prominent examples, that are
based on the partitioned global address space (PGAS) program-
ming model. While PGAS aims at combining the advantages of
using an SPMD programming model on distributed memory sys-
tems with the advantages of using referencing semantics of shared
memory systems, this approach also comes with some drawbacks.
To reach high performance users still need to specify and reason
about the placement of data and tasks, e.g., in Chapel a local type
is used for that and in X10 user-defined places encapsulate binding
of activities and globally addressable data. Also, proving correct-
ness or analyzing scalability is usually not considered a prominent
design goal.

A promising approach for HPC comes from Delite [24], a
framework and runtime for the definition of high performing DSLs,
encompassing techniques such as loop-fusion, common subexpres-
sion elimination, term rewriting, modular code emitters (support
for SIMD instructions), automatic parallelization of expressions
based on analysis of side-effects, and much more. The syntactical
part of the DSLs then relies on implementations using lightweight
modular staging [25], an advanced design pattern utilizing a very
minimal compiler plugin for Scala. This approach solves many
problems, but is ultimately not analyzable from the end user per-
spective, i.e., it can become difficult to gauge the running time of
programs written in these DSLs. Additionally, while this approach
is by far more productive than building external DSLs from scratch,
it requires a big skill set from the DSL author.

While the goal of our work is also a high productivity approach
for HPC, our contribution is orthogonal to the aforementioned ap-
proaches. In this paper we describe FOOPAR, a parallel framework
which is based on the functional object-oriented programming lan-
guage Scala [20]]. Functional languages have at most played a niche
role in HPC, often both due to acceptance problems[29] and due to
an inability to perform on-par with hand-optimized C code close
to the theoretical limits of the hardware. FOOPAR heavily employs
distributed memory data structures especially suited for HPC, en-
abling it to achieve excellent performance. It offers a balance be-
tween conciseness and performance, achieving scalability and ef-
ficiency close to that of hand-optimized C code from a handful of
lines of Scala code combined with native interface computational
kernels (cf. Figure[I] data from [12]]). However, FOOPAR does not
only allow for high performance from an empirical point of view,
but also allows for a theoretical scalability analysis. In addition, our
framework allows for correctness proofs of parallel code as well as
specification testing [19].

The paper is structured in the following way. Section [2| de-
scribes the rationale behind the framework and compares it with
further related work. Then, Section[3]introduces the concept of Dis-
tributed memory Parallel Data structures (DPDs) and their associ-
ated group communication operations including information about
parallel runtimes useful for analysing code written in FOOPAR. The

#cores | k optimized C | FOOPAR
216 30240 26.72 27.07
343 30240 17.27 17.58
512 30240 11.50 12.51
512 40000 25.21 26.40

Figure 1: Runtimes in seconds for k x k matrix-matrix multiplication using
FOOPAR with Open MPI Java bindings and optimized C with native Open
MPI on the Carver cluster at NERSC [1]. For k = 40000, FOOPAR reaches
4.84 TFLOP/s, i.e., 88.8% efficiency w.r.t. the theoretical peak performance.

implementation of these data structures based on Scala’s functional
object-oriented features is presented in Section] In Section 5| we
demonstrate how correctness can be proven for the algorithms used
in FOOPAR and how specification testing can be used to ensure
reliability of their implementation. In Section[6] we provide empir-
ical evidence for the efficiency and scalability of our framework.
Finally, we conclude briefly in Section[7]

2. The FOOPAR Framework

The main goal of FOOPAR is to avoid common challenges of
distributed memory parallel programming and High Performance
Computing (HPC) through the use of high-level abstractions while
maintaining analyzability:

* Using functional programming concepts, the Single Program
Multiple Data (SPMD) [8] concept can be combined with Sin-
gle Instruction Multiple Data (SIMD) at a data structure level.
This allows algorithms to be formulated in virtually the same
way as their serial versions (see Example [I|below).

* We abstract away peer-to-peer message passing by introducing
a set of group communication operations appropriate for HPC
use. In this way, we can avoid deadlocks, starvation, race con-
ditions, and other common concurrency issues.

* We avoid the many pitfalls of manual memory management
through the use of a managed programming language running
on top of the Java virtual machine. In addition, this provides
platform independence.

2.1 Design and Related Work

While FOOPAR complements the parallel collections [22] intro-
duced in Scala 2.8, it is not meant as an extension. This is due
to multiple reasons. First, the parallel collections use workload-
splitting strategies leading to communication bottle-necks in dis-
tributed memory settings. Second, they employ an implicit master-
slave paradigm unsuitable for massively distributed HPC. Third,
the SPMD paradigm requires launching multiple copies of the pro-
cess as opposed to branching internally into threads.

FooPAR differs from other functional programming frame-
works for parallel computations in some key aspects. While frame-
works like Eden [15], Spark [30], and Scala’s own parallel col-
lections [22]] try to maximize the level of abstraction, this is
mostly done through strategies for data-partitioning and distribu-
tion which in turn introduce network and computation bottlenecks.
Furthermore, these tools lend themselves poorly to parallel runtime
analysis hindering asymptotic guarantees that might otherwise be
achieved. To unaware users, “automagic” parallel programming
can easily lead to decreased performance due to added overhead
and small workloads. With this in mind, FOOPAR aims at the
sweetspot between high performance computing and highly ab-
stract, maintainable and analyzable programming. This is achieved
by focusing on user-defined workload distribution and deempha-
sizing fault tolerance. In this way, the performance pitfalls of both
dynamic workload allocation and the master-slave paradigm can

be avoided and FOOPAR can provide HPC parallelism with the
conciseness, efficiency and generality expected from mature Scala
libraries, while nicely complementing the existing parallel collec-
tions of Scala’s standard API for shared memory use.

While Scala’s parallel collections are limited to shared memory
systems, FOOPAR works both in shared nothing as well as shared
memory architectures. Taking some inspiration from MPI [9],
FOOPAR implements most of the essential operations found in MPI
in a more convenient and abstract level as well as expanding upon
them. As an example, FOOPAR supports reductions with arbitrary
types and variable sizes, e.g. reduction by list or string concate-
nation is entirely possible and convenient in FOOPAR (however
inherently unscalable). As an addition, performance impact from
the use of concatenation or other size-increasing operations is di-
rectly visible through the provided asymptotic runtime analysis for
operations on the Distributed Memory Parallel Data Structures (cf.
Section[3).

FOOPAR shares goals with the partitioned global address space
(PGAS) programming model in the sense that the reference seman-
tics of shared memory systems is combined with the SPMD style
of programming. Prominent examples of PGAS are Unified Parallel
C, or Co-Array Fortran among others [7]]. Focusing on performance
and programmability for next-generation architectures, novel lan-
guages like X10 and Chapel provide richer execution frameworks
and also allow asynchronous creation of tasks [16]. All these lan-
guages either resemble and extend existing languages or are de-
signed from scratch; their features are usually accessed via syntac-
tic sugar. FOOPAR, in contrast, is more oriented towards abstrac-
tion by employing distributed data structures and combining this
with the mathematical abstraction inherently integrated in func-
tional languages like Scala. This approach is somewhat similar to
that of STAPL [4], however, the combination with functional pro-
gramming has the potential to be more productive and produce
more analyzable code.

Finally, comparing to frameworks based on Multiple Program
Multiple Data (MPMD), the SPMD paradigm used in FOOPAR
emphasizes rank-data mapping, where ranks are the IDs of the
processing elements in an execution. Section [3] shows how rank-
data mappings play a major role in FOOPAR and how it can abstract
over serial and parallel programming.

2.2 Communication Groups

Instead of explicit message passing, we use the notion of groups,
a collection of processes with a set ofoup communication oper-
ations. We view the instantiation of a DPD of type 7" as a pro-
jection from the set of all processing elements, P, defined as

P heroE, pPEs T Subgroup mappings allow for communication
algorithms to work independently on a multitude of topologies and
sets of processing elements without cluttering the implementations
with special cases. Figure 2] shows a parallel reduction algorithm
following the pattern of the recursive doubling algorithm [6]. Here,
associativity of the reduction operator is assumed. This group com-
munication pattern can be directly mapped to the reduction oper-
ation on a DPD as shown in Section] Using FOOPAR, complete
parallel computations can be described concisely as a chain of such
operations indirectly invoked through operations on DPDs.

2.3 Architecture

Figure [3] shows the three layers of FOOPAR’s architecture: on top
the DPDs, in the middle the group communication operations,
and on the bottom the backends that abstract from network and
communication specifics.

At the beginning of an execution, to facilitate this abstraction,
a provider of communication groups and processing elements is
chosen and instantiated. In this way, both industry-proven libraries,

BN =

oft]2]3]4]s5]6]7]8]o

Figure 2: 10-node reduction by inverse recursive doubling; num-
bers on the edges indicate the time step of the reduction.

c FooPar Interface
S o poSsee—————ooees :
S % Collection Classes ; User |
3 - - - . Defined
8 Dist- |(Dist- [Dist-][DistHash] | Collecti ;
val J_Seq J| Grid J| Map i oflections
‘enennnanasanes :
c Base Traits Group i :
a.© o DistTraversable Communication | 1 User i
3 '§ e te Operations i Communication
S0 ® ' Operations !
583| [= =
8 : :
c
c ~ Rl L L L L L L L e
s 90
=8 xS
g €23 MPJ Open MPI
52T 2 Express Java Fast-MPJ Akka
zZ £ 2 P Bindings
E &
o ~
o

Figure 3: FOOPAR’s layered architecture

such as MPI [9} 126, [27], and an abstract implementation provided
by FOOPAR with arbitrary network backends (e.g. Akka [23]) can
be used. The communication patterns work across multiple com-
munication backends due to the process interface, which abstracts
the message-passing functionality.

Finally, the user is presented with an SPMD programming
model using DPDs with SIMD-like [8|] operations. This combina-
tion provides a powerful abstraction of parallelism while maintain-
ing enough control for writing efficient and analyzable programs.

Example 1. Consider the following embarrassingly parallel algo-
rithm for approximating the transcendental constant 7 with arbi-
trary precision, here expressed as a Scala function approximating
the integral fol 1J:%dav.

def pi(n: Int) = {

val f = (x: Double) => 4d / (1d + x * x)
val ff = (x: Int) => (x - 0.5d) / n
(1 to n).map(f compose ff).sum / n

}

Line 1 defines a function p1i taking an integer (the number of ”sam-
ples” from the integral), Line 2 defines the function £ to integrate,
and Line 3 defines the function ££ generating the sample positions.
Line 4 uses a Scala built-in to create the list [1,2,...,n], maps
the composition of £ and ££ to each element of this list, and reduces
the resulting list to its average, which is returned by pi as its value.

In order to obtain a parallel version, we simply replace Scala’s
built-in lists in Line 4 with FOOPAR s DPD for sequences, DistSeq,

(O e SOV S

and use the DPD methods mapD and avgD which correspond to
map and sum / n, respectively:

def pi(n: Int) = {
val £ = (x: Double) => 4d / (1d + x * x)
val ff = (x: Int) => (x - 0.5d) / n
DistSeq.ranged(1 to n).mapD(f compose ff).avgD
}

The sequential runtime Ts is obviously in ©(n).

For the parallel runtime T'p, assuming p processing elements,
we

have Tp € ©(n/p + Tc) where T¢ is the communication time.

A naive implementation of the sum would require linear com-
munication overhead (i.e., Tc € O(p- (ts + tw - m))) where t is
the communication start-up time, t, is the per-word transfer time,
and m is the message size in words (alpha-beta cost model in the
notation of [10]).

Using the reduction based on inverse recursive doubling (cf.
Figure , we obtain Tc € O(logp - (ts + tw - m)) and, thus,
Tp e O(n/p+logp- (ts + tw-m)). If our parameter n is at least
p - logp, then the cost pTy, is in ©(n) and we call our parallel
algorithm cost optimal. In other words, if each processing element
gets to compute at least log p elements of the sum, the overhead of
the parallel version does not dominate the serial runtime asymptot-
ically and therefore all processing elements can be used efficiently.

The above example also demonstrates the importance of efficient
communication operations. This is the focus of the next section,
where we introduce our parallel data structures and

the computation and communication operations on them.

3. Distributed Memory Parallel Data Structures

At the heart of FOOPAR lie the Distributed Memory Parallel Data
Structures (DPDs). The DPDs provide data-abstractions, but they
rely on the user to define partitions of the data to processing el-
ements either directly through rank-data mappings or indirectly
through lazy data wrappers. The former case can be understood
as a mapping of processing elements to the data they store lo-
cally. To understand the latter, consider the situation where a user
might define a two-dimensional grid representing a large matrix.
Since this structure would probably not fit in the memory avail-
able for a single processing element, each entry is wrapped in a
lazy container. Scala has language support for this and thus writ-
ing a lazy matrix-class can be achieved simply by adding the lazy
keyword in front of the actual data field. In this way, each pro-
cessing element will inflate only the required matrices at execu-
tion. While user-defined partitioning provides a lower level of ab-
straction than a dynamic workload balancing scheme would, it pro-
vides a good balance between abstraction and analyzability. Alter-
natively, one of the available DPDs can be used to conveniently
map into data partitions, e.g. for a given array a, we could use
(0 to a.length-1).toDistSeq.mapD(a), where a is used as
a partial function.

Once a DPD is instantiated, algorithms can be implemented di-
rectly through chains of parallel transformations and communica-
tion methods directly on the DPD. As usual in functional program-
ming, in FOOPAR, DPDs are treated as immutable data structures
and, consequently, all operations on DPDs return new data struc-
tures. FOOPAR currently offers four DPDs: Distributed Values,
Distributed Sequences, Distributed Grids, and Distributed Hash-
Maps. Due to the modularity of the communication operations in
FOOPAR, the collections can easily be extended and expanded via
user defined DPDs. Such new distributed collections can either
make use of the built-in group communications or obtain direct

N —

peer-to-peer message passing capabilities (at the price of poten-
tial deadlocks, etc.). In this paper, we focus on the Distributed Se-
quence DPD as the most common case. We also briefly introduce
the Distributed Values DPD and the Distributed Grid DPD.

A constant or variable is the simplest form of a data structure,
as it is unstructured. FOOPAR supports unstructured parallel data
in the form of the Distributed Value DPD. A Distributed Value
is shared among all processing elements of some communication
group. As there is a local value for each processing element, typical
sequence operations like map, reduce etc. can still be used, albeit
without any sense of order or of sequence length. In other words,
all processing elements are participating in all operations and the
reduction operators have to also be commutative

For Distributed Values, the processing element’s rank is mapped
to the local data given as an argument at the point of instantiation.
While this mapping is trivial, it is still useful for operations that
include all processing elements in an execution.

Example 2. Agreeing on a dynamic random seed can be done in an
unstructured way by taking the current unix time at each node and
agreeing and communicating the minimum of all these timestamps,
thereby agreeing on a global seed.

val now:
val min:
val rnd:

Long = System.currentTimeMillis
Option[Long] = DistVal(now).allMinD
Option[Random] = min.map(new Random(_))

Here, allMinD computes the minimum of the values in all
processing elements and broadcasts it to all processing elements
in ©(logp). Alternatively, one could use the indexing method
apply(0) fo get the current time from some arbitrary process-
ing element with index 0. It is even possible to share the random
number generator itself. The reason for the type Option[Long] is
that for other DPDs, not all processing elements necessarily take
part in this computation. At the end, all processing elements have
access to a random generator initialized with the global seed. We
use the suffix D on parallel methods of DPDs in order to clearly
distinguish between sequential and parallel operations. This is
relevant especially since Option supports similar higher order
methods, e.g. dseq.reduceD(_+_) .map(_+10) would be a valid
expression using a map on the Option result.

The Distributed Sequence DPD distributes a sequence of a
certain length to processing elements. In other words, a distributed
sequence is a one-to-one mapping of indices to ranks, i.e., an index
¢ of the sequence is mapped to the numerical identifier of the
processing element that stores the ¢-th element of the sequence.

Such a rank-data mapping can be generated from any exist-
ing indexed Scala sequence using toDistSeq as exemplified in
the first paragraph of this section or from a symbolic range such
as (1 to n) as seen in Example [I] While creating distributed se-
quences from indexed sequences require each processing element
to contain the entire sequence, in combination with lazy data ele-
ments, this restriction is lifted and actually turned into a powerful
advantage. Consider for example a Distributed Sequence DPD con-
taining lazy references to matrices. The runtime overhead of deal-
ing with this symbolic indexed sequence will be dominated by the
matrix-matrix multiplication used to reduce the sequence.

Operations on the Distributed Sequence DPD are parallel ver-
sions of the typical sequence operations such as map, reduce etc.
Figure 5] shows how the SIMD principle is mimicked in a paral-
lel map operation. In contrast to the Distributed Values DPD, order
and length of the sequence are respected and only associativity is
required for reduction operators.

The Distributed Grid DPD offers a more involved rank-data
mapping than the other DPDs, the motivation being a lack of ef-

Ranks seq Operation
Po n A(seqo)
D1 A(seqr)
. Asean)
p3 — nop
P4 — nop

Figure 5: Example of SIMD principle in mapD method invocation
on Distributed Sequence of size 3.

ficient means for nested traversals of distributed sequences repre-
senting multidimensional data. It offers an efficient rank-data map-
ping while providing convenience methods for advanced communi-
cation patterns like subdimension partitioning. The mapping itself
is a generalization of positional notation for integers called mixed
radix with the addition of a possible transposition. In a nutshell,
integers can be converted to and from a list of subindices for the
individual dimensions. Section[6.2] shows how to use this to model
a distributed matrix in a Floyd-Warshall parallelization.

3.1 Group Communication Algorithms

Central to the DPD operations of FOOPAR are the group com-
munication algorithms. These operations serve as the basis for
all network communication in FOOPAR, but can be viewed as
a completely encapsulated module. All the operations work via
asynchronous message passing, i.e., nonblocking sends coupled
with blocking receives. FOOPAR introduces the notion of FooPar
Processes, abstract processes which encapsulate integer ranks as
well as send and receive operations, and, thus, can be treated as
abstract processing elements in group communication algorithms.

FOOPAR adopts a topology-oblivious approach to the distribu-
tion of processing elements in groups, i.e., tasks are currently dis-
tributed in a round-robin fashion with no regard to cache coher-
ence. Section [§] shows that this is efficient in practice. However,
FOOPAR’s design allows for future topology-aware heuristics to
improve distribution of processing elements to optimize communi-
cation.

The group communication algorithms center around commu-
nication via message passing. Non-blocking sends and block-
ing receives are made possible through the process interface.
We define the methods as send(destination, message) and
receive(origin) where destination and origin are local
ranks within a communication group. This level of abstraction al-
lows enough flexibility for a vast amount of algorithms to be im-
plemented with no regard for actual network implementation or
topology.

Arguably, the most trivial group communication operation is a
Circular Shift by d elements for a sequence of length n, where
each process with rank 7 sends its element to (r + d)mod n and
receives an element from (r — d)mod n.

In Figure [J] we have seen how to use inverse recursive doubling
to implement the Reduction group communication operation for
associative reduction operators. This operation is a special case of
the higher-order fold algorithm without an identity element. The
typical sequential fold comes in ordered left-to-right (foldLeft),
right-to-left (foldRight) or unordered (fold). To support these,
data is required to be a monoid structure, i.e., a semi-group with
zero element. While the sequential fold imposes more restrictions
on the structure of the data, it offers more flexibility by supporting
ordered folds on empty sequences as well as supporting arbitrary
typed zero elements. While left- and right-associative folds are

Operation Parallel Running Time 7> | Communication
mapD A, foreach A O(Ty) None

apply ¢ O((ts + tw -m)logp) Broadcast
reduceD \ O((ts +tw-m+Tx)logp) | Reduce

scanlD A O((ts +tw-m+Ty)logp) | Prefix Sum
shiftDd O(ts + tw -m) Circular Shift
sumD, productD, minD, maxD, avgD O((ts + tw -m)logp) Reduce
allSumD, allProductD, al1MinD, allMaxD, allAvgD | O((¢s + tw - m)log p) All-Reduce

Figure 4: Table over operations supported by FOOPAR DPDs. m is message size in words, p is # of processing elements

inherently sequential, the reduction operation can be parallelized
as discussed before.

Finally, the elementary group communication Broadcasting
which communicates a value from one processing element to all
others, can be performed by recursive doubling, i.e., the inverse of
Figure[2} in ©(log p).

To profit from the group communication patterns, high level

data structure operations are mapped to group operations. Scala
sequences support second-order operations like for example map
and reduce as well as element retrieval using the indexing oper-
ator apply. Analogously, FOOPAR offers variants of these on dis-
tributed sequences. The remainder of this section describes how
and at what (parallel) running time cost reduceD, mapD, and apply
can be implemented.
For performing computations on the local data of the processing
elements, we do not need communication, but we need to apply a
function to each element of the distributed sequence. A mapD with
a function A of running time 7’ can be performed independently in
parallel, yielding a parallel running time of ©(7T%), as opposed to
O(n - Th) in the serial case. Here, we assume n < p, i.e., the ex-
istence of sufficiently many processing elements. This assumption
works because each element in the DPD can represent partitioned
data.

The indexing operation, apply, needs communication. If each
process needs a copy of the i-th element, a Broadcast communica-
tion operation based on recursive doubling can be used to perform
this operation in ©((ts + t. - m) log p) parallel time. Here, ¢, and
t., are the message startup time and per-word transfer time respec-
tively. Similarly, reduceD can be performed in ©((ts + tw - m +
T>) log p) for any reduction operation .

For further operations, consult FigureEI} There, two more com-
munication operations are used. All-Reduce is just like Reduce, ex-
cept that all process elements receive the result of the reduction,
while Prefix Sum is a reduction where each processing element re-
ceives the partial reduction result up to its index. We use the ver-
sions from [10]], except that we correct an obvious bug for Prefix
Sum in order to avoid commutativity as a requirement for the oper-
ation.

Example 3. The following code multiplies two matrices A and
B represented by 2-dimensional Scala Arrays of lazy matrix-
wrappers named A and Bt, where the latter represents BT . Using

3 2
mapD and reduceD, this runs in parallel time © (% + p’;ﬁ log p).

for (i <- 0 until M; j <- O until N)
A(i) zip Bt(j) mapD {case (a,b) => a*b} reduceD (_ + _)

4. FOOPAR Implementation in Scala

The mix between functional programming and object oriented fea-
tures brings interesting new possibilities for program design. In
this section, the language concepts needed to implement DPDs
and their use in FOOPAR are presented. In particular, our frame-

N —

E-SNOSI SR

work builds on the builder/traversable pattern [21] in order to ob-
tain reusable and maintainable code by reducing code duplication
and boiler plate code as well as introducing a natural unification of
functional concepts.

4.1 Option monad

Like Haskell, the standard Scala library also contains a maybe
monad [28]] structure in the shape of the parameterized Option [+A]
trait. Simply put, a monad is an abstract concept that can be used
for convenient control-flows in functional programming. FOOPAR
uses Scala’s Option monad in order to enable the use of SIMD
instructions for group operations where not all processing elements
participate.

FOOPAR also relies on the Option monad for robustness. In
the battle against NullPointerExceptions known from Java, Option
makes the possibility of a None value explicit, thus moving the
problem to compile time. It is a huge advantage for this framework
to push as many errors as possible into compile time to disallow
erronous runs on expensive HPC-hardware with limited access
to computation time. One of the biggest advantages comes from
the way Option supports SIMD operations. If we consider the
method map, nop instructions can be simulated elegantly. From the
definition of Option in the Scala AP12.9.2 we have:

@inline final def map[B](f: A => B): Option[B] =
if (isEmpty) None else Some(f(this.get))

This nicely encapsulates nop as a special case of the map operation
on Option elements. Given a list xs of options, we can nest a map
operation to simulate SIMD:

val xs = (1 to 4).map(i => if (i > 2) Some(i) else None)
def simd[T,U]J(f: T => U) = (o:0ption[T]) => o.map(f)
def double(i:Int) = i*2
xs.map(simd (double)) //

Vector (None,None,Some (6) ,Some (8))

Note that all the above code is sequential. However, FOOPAR gen-
eralizes this pattern to parallel map operations supporting arbitrary
SIMD operations in the form of A expressions. Lists in Scala are
also monads, the difference being that a list can be empty (Nil),
or contain one or more elements where Option supports none or
exactly one element.

To break it down, FOOPAR uses options mainly in 2 cases: 1)
When not all processing elements participate in a group operation,
the SIMD model enforces that they still make the method invoca-
tion, safely returning the type Option[T], and 2) when construct-
ing a DPD, every processing element creates a symbolic structure
with their local part stored in an Option[T] value, i.e., processing
elements that are not a part of the communication group contain the
None singleton but can continue to invoke methods safely.

(O RE SOV S

W N =

4.2 Implicits

In Scala, implicits allow the compiler to choose appropriate values
for expressions at compile time. Coupled with type-inference, this
allows for advanced design patterns. FOOPAR uses implicits ex-
tensively for its typeclasses and for the Traversable-Builder Pattern
employed by its DPDs.

Listing 1: Generic base trait

trait A[T] {
def filter(f: T
def map[U](f: T
}
class B[U] (val x:

=> Boolean) = 777 //lNeed type B[T]
=> U) = ?7?? //Need type B[U]

U) extends A[U]

Consider the problem depicted in Listing [T] : Given two classes,
A[T] and its subclass, B[U], how can a method of A[T] have
B[U] as a return type? This problem can be solved through implicit
parameter resolution. If we define a generic method (map, Line
3 in Listing |2) we allow the compiler to choose the generic type
parameter based on available implicit values in companion objects
(builder, Line 8 in Listing [2). Now, super-classes can implicitly
work with sub-types through their definition of implicit builders.
In turn, this allows for generic implementations of functions that
return concrete types, i.e., map [U,That] is implemented with no
knowledge of subclasses A and B, however, if we map an A into a
container of String, we get a B.

Listing 2: Simple builder pattern

trait Cont[T] {
def elem: T
def map([U, That](f: T => U) (implicit builder: U =>
That): That = builder(f(elem))
}
case class A(elem: Int) extends Cont[Int]
case class B(elem: String) extends Cont[String]
object B { //Companion object for B
implicit def bldr:(String => B) = (s:String) => B(s)
}
object Impl extends App {
val a:A = A(42)
val b:B = a.map(x => x.toString)
}

4.3 Type-Classes through Implicits

FOOPAR uses type-classes to provide numeric distributed opera-
tions on the DPDs, e.g. sum, product, max, minBy etc. Type-
classes are flexible, and thus, FOOPAR uses the Numeric type-class
directly from the standard library of Scala, making numeric opera-
tions available for all implementing classes of the standard library.
FOOPAR goes even further and offers methods like average which
are unavailable in the standard library.

A type-class [11] defines features for a set of types in a weaker
sense than interfaces or traits. In Scala, type-classes are powered by
implicit arguments to methods providing a looser coupling between
classes than other interface-constructs. Using the type-class pattern,
a class can impose constraints on a generic type, T, on a per-method
basis rather than a per-class basis as provided by interfaces and
type-bounds. This concept is called context bounds in Scala, for
example:

1 ‘ def sumL[T:Numeric] (1:List[T]) =

1.sum

This unfolds to the following more verbose definition:

l‘def sumL[T] (1:List[T]) (implicit num:Numeric[T]) = 1l.sum ‘

W N —

NN R W=

oW N =

[R SO S

Now we have a function definition which works only for types T
which provide an implicit numeric parameter, usually supplied by
the companion object for T. To explain how this is different than
using an upper type bound directly on T, consider the following
example:

case class NumList[T <: Complex] (xs: Complex*) {
def sum = (xs fold new Complex(0, 0))(_ + _)
def map[U <: Complex] (f: Complex => U): NumList[U] =
NumList (xs.map(f): _%)
override def toString = "[" + xs.mkString(", ") + "]"

}

We define a numeric list based on lists of type T with upper bound
Complex. In this way, NumList gets access to numeric operations
like summation over the list. As a result, the list can be used for
example like this:

val r = new Real(2)

val n = new Natural(10)

val comps = NumList(r, n, r, n)

println(comps)

println("sum: " + comps.sum)

println("sum * 2: " + comps.map(x => x + x).sum)

While this provides added functionality for numeric types, it comes
at the expense of an additional class definition and a bound on
T. Furthermore, we were forced to provide a template definition
of addition (i.e., the method from Complex). By introducing a
numeric type-class, we unify the concept of a generic list and
a numeric list. With a numeric type-class, the list class can be
rewritten as follows:

case class GenList[T](xs: T*) {
def sum(implicit num: Numeric[T]) = xs.sum
def map[UJ(f: T => U) = GenList(xs.map(f): _x*)
override def toString = "[" + xs.mkString(", ") + "]"

}

Now the list can be used for any type T while sum works for
any type T providing implicit definitions of Numeric [T]. In Scala,
many of the subclasses of AnyVal support this operation, so we
have successfully provided a numeric operation with a least knowl-
edge principle about the generic type T. Type-classes allow us to
use the smallest set of constraints for a type and provide us with
very fine-grained control.

Using implicit classes in combination with type-classes, we can
extend existing implementations of classes without modifications
or additional interfaces. As an example, we can add the average
method to sequences of the Scala API:

implicit class AvgSeq[T](s: SeqlT]) {

def average(implicit num: Numeric[T]) =
num.toDouble(s.sum) / s.size

}

println(1 to 9 average) //result: 5.0

We have seen a use of this already in Section [3] where a method
toDistSeq was added to Scala sequences.

AN R W

(S RN SO S

[R SOt

Furthermore, FOOPAR makes use of typeclasses to provide con-
venience methods for numeric types. As an example, consider the
following extension to a Matrix class which can be considered a nu-
meric type. We implement a subclass of the generic Numeric [T]
trait for the type Matrix.

class MatrixIsNumeric extends Numeric[Matrix] with
Ordering[Matrix] {
def plus(x: Matrix, y: Matrix): Matrix = x + y
def times(x: Matrix, y: Matrix): Matrix = x x y
def negate(x: Matrix): Matrix = x * -1

By making an instance of this class implicitly available for the
Matrix companion object, it will be accessible at compiletime for
the FOOPAR DPD classes.

Example 4. As an example, consider the reduction of a distributed
sequence containing matrices of equal dimensions. By introducing
the implicit numeric instance for matrices, the distributed sequence
can be reduced via summation without imposing any constraints on
the remaining methods of the distributed sequence.

val x = new Matrix(Seq(Seq(1l, 2), Seq(3, 4)))
val dSeq = Array.fill(size) (x).toDistSeq
for (res <- dSeq.sumD) {

pprintln(res, "

size = " + size, res == x * size)

Line 1 creates an instance of the matrix class. Line 2 creates
an array of processing elements in this FOOPAR execution and
then converts it to a distributed sequence. Line 3 calls the dis-
tributed sumD method, which requires an implicit instance of the
Numeric [Matrix] class. Using the for-comprehension, only the
root process prints and checks the result against x - size. Note that
the for-comprehension can be used because Scala’s Option monad
supports the higher order method foreach.

Running the above FOOPAR program with 8 processing ele-
ments yields the following output as expected:

RankO: ([8.0,16.0]

[24.0,32.0], size = 8,true)

4.4 Builder/Traversable Pattern

For FOOPAR’s implementation, a main goal was to avoid reimple-
menting the distributed operations such as reduceD and mapD for
each DPD. With the Builder/Traversable pattern we achieve this
and implement them once and for all, while maintaining the spe-
cific types of the DPDs.

One of the main benefits of Scala’s implicits comes from the
way the compiler resolves implicit arguments at compiletime. “If
there are several eligible arguments which match the implicit pa-
rameter’s type, a most specific one will be chosen using the rules
of static overloading resolution” [20]. Using this feature, type in-
formation can be pushed upwards in a type hierarchy via generics
and an adaptation of the Factory Pattern [21], i.e., the Builder/-
Traversable Pattern, effectively solving the problem depicted in

Listing [T}

trait DistTraversable[+T] {
def elem: Option[T]
def foreach(f: T => Unit): Unit
def group: FooParGroup

}

~N O\ R W=

B W N =

wn

The DistTraversable trait presented above resides at the base of
the type hierarchy (a simplified overview can be seen in Figure[6).
It defines methods for retrieving a process’ local element as well
as means of traversing it. The group is used to supply network
communication operations and follows a DPD through chains of
consecutive transformations.

FOOPAR utilizes Scala’s standard library support for the
Numeric[T] type-class [11]. In combination with the group com-
munication operations the user gains convenient access to dis-
tributed versions of operations like sum, average, min, max
and product for types T, which provide implicit Numeric[T]
values. This allows user-defined algebraic types (as well as stan-
dard primitives) to work with the built in DPDs in FOOPAR.
The distributed numerical operations are available through the
TraversableNumOps trait.

Both for the type-class support of numeric operations as well as for
applying the Traversable/Builder pattern, FOOPAR makes heavy
use of context bounds.

In the following we are going to take a look at the implementa-
tion of distributed variables. The implementation of e.g. distributed
sequences is analogous except for more complex builders due to
the mapping of indices to ranks.

As shown below DistVal [+T] is basically just the composition
of the traits DistTraversableLike and TraversableNumOps
and thus the most basic implementation of a DPD.

class DistVal[+T]
(val elem: Option[T], val group: FooParGroup)
(implicit val fpapp: FooParApp)
extends DistTraversableLike[T, DistVall[T]]
with TraversableNumOps[T, DistVall[T]] {
def size =1

}

The real work is performed in DistTraversableLike as well as
in the implicit builders of the companion object:

object DistVal {
type DTB[T] = DistTraversableBuilder[T]
implicit def canBuildFrom[T, U]
(implicit fpapp: FooParApp): CBF[DistVall[T], U,
DistVal[Ul] =
new CBF[DistVal[T], U, DistVal([U]] {
def apply(): Builder[U, DistVall[U]] =
newBuilder (None)
def apply(from: DistVal[T]): Builder[U,
DistVal[U]] =
newBuilder (Some (from.group))

When the companion objects of an
supplies an implicit builder through the generic trait
CanBuildFrom[From,Elem,To], super classes can access
this builder at compile-time using explicit self-typing. The com-
panion object DistVal implements such an implicit definition of
the CanBuildFromn trait.

Finally, the trait DistTraversableLike [T,Repr] defines the
collection operations associated with a distributed traversable by
using an implicit builder as a parameter to the respective methods
as seen in the below code.

extending class

EENRUSE) —_

N W

it.vigtig.foopar.collection

DistTraversable[+T]

+elem(): Option[T]
+foreach(f: T => Unit): Unit
+group(): FooParGroup

DistTraversableLike[+T,+Repr]

+apply(i:Int): Option[T]
+align(): Unit

+mapD[B,That] (f:T => B,implicit bf:CanBuildFrom[Repr,T,That]): That
+shiftD[That] (delta:Int,bf:CanBuildFrom[Repr,T,That]): That
+reduceD[T1 >: T](assOp:(T1,T1l) => T1): Option[T1]

+allReduceD[T1 >: T](assOp:(T1,T1l) => T1): Option[T1]

DistVal[T]

DistSeq[T] |

+elem: Option[T] +size:

+elem: Option[T] P e e e e e e e e e - === = i

DistVal (Companion Object)

DistSeq (Companion Object)

+newBuilder[T](): Builder[T,DistVal[T]]

+implicit canBuildFrom[T,U](): CanBuildFrom[..]

+implicit canBuildFrom[T,U](): CanBuildFrom[..]
T

1
1
1
1
+newBuilder[T](): Builder[T,DistSeq[T]] |
1
1
I

Figure 6: Simplified UML diagram of collection package architecture. The companion objects of DistSeq and DistVal provide type
information to DistTraversableLike through a loose coupling with implicit definitions of CanBut ldFrom.

trait DistTraversableLike[+T, +Repr] extends
DistTraversable[T] {

self: Repr =>
def reduceD[T1 >: T](assOp: (T1, T1) => T1):
Option[T1] = {
if (group.part0fGroup)
for (x <- this) group.allOneReduce(x,
assOp) .foreach(y => return Some(y))
return None
}
def mapD[B, That](f: T => B)(implicit bf:
CanBuildFrom[Repr, B, That]): That =
{
val b: Builder[B, That] = bf(this)
if (group.part0fGroup)
for (x <- this) b += f(x)
b.result
¥ oo
}

As shown in Figure [6] the same approach is used for distributed
sequences (and other DPDs supported by FOOPAR).

5. Verification and Testing

Using core features of functional programming like higher-order
functions and immutable data structures, FOOPAR allows for ana-
lyzable and verifiable programs to be designed and implemented.
Given a higher order function, f, which takes a function value pa-
rameter, A\, one can prove the correctness of f given some prop-
erties of A. Furthermore, higher order functions can abstract away
message passing, including deadlock-safety in their proofs. As an
example, FOOPAR provides a distributed method, reduceD(\),

which is proven to be correct and deadlock-safe for any associa-
tive binary operator, A. Once a program can be modeled purely in
terms of proven higher-order functions, the correctness and safety
of that program follows from properties of the function-parameters.
In this section, we give a short proof of All-to-One Reduction and
show how specification testing can be used to bridge the gap be-
tween proof and practice.

5.1 Correctness Proof of All-to-One Reduction

function REDUCE(), size, acc, rank)
for i < 0 until [log, size] — 1 do
m < 2¢
if rank mod 2m = 0 then
acc < X ace, rev(rank +m))
else if rank mod m =0 then
send(rank — m, acc)
end for
if rank = 0 then return Some(value)
else return None
end function

> Side-effect

> Side-effect

Algorithm 1: Functional All-to-One Reduction in FOOPAR.

We prove the correctness of the All-to-One Reduction in FOOPAR
(Algorithm [I)) for powers of two by induction on the number of
processing elements p. Without loss of generality, we use the asso-
ciative operator A := (-) and rank = 0 as root element. The case
for p = 1 is trivial in that no communication takes place. For illus-
tration purposes, we choose p = 4 as the base-case instead.

Base step: Let p = 2" n = 2 and e, the element initially
contained by processing element 7.

i | m | rank | recieve/send acc
01 1]0 receive(1) (eo-e1)
1 send(0,e1) €1
2 receive(3) (e2-e3)
3 send(2,e3) es
12 [0 receive(2) ((eo-€1)-(e2-€3))
1 nop el
2 send(0, (e2 - e3)) (e2-e3)
3 nop €3

We see that after 2 iterations, rank = 0 contains Hf:é e, conclud-
ing the base step. Let the induction hypothesis state that, for p = 2",
the processing element with rank = 0 will contain Hf:o_ e, after
the nth iteration.

Induction step (n+1):If p = , at the beginning of iteration
i = n, by the induction hypothesis, the first 2" elements complete
the partial reduction at the root node, rank = 0. Furthermore,
we see that the remaining 2" processing elements of the upper

half complete the analogous algorithm at rank = 2", computing
n+1
[12.,» " e,. Atiteration i = n, m = 2™ and thus, rank = 0 receives

the reduction of the upper half from rank = 2". Since

2n+1_1 2m_q 2n+1_1
1 (H)(I)
r=0

2n+l

r=0 r=2n

rank = 0 now contains the reduction of the entire sequence O.

To prove that this algorithm is safe, we follow the same pattern
as the correctness proof. To go from the case of p = 2™ to the case
p = 2", we complete the final step of the reduction by sending
a message from rank = 2" to rank = 0, unlocking the resource
necessary for rank = 0 to complete its receive call.

Note that the order of computation respects associativity and
thus works for any binary associative function. By the fact that
Recursive Doubling is the exact inverse operation of All-to-One
Reduction using an appropriate A function, we conclude that both
the correctness proof and the safety property hold for Recursive
Doubling. Finally, the algorithm and proof can (with only minor
additions) be generalized to arbitrary roots E] and arbitrary number
of processing elements.

5.2 Testing Properties

While the combination of pseudo-code, correctness/safety proofs,
and parallel asymptotic running time and scalability analysis can
take us far, it is useless if the theory and implementation remain
disconnected. Even in a high-level language like Scala, it can be
extremely tough to show that the implementation adheres to a strict
contract between the pseudo-implementation and the code. Specifi-
cation testing [19] is a natural next step in Unit Testing. At its core,
it is an abstraction over test-case construction, using generators for
core types that can be extended to support new data structures. Us-
ing ScalaCheck, FOOPAR provides a high level of code-trust, so-
lidifying the relationship between proofs and properties found the-
oretically and the actual code. Since Scala supports imperative pro-
gramming, detailed pseudo-code can be translated directly into pro-
gram code. If imperative code pertains to inherently stateful parts
of a program (e.g. message passing in group communication pat-
terns), and is interfaced only through stateless functional program-
ming, the disadvantages of imperative programming do not bleed
into user programs. In addition, we can modularize proofs elegantly
through proper use of higher order functions and immutability.

! Reduction to other roots can obviously be achieved by xor-ing all ranks in
the algorithm with the rank of the target root.

(O R O S

N

FooPar axk, —®— Javaypjg —€—

20 ‘ ‘
15 |-
3
(=1
3 10 |-
2
5,
| |
100 200 300 400 500 550 600
n

Figure 7: Average walltime in seconds for matrix reduction with
multiplication. FOOPAR with Akka backend and Java with MPJ
Express on 16 cores spread across 2 machines.

Listing 3: Specification Testing in FooPar

property("maxD") = forAll(sizedLists) { xs: List[Int] =>
val dseq = xs.toDistSeq
dseq.maxD shouldEqual xs.max
}
property("reduceD with concat") = forAll(sizedLists) {
xs: List[Int] =>
val dseq = xs.toDistSeq.mapD(_.toString)
dseq reduceD (_+_) shouldEqual xs.mkString
}

Listing 3] shows how specification testing can programmatically
provide arbitrary test-cases (i.e., automatic edge-case construction)
without huge amounts of boiler-plate code. The shouldEqual
method is a small FOOPAR extension that allows for idiomatic use
of the option monads returned from the DPD methods.

Listing 4: Implicit extension with shouldEqual method

implicit class Should[T] (opt: Option[T]) {
def shouldEqual[U] (x: U) = opt.map(_ ==
x) .getOrElse (true)

Listing[]shows how the method shouldEqual utilizes the Option
monad to provide a fallback making sure that processing elements
that do not receive a result always answer true to specification
testing.

6. Empirical Results

FOOPAR’s ability to reach close-to-optimal performance in real
world HPC settings has already been demonstrated extensively for
dense matrix-matrix multiplication (cf. Figure[I) in [12]. Thus, in
this section, we focus on two other aspects. First, we compare the
performance of a FOOPAR reduction to that of the MPJ Express im-
plementation. Second, we show the framework’s ability to scale by
presenting a parallel implementaiton of the Floyd-Warshall algo-
rithm in FOOPAR and comparing it to a sequential implementation.

6.1 Comparison to MPJ Express

We conducted a test of computational scalability reducing p matri-
ces of varying size with the associative operation of matrix-matrix
multiplication. By varying the size of the matrices we show the per-

k column

— | —

— | +—
1T T T T T T T
T T T T T dk—l T

k row orT

]]]]] 1]
N 1 N N 1 ! 1

— [+— !

— | — E

— | +— v

dii! dl
“— @ -|---1---1-2> | @
— | —

Figure 8: Communication pattern employed in parallel Floyd-
Warshall: in iteration k, messages of size n/\/p are broadcast
along . /p processing elements (in rows and columns).

formance impact of the computation part in a reduction in FOOPAR
compared to Java+MPJ Express. Both use the same naive Java
implementation of matrix multiplication utilizing a 1-dimensional
double array matrix representation.

An analysis of the source of MPJ Express reveals an inefficient
implementation of the reduce operation. For matrices of size n, it
runs in Tp € O((p - 1)(Ts + T (n?) + n*)), whereas FOOPAR
implements this operation in Tp € O(n(logp(Ts + T (n?)
+n%)). Note that for these running times we assume suffi-
cient bandwidth between nodes at each stage of the respective
algorithms, i.e., they are network topology oblivious [LO].

Even when using MPJ Express as a backend, FOOPAR can still
achieve the latter parallel running time because it adds an algorith-
mic layer for group communication operations directly above mes-
sage passing, thereby diminishing the relevance of backend sup-
plied group operations. Figure [7] shows the expected tendency of
running times. Notice that, even for small sizes of n, FOOPAR dom-
inates Java with MPJ Express.

6.2 Floyd-Warshall Parallelization

The Floyd-Warshall algorithm solves the all-pairs shortest path
problem between all nodes v1,...,v, in a weighted graph. Let
dﬁj be the weight of the minimum-weight path between v; and
v; among vertices in the set {v1,..., vy }. The weight of an edge
between nod v; and v; is denoted as w(v;,v;).

The dynamic programming formulation can be expressed as
follows, where the shortest path from v; to v; is given by d’;:

w(vi,v;) k=0
df. = J
7 (min {df, a4 dVY k2

We follow the parallelization approach from [14] (communication
pattern presented in Figure[8) and present a scalable version of the
parallel Floyd-Warshall algorithm that employs FOOPAR’s Distri-
buted Grid (size p = ¢, i.e., ¢ processing elements per dimension):

SOOI A W=

—_

n p Speedup Running time in seconds
MPJ | Akka || MPJ Akka
16 14.65 | 12.76 || 408.52 469.06
25 22.56 | 19.93 || 265.3 300.33
36 26.86 | 27.40 || 222.85 218.5
10080 | 49 39.07 | 33.81 || 151.25 177.05
64 46.17 | 36.81 || 129.66 162.63
81 56.42 | 45.07 || 106.09 132.83
100 || 63.54 | 60.55 || 94.21 98.86
[38000 | 100 [[94.28 [87.39][3401.68 | 3669.86]

Figure 9: Floyd-Warshall parallel benchmark with input size n =
10080 and varying numbers of processing elements p. The row for
n = 38000 and p = 100 exemplifies speedups on large-scale inputs.

Listing 5: Floyd-Warshall implementation in FooPar

def update(row: Vector, col: Vector)(mat: Matrix) = {
for (i <- O until mat.size; j <- O until mat(0).size)
mat (i) (j) = math.min(mat (i) (j), row(j) + col(i))
mat
}
def floyd(blocks: LazyMatrix, BS: Int) = {
val dim = blocks.size
val R = 0 until dim
val N = dim * BS
var grid = DistGrid(R, R) mapD { case i :: j ::
=> blocks(i) (j).data }
for (k <- 0 until N) {
val ik = grid.ys.mapD(_(k % BS)).apply(k / BS).get
val kj = grid.xs.mapD(_.map(_(k % BS))).apply(k /
BS) .get
grid = grid.mapD(update(ik, kj))

Nil

grid
}

Briefly explained, Lines 7-10 initialize the 2-dimensional grid and
Line 12 is the inherent sequential loop of the algorithm, which
is safely modeled as a standard for loop. Line 13 gets the row
(k mod BS) of block |k/BS| in the column of the calling pro-
cess. Similarly, Line 14 gets the column (k mod B.S) of the block
|k/BS| in the row of the calling process. Line 15 transforms the
grid into the next iteration by updating each block in parallel.

Figure 0] shows scalability result for this implementation. We
reach efficiencies of ~ 0.94 and ~ 0.87 with MPJ-Express and
Akka respectively, i.e., we see that the algorithm is scalable even for
large numbers of processing elements. Furthermore, while Akka is
mostly dominated by MPJ-Express, the backends behave similarly
and the difference in performance are likely caused by differences
in constants like ¢, or £, i.e., startup and per-word transfer times.

While this example showcases the power of the abstractions in
FOOPAR, no work has been done to optimize the computational
kernel for the update function (Lines 1-5 of Listing [5). We note,
however, that a highly rewarding aspect of using higher-order func-
tions is that computational kernels are naturally separated from the
overall algorithm and, more importantly, completely disconnected
from the communication code.

7. Conclusion

We have presented FOOPAR, a novel Scala framework for mas-
sively parallel distributed memory computing in Scala, which al-
lows for concise and elegant high-level formulations of parallel al-
gorithms by abstracting the underlying communication into high-
level group communication operations.

A FOOPAR implementation of the Floyd-Warshall algorithm us-
ing distributed grids achieves a near-linear speed-up of more than
94 on a cluster using 100 processing elements for a matrix of di-
mension 38000 x 38000 demonstrating FOOPAR’s potential for ex-
pressing scalable algorithms, in this example reducing a computa-
tion of nearly 4 days to less than 1 hour.

We have also shown that, independently of the backend,
FOOPAR can achieve extremely competitive performance due to
its judicious implementation of the high-level abstractions based
on the Builder/Traversable pattern.

7.1 Relation to Previous Work

FOOPAR was very recently introduced in [[12], wich focuses on par-
allel algorithms, isoefficiency analysis, and absolute performance.
In contrast, in this paper we focus on its architecture and program-
ming model, its implementation in Scala, its comparative perfor-
mance w.r.t. MPJ Express, and its real-world scalability.

7.2 Future Work

First, we observe that workload partitioning represents a thresh-
old point of abstraction for parallel programming. This problem is
less pronounced in shared memory architectures, as the partition-
ing of data can be symbolic. In distributed memory settings, the
communication cost of workload partitioning can easily become
a bottleneck of an algorithm. Furthermore, parallel programs using
automated workload partitioning are often harder to analyze. While
automated workload partitioning does not fit directly into FOOPAR,
we plan to explore how FOOPAR can be integrated with a separate
dynamic workload allocation module, in particular for local shared
memory workload partitioning in multi-core nodes.

Thirdly, FOOPAR’s mix of the SPMD and SIMD paradigms
makes it ideal for use in connection with large scale SIMD hard-
ware. CUDA [18] and OpenCL [13] offer interesting takes on
SPMD/SIMD programming, especially w.r.t. GPU based systems.
GPU executions of DPD methods could offer performance boosts
to single-node operations, in combination with the distributed algo-
rithms already possible in FOOPAR.

Acknowledgments

We acknowledge the support by the Danish Council for Inde-
pendent Research, the Innovation Center Denmark, the Lawrence
Berkeley National Laboratory, and the Scientific Discovery through
Advanced Computing (SciDAC) Outreach Center.

References
[1] Carver. http://nersc.gov/users/computational-systems/carver/,

[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele Jr., and S. Tobin-Hochstadt. The Fortress Language
Specification. Technical report, Sun Microsystems, Inc., 2007.

D. A. Bader, K. Madduri, J. R. Gilbert, V. Shah, J. Kepner, T. Meuse,
and A. Krishnamurthy. Designing scalable synthetic compact appli-
cations for benchmarking high productivity computing systems. C7-
Watch Quarterly, 2(48), November 2006.

A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith,
G. Tanase, N. Thomas, X. Xu, M. Bianco, N. M. Amato, and L. Rauch-
werger. Stapl: Standard template adaptive parallel library. In Proceed-
ings of the 3rd Annual Haifa Experimental Systems Conference, SYS-
TOR 10, pages 14:1-14:10, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-908-4. . URL http://doi.acm.org/10.1145/1815695.
1815713,

[5] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programma-
bility and the chapel language. IJHPCA, 21(3):291-312, 2007.

[3

[t}

[4

=

[6] N. Chen, R. K. Karmani, A. Shali, B.-Y. Su, and R. Johnson. Collec-
tive communication patterns. In ParaPLOP, 2009.

[7] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-
Ghazawi, A. Mohanti, Y. Yao, and D. Chavarria-Miranda. An evalua-
tion of global address space languages: Co-Array Fortran and Unified
Parallel C. In PPoPP, pages 36-47. ACM, 2005.

[8] F. Darema. The SPMD model : Past, present and future. In Eu-
roPVM/MPI Conference, LNCS 2131, page 1. Springer, 2001.

[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI implementation.
In European PVM/MPI Users’ Group Meeting, pages 97-104, 2004.

[10] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to
Parallel Computing. Pearson, Addison Wesley, 2003.

[11] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type
classes in haskell. ACM TOPLAS, 18(2):109-138, 1996.

[12] FE. P. Hargreaves and D. Merkle. FooPar: A Functional Object Oriented
Parallel Framework in Scala. In PPAM, number 8385 in LNCS, pages
118-129, 2014. preprintthttp://arxiv.org/abs/1304.2550,

[13] K. Karimi, N. G. Dickson, and F. Hamze. A performance comparison
of CUDA and OpenCL. CoRR, abs/1005.2581, 2010.

[14] V. Kumar and V. Singh. Scalability of parallel algorithms for the all-
pairs shortest path problem. JPDC, 13(2):124-138, 1991.

[15] R. Loogen, Y. Ortega-Mallén, and R. Pefia. Parallel functional pro-
gramming in Eden. JFP, 15:431-475, 2005.

[16] E. Lusk and K. Yelick. Languages for high-productivity computing:
the DARPA HPCS language project. PPL, 89(17), 2007.

[17] J. Milthorpe, V. Ganesh, A. Rendell, and D. Grove. X10 as a parallel
language for scientific computation: Practice and experience. Parallel
and Distributed Processing Symposium, pages 1080-1088, 2011.

[18] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40-53, 2008.

[19] M. Odersky. Contracts for Scala. In Runtime Verification (RV), LNCS
6418, pages 51-57. Springer, 2010.

[20] M. Odersky. The Scala language specification, 2011.

[21] M. Odersky and A. Moors. Fighting bit rot with types (experience
report: Scala collections). In FSTTCS, LIPIcs 4, pages 427-451, 2009.

[22] A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky. A generic

parallel collection framework. In Euro-Par 2011 Parallel Processing,
LNCS 6853, pages 136—147. Springer, 2011.

[23] R. Roestenburg and R. Bakker. Akka in Action. Manning, 2012.

[24] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky,
and K. Olukotun. Building-blocks for performance oriented dsls. In
O. Danvy and C. chieh Shan, editors, DSL, volume 66 of EPTCS,
pages 93-117, 2011.

[25] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data
structures in high-level programs: New directions for extensible com-
pilers based on staging. SIGPLAN Not., 48(1):497-510, Jan. 2013.
ISSN 0362-1340. URL http://doi.acm.org/10.1145/2480359.
2429128,

[26] A. Shafi and J. Manzoor. Towards efficient shared memory communi-
cations in MPJ express. In IPDPS, pages 1-7, 2009.

[27] G. L. Taboada, J. Tourifio, and R. Doallo. F-MPJ: Scalable Java
Message-passing Communications on Parallel Systems. Journal of
Supercomputing, 60(1):117-140, 2012.

[28] P. Wadler. The essence of functional programming. In Principles of
Programming Languages, pages 1-14. ACM, 1992.

[29] P. Wadler. Why no one uses functional languages. SIGPLAN Not.,
33(8):23-27, Aug. 1998. ISSN 0362-1340. . URL http://doi.acm.
org/10.1145/286385.286387.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: cluster computing with working sets. In USENIX conference on
Hot topics in cloud computing, page 10. USENIX Association, 2010.

http://nersc.gov/users/computational-systems/carver/
http://doi.acm.org/10.1145/1815695.1815713
http://doi.acm.org/10.1145/1815695.1815713
http://arxiv.org/abs/1304.2550
http://doi.acm.org/10.1145/2480359.2429128
http://doi.acm.org/10.1145/2480359.2429128
http://doi.acm.org/10.1145/286385.286387
http://doi.acm.org/10.1145/286385.286387

	Introduction
	The FooPar Framework
	Design and Related Work
	Communication Groups
	Architecture

	Distributed Memory Parallel Data Structures
	Group Communication Algorithms

	FooPar Implementation in Scala
	Option monad
	Implicits
	Type-Classes through Implicits
	Builder/Traversable Pattern

	Verification and Testing
	Correctness Proof of All-to-One Reduction
	Testing Properties

	Empirical Results
	Comparison to MPJ Express
	Floyd-Warshall Parallelization

	Conclusion
	Relation to Previous Work
	Future Work

