
Improved Modular Termination Proofs Using

Dependency Pairs

René Thiemann, Jürgen Giesl, Peter Schneider-Kamp

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{thiemann|giesl|psk}@informatik.rwth-aachen.de

Abstract. The dependency pair approach is one of the most powerful
techniques for automated (innermost) termination proofs of term rewrite
systems (TRSs). For any TRS, it generates inequality constraints that
have to be satisfied by well-founded orders. However, proving innermost

termination is considerably easier than termination, since the constraints
for innermost termination are a subset of those for termination.
We show that surprisingly, the dependency pair approach for termination
can be improved by only generating the same constraints as for innermost
termination. In other words, proving full termination becomes virtually
as easy as proving innermost termination. Our results are based on split-
ting the termination proof into several modular independent subproofs.
We implemented our contributions in the automated termination prover
AProVE and evaluated them on large collections of examples. These ex-
periments show that our improvements increase the power and efficiency
of automated termination proving substantially.

1 Introduction

Most traditional methods for automated termination proofs of TRSs use simplifi-
cation orders [7, 26], where a term is greater than its proper subterms (subterm
property). However, there are numerous important TRSs which are not simply
terminating, i.e., termination cannot be shown by simplification orders. There-
fore, the dependency pair approach [2, 10, 11] was developed which considerably
increases the class of systems where termination is provable mechanically.

Example 1. The following variant of an example from [2] is not simply terminat-
ing, since quot(x, 0, s(0)) reduces to s(quot(x, s(0), s(0))) in which it is embed-
ded. Here, div(x, y) computes ⌊x

y
⌋ for x, y ∈ IN if y 6= 0. The auxiliary function

quot(x, y, z) computes 1 + ⌊x−y
z

⌋ if x ≥ y and z 6= 0 and it computes 0 if x < y.

div(0, y) → 0 (1)

div(x, y) → quot(x, y, y) (2)

quot(0, s(y), z) → 0 (3)

quot(s(x), s(y), z) → quot(x, y, z) (4)

quot(x, 0, s(z)) → s(div(x, s(z))) (5)

In Sect. 2, we recapitulate dependency pairs. Sect. 3 proves that for termina-
tion, it suffices to require only the same constraints as for innermost termination.

This result is based on a refinement for termination proofs with dependency
pairs by Urbain [29], but it improves upon this and related refinements [12, 24]
significantly. In Sect. 4 we show that the new technique of [12] to reduce the
constraints for innermost termination by integrating the concepts of “argument
filtering” and “usable rules” can also be adapted for termination proofs. Finally,
based on the improvements presented before, Sect. 5 introduces a new method
to remove rules of the TRS which reduces the set of constraints even further.

In each section, we demonstrate the power of the respective refinement by
examples where termination can now be shown, while they could not be han-
dled before. Our results are implemented in the automated termination prover
AProVE [14]. The experiments in Sect. 6 show that our contributions increase
power and efficiency on large collections of examples. Thus, our results are also
helpful for other tools based on dependency pairs ([1], CiME [6], TTT [19]) and we
conjecture that they can also be used in other recent approaches for termination
of TRSs [5, 9, 27] which have several aspects in common with dependency pairs.

2 Modular Termination Proofs Using Dependency Pairs

We briefly present the dependency pair approach of Arts & Giesl and refer to [2,
10–12] for refinements and motivations. We assume familiarity with term rewrit-
ing (see, e.g., [4]). For a TRS R over a signature F , the defined symbols D are
the roots of the left-hand sides of rules and the constructors are C = F \ D.
We restrict ourselves to finite signatures and TRSs. The infinite set of vari-
ables is denoted by V and T (F ,V) is the set of all terms over F and V . Let
F ♯ = {f ♯ | f ∈ D} be a set of tuple symbols, where f ♯ has the same arity as
f and we often write F for f ♯. If t = g(t1, . . . , tm) with g ∈ D, we write t♯ for
g♯(t1, . . . , tm).

Definition 2 (Dependency Pair). The set of dependency pairs for a TRS
R is DP (R) = {l♯ → t♯ | l → r ∈ R, t is a subterm of r with root(t) ∈ D}.

So the dependency pairs of the TRS in Ex. 1 are

DIV(x, y) → QUOT(x, y, y) (6) QUOT(s(x), s(y), z) → QUOT(x, y, z) (7)

QUOT(x, 0, s(z)) → DIV(x, s(z)) (8)

For (innermost) termination, we need the notion of (innermost) chains. Intu-
itively, a dependency pair corresponds to a (possibly recursive) function call and
a chain represents possible sequences of calls that can occur during a reduction.
We always assume that different occurrences of dependency pairs are variable
disjoint and consider substitutions whose domains may be infinite. Here, i→R

denotes innermost reductions where one only contracts innermost redexes.

Definition 3 (Chain). Let P be a set of pairs of terms. A (possibly infinite)
sequence of pairs s1 → t1, s2 → t2, . . . from P is a P-chain over the TRS R iff
there is a substitution σ with tiσ →∗

R si+1σ for all i. The chain is an innermost
chain iff tiσ

i→∗
R si+1σ and all siσ are in normal form. An (innermost) chain

is minimal iff all siσ and tiσ are (innermost) terminating w.r.t. R.

To determine which pairs can follow each other in chains, one builds an (in-
nermost) dependency graph. Its nodes are the dependency pairs and there is an
arc from s → t to u → v iff s → t, u → v is an (innermost) chain. Hence, every
infinite chain corresponds to a cycle in the graph. In Ex. 1 we obtain the following
graph with the cycles {(7)} and {(6), (7), (8)}. Since it is undecidable whether
two dependency pairs form an (innermost) chain, for automation one constructs
estimated graphs containing the real dependency graph (see e.g., [2, 18]).1

QUOT(s(x), s(y), z) → QUOT(x, y, z) (7)

QUOT(x, 0, s(z)) → DIV(x, s(z)) (8) DIV(x, y) → QUOT(x, y, y) (6)

Theorem 4 (Termination Criterion [2]). A TRS R is (innermost) termi-
nating iff for every cycle P of the (innermost) dependency graph, there is no
infinite minimal (innermost) P-chain over R.

To automate Thm. 4, for each cycle one generates constraints which should be
satisfied by a reduction pair (%,≻) where % is reflexive, transitive, monotonic
and stable (closed under contexts and substitutions) and ≻ is a stable well-
founded order compatible with % (i.e., % ◦ ≻⊆≻ and ≻ ◦ %⊆≻). But ≻ need
not be monotonic. The constraints ensure that at least one dependency pair is
strictly decreasing (w.r.t. ≻) and all remaining pairs and all rules are weakly
decreasing (w.r.t. %). Requiring l % r for all l → r ∈ R ensures that in chains
s1 → t1, s2 → t2, . . . with tiσ →∗

R si+1σ, we have tiσ % si+1σ. For innermost
termination, a weak decrease is not required for all rules but only for the usable
rules. They are a superset of those rules that can reduce right-hand sides of
dependency pairs if their variables are instantiated with normal forms.

Definition 5 (Usable Rules). For F ′ ⊆ F ∪ F ♯, let Rls(F ′) = {l → r ∈ R |
root(l) ∈ F ′}. For any term t, the usable rules are the smallest set such that

• U(x) = ∅ for x ∈ V and

• U(f(t1, . . . , tn)) = Rls({f}) ∪
⋃

l→r∈Rls({f}) U(r) ∪
⋃n

j=1 U(tj).

For any set P of dependency pairs, we define U(P) =
⋃

s→t∈P U(t).

For the automated generation of reduction pairs, one uses standard (mono-
tonic) simplification orders. To build non-monotonic orders from simplification
orders, one may drop function symbols and function arguments by an argument
filtering [2] (we use the notation of [22]).

1 Estimated dependency graphs may contain an additional arc from (6) to (8). How-
ever, if one uses the refinement of instantiating dependency pairs [10, 12], then all
existing estimation techniques would detect that this arc is unnecessary.

Definition 6 (Argument Filtering). An argument filtering π for a signature
F maps every n-ary function symbol to an argument position i ∈ {1, . . . , n} or to
a (possibly empty) list [i1, . . . , ik] with 1 ≤ i1 < . . . < ik ≤ n. The signature Fπ

consists of all symbols f with π(f) = [i1, . . . , ik], where in Fπ, f has arity k. An
argument filtering with π(f) = i for some f ∈ F is collapsing. Every argument
filtering π induces a mapping from T (F ,V) to T (Fπ,V), also denoted by π:

π(t) =







t if t is a variable
π(ti) if t = f(t1, ..., tn) and π(f) = i
f(π(ti1), ..., π(tik

)) if t = f(t1, ..., tn) and π(f) = [i1, ..., ik]

For a TRS R, π(R) denotes {π(l) → π(r) | l → r ∈ R}.

For an argument filtering π and reduction pair (%,≻), (%π,≻π) is the reduc-
tion pair with s %π t iff π(s) % π(t) and s ≻π t iff π(s) ≻ π(t). Let

(
%

)
= % ∪ ≻

and
(
%

)π = %π ∪ ≻π. In the following, we always regard filterings for F ∪ F ♯.

Theorem 7 (Modular (Innermost) Termination Proofs [11]). A TRS R
is terminating iff for every cycle P of the dependency graph there is a reduction
pair (%,≻) and an argument filtering π such that both

(a) s
(
%

)π t for all pairs s → t ∈ P and s ≻π t for at least one s → t ∈ P
(b) l %π r for all rules l → r ∈ R

R is innermost terminating if for every cycle P of the innermost dependency
graph there is a reduction pair (%,≻) and an argument filtering π satisfying both
(a) and

(c) l %π r for all rules l → r ∈ U(P)

Thm. 7 permits modular2 proofs, since one can use different filterings and
reduction pairs for different cycles. This is inevitable to handle large programs
in practice. See [12, 18] for techniques to automate Thm. 7 efficiently.

Innermost termination implies termination for locally confluent overlay sys-
tems and thus, for non-overlapping TRSs [17]. So for such TRSs one should only
prove innermost termination, since the constraints for innermost termination are
a subset of the constraints for termination. However, the TRS of Ex. 1 is not
locally confluent: div(0, 0) reduces to the normal forms 0 and quot(0, 0, 0).

2 In this paper, “modularity” means that one can split up the termination proof of a
TRS R into several independent subproofs. However, “modularity” can also mean
that one would like to split a TRS into subsystems and prove their termination more
or less independently. For innermost termination, Thm. 7 also permits such forms of
modularity. For example, if R is a hierarchical combination of R1 and R2, we have
U(P) ⊆ R1 for every cycle P of R1-dependency pairs. Thus, one can prove innermost
termination of R1 independently of R2. Thm. 11 and its improvements will show
that similar modular proofs are also possible for termination instead of innermost
termination. Then for hierarchical combinations, termination of R1 can be proved
independently of R2, provided one uses an estimation of the dependency graph where
no further cycles of R1-dependency pairs are introduced if R1 is extended by R2.

Example 8. An automated termination proof of Ex. 1 is virtually impossible
with Thm. 7. We get the constraints QUOT(s(x), s(y), z) ≻π QUOT(x, y, z)
and l %π r for all l → r ∈ R from the cycle {(7)}. However, they can-
not be solved by a reduction pair (%,≻) where % is a quasi-simplification
order: For t = quot(x, 0, s(0)) we have t %π s(quot(x, s(0), s(0))) by rules (5)
and (2). Moreover, s(quot(x, s(0), s(0))) %π s(t) by the subterm property, since
QUOT(s(x), s(y), z) ≻π QUOT(x, y, z) implies π(s) = [1]. But t %π s(t) implies
QUOT(s(t), s(t), z) ≻π QUOT(t, t, z) %π QUOT(s(t), s(t), z) which contradicts
the well-foundedness of ≻π.

In contrast, innermost termination of Ex. 1 can easily be proved. There are
no usable rules because the dependency pairs have no defined symbols in their
right-hand sides. Hence, with a filtering π(QUOT) = π(DIV) = 1, the constraints
for innermost termination are satisfied by the embedding order.

Our goal is to modify the technique for termination such that its constraints
become as simple as the ones for innermost termination. As observed in [29], the
following definition is useful to weaken the constraint (b) for termination.

Definition 9 (Cε [16]). The TRS Cε is defined as {c(x, y) → x, c(x, y) → y}
where c is a new function symbol. A TRS R is Cε-terminating iff R ∪ Cε is
terminating. A relation % is Cε-compatible3 iff c(x, y) % x and c(x, y) % y. A
reduction pair (%,≻) is Cε-compatible iff % is Cε-compatible.

The TRS R = {f(0, 1, x) → f(x, x, x)} of Toyama [28] is terminating, but
not Cε-terminating, since R ∪ Cε admits the infinite reduction f(0, 1, c(0, 1)) →
f(c(0, 1), c(0, 1), c(0, 1)) →2 f(0, 1, c(0, 1)) → This example shows that re-
quiring l %π r only for usable rules is not sufficient for termination: R ∪ Cε’s
only cycle {F(0, 1, x) → F(x, x, x)} has no usable rules and there is a reduction
pair (%,≻) satisfying the constraint (a).4 So R ∪ Cε is innermost terminating,
but not terminating, since we cannot satisfy both (a) and l % r for the Cε-rules.

So a reduction of the constraints in (b) is impossible in general, but it is
possible if we restrict ourselves to Cε-compatible reduction pairs. This restriction
is not severe, since virtually all reduction pairs used in practice (based on LPO
[20], RPOS [7], KBO [21], or polynomial orders5 [23]) are Cε-compatible.

The first step in this direction was taken by Urbain [29]. He showed that in a
hierarchy of Cε-terminating TRSs, one can disregard all rules occurring “later” in
the hierarchy when proving termination. Hence, when showing the termination
of functions which call div or quot, one has to require l %π r for the div- and
quot-rules. But if one regards functions which do not depend on div or quot, then
one does not have to take the div- and quot-rules into account in constraint (b).

But due to the restriction to Cε-termination, [29] could not use the full power
of dependency graphs. For example, recent dependency graph estimations [18]

3 Instead of “Cε-compatibility”, [29] uses the corresponding notion “π extendibility”.
4 For example, it is satisfied by the reduction pair (→∗

R∪DP (R),→
+
R∪DP (R)).

5 Any polynomial order can be extended to the symbol c such that it is Cε-compatible.

detect that the dependency graph for Toyama’s TRS R has no cycle and thus, it
is terminating. But since it is not Cε-terminating, it cannot be handled by [29].

In [12], we integrated the approach of [29] with (arbitrary estimations of)
dependency graphs, by restricting ourselves to Cε-compatible reduction pairs in-
stead of Cε-terminating TRSs. This combines the advantages of both approaches,
since now one only regards those rules in (b) that the current cycle depends on.

Definition 10 (Dependence). Let R be a TRS. For two symbols f and g we
say that f depends on g (denoted f ❂0 g) iff g occurs in an f -rule of R (i.e., in
Rls({f})). Moreover, every tuple symbol f ♯ depends on f . A cycle of dependency
pairs P depends on all symbols occurring in its dependency pairs.6 We write ❂

+
0

for the transitive closure of ❂0. For every cycle P we define ∆0(P ,R) = {f |
P ❂

+
0 f}. If P and R are clear from the context we just write ∆0 or ∆0(P).

In Ex. 1, we have div ❂0 quot, quot ❂0 div, and each defined symbol depends
on itself. As QUOT ❂0 quot ❂0 div, ∆0 contains quot and div for both cycles P .

The next theorem shows that it suffices to require a weak decrease only for the
rules that the cycle depends on. It improves upon Thm. 7 since the constraints
of type (b) are reduced significantly. Thus, it becomes easier to find a reduction
pair satisfying the resulting constraints. This increases both efficiency and power.
For instance, termination of a well-known example of [25] to compute intervals
of natural numbers cannot be shown with Thm. 7 and a reduction pair based
on simplification orders, while a proof with Thm. 11 and LPO is easy [12].

Theorem 11 (Improved Modular Termination, Version 0 [12]). A TRS
R is terminating if for every cycle P of the dependency graph there is a Cε-
compatible reduction pair (%,≻) and an argument filtering π satisfying both
constraint Thm. 7 (a) and

(b) l %π r for all rules l → r ∈ Rls(∆0(P ,R))

Proof. The proof is based on the following key observation [29, Lemma 2]:

Every minimal P-chain over R is a P-chain over Rls(∆0(P ,R)) ∪ Cε. (9)

For the proof of Thm. 11, by Thm. 4 we have to show absence of minimal infinite
P-chains s1 → t1, s2 → t2, . . . over R. By (9), such a chain is also a chain over
Rls(∆0(P ,R)) ∪ Cε. Hence, there is a substitution σ with tiσ →∗

Rls(∆0(P,R))∪Cε

si+1σ for all i. We extend π to c by π(c) = [1, 2]. So Cε-compatibility of % implies
Cε-compatibility of %π. By (b) we have tiσ %π si+1σ for all i as %π is stable and
monotonic. Using (a) and stability of ≻π leads to siσ ≻π tiσ for infinitely many
i and siσ %π tiσ for all remaining i contradicting ≻π’s well-foundedness. ⊓⊔

The proof shows that Thm. 11 only relies on observation (9). When refining
the definition of ∆0 in the next section, we only have to prove that (9) still holds.

6 The symbol “❂0” is overloaded to denote both the dependence between function
symbols (f ❂0 g) and between cycles and function symbols (P ❂0 f).

3 No Dependences for Tuple Symbols & Left-Hand Sides

Thm. 11 reduces the constraints for termination considerably. However for Ex. 1,
the constraints according to Thm. 11 are the same as with Thm. 7. The reason
is that both cycles P depend on quot and div and therefore, Rls(∆0(P)) = R.
Hence, as shown in Ex. 8, an automated termination proof is virtually impossible.

To solve this problem, we improve the notion of “dependence” by dropping
the condition that every tuple symbol f ♯ depends on f . Then the cycles in Ex. 1
do not depend on any defined function symbol anymore, since they contain no
defined symbols. When modifying the definition of ∆0(P) in this way in Thm. 11,
we obtain no constraints of type (b) for Ex. 1, since Rls(∆0(P)) = ∅. So now
the constraints for termination of this example are the same as for innermost
termination and the proof succeeds with the embedding order, cf. Ex. 8.7

Now the only difference between U(P) and Rls(∆0(P)) is that in Rls(∆0(P)),
f also depends on g if g occurs in the left-hand side of an f -rule. Similarly, P
also depends on g if g occurs in the left-hand side of a dependency pair from
P . The following example shows that disregarding dependences from left-hand
sides (as in U(P)) can be necessary for the success of the termination proof.

Example 12. We extend the TRS for division from Ex. 1 by the following rules.

plus(x, 0) → x times(0, y) → 0

plus(0, y) → y times(s(0), y) → y
plus(s(x), y) → s(plus(x, y)) div(div(x, y), z) → div(x, times(y, z))

Even when disregarding dependences f ♯
❂0 f , the constraints of Thm. 11 for

this TRS are not satisfiable by reduction pairs based on RPOS, KBO, or polyno-
mial orders: Any cycle containing the new dependency pair DIV(div(x, y), z) →
DIV(x, times(y, z)) would depend on both div and times and thus, all rules of the
TRS would have to be weakly decreasing. Weak decrease of plus and times implies
that one has to use an argument filtering with s(x) ≻π x. But since t %π s(t) for
the term t = quot(x, 0, s(0)) as shown in Ex. 8, this gives a contradiction.

Cycles with DIV(div(x, y), z)→DIV(x, times(y, z)) only depend on div because
it occurs in the left-hand side. This motivates the following refinement of ❂0.

Definition 13 (Refined Dependence, Version 1). For two function symbols
f and g, the refined dependence relation ❂1 is defined as f ❂1 g iff g occurs in
the right-hand side of an f -rule and a cycle P depends on all symbols in the
right-hand sides of its dependency pairs. Again, ∆1(P ,R) = {f | P ❂

+
1 f}.

With Def. 13, the constraints of Thm. 11 are the same as in the innermost
case: U(P) = Rls(∆1(P)) and termination of Ex. 12 can be proved using LPO.

To show that one may indeed regard ∆1(P) instead of ∆0(P) in Thm. 11, we
prove an adapted version of (9) with ∆1 instead of ∆0. As in the proofs for ∆0 in

7 If an estimated dependency graph has the additional cycle {(6), (8)}, here one may
use an LPO with π(DIV) = π(QUOT) = 2 , π(s) = [], and the precedence 0 > s.

[24, 29] and in the original proofs of Gramlich [16], we map any R-reduction to a
reduction w.r.t. Rls(∆1)∪Cε. However, our mapping I1 is a modification of these
earlier mappings, since terms g(t1, . . . , tn) with g /∈ ∆1 are treated differently.
Fig. 1 illustrates that by this mapping, every minimal chain over R corresponds
to a chain over Rls(∆1)∪Cε, but instead of the substitution σ one uses a different
substitution I1(σ). Thus, the observation (9) also holds for ∆1 instead of ∆0.

chain over R

chain over
Rls(∆1) ∪ Cε

s1σ

s1σ

I1(s1σ)

s1 I1(σ)

I1

||

*

Cε

t1σ

t1σ

I1(t1σ)

t1 I1(σ)

||

||

I1 I1

s2σ

s2σ

I1(s2σ)

s2 I1(σ)

I1

||

*

Cε

*

R

*

Rls(∆1) ∪ Cε

t2σ

t2σ

I1(t2σ)

t2 I1(σ)

||

||

I1 I1

s3σ

s3σ

I1(s3σ)

s3 I1(σ)

I1

||

*

Cε

*

R

*

Rls(∆1) ∪ Cε

. . .

. . .

. . .

. . .

Fig. 1. Transformation of chains

Intuitively, I1(t) “collects” all terms that t can be reduced to. However, we
only regard reductions on or below symbols that are not from ∆1. Normal forms
whose roots are not from ∆1 may be replaced by a fresh variable. To represent a
collection t1, . . . , tn of terms by just one term, one uses c(t1, c(t2, ...c(tn, x)...)).

Definition 14. Let ∆ ⊆ F∪F ♯ and let t ∈ T (F∪F ♯,V) be a terminating term.
We define I1(t):

I1(x) = x for x ∈ V
I1(f(t1, ..., tn)) = f(I1(t1), ..., I1(tn)) for f ∈ ∆
I1(g(t1, ..., tn)) = Comp({g(I1(t1), ..., I1(tn))} ∪Red1(g(t1, ..., tn))) for g /∈ ∆

where Red1(t) = {I1(t
′) | t →R t′}. Moreover, Comp({t}⊎M) = c(t, Comp(M))

and Comp(∅) = xnew, where xnew is a fresh variable. To ensure that Comp is
well-defined we assume that in the recursive definition of Comp({t} ⊎ M), t is
smaller than all terms in M due to some total well-founded order >T on terms.

For every terminating substitution σ (i.e., σ(x) is terminating for all x ∈ V),
we define the substitution I1(σ) as I1(σ) (x) = I1(σ(x)) for all x ∈ V.

Note that Def. 14 is only possible for terminating terms t, since otherwise,
I1(t) could be infinite. Before we can show that Thm. 11 can be adapted to the
refined definition ∆1, we need some additional properties of Comp and I1. In
contrast to the corresponding lemmas in [24, 29], they demonstrate that the rules

of ∆0 \∆1 are not needed and we show in Lemma 16 (ii) and (iii) how to handle
dependency pairs and rules where the left-hand side is not from T (∆1,V).8

Lemma 15 (Properties of Comp). If t ∈ M then Comp(M) →+
Cε

t.

Proof. For t1 <T · · · <T tn and any 1 ≤ i ≤ n we have Comp({t1, . . . , tn}) =
c(t1, . . . c(ti, . . . c(tn, x) . . .) . . .) →∗

Cε
c(ti, . . . c(tn, x) . . .) →Cε

ti. ⊓⊔

Lemma 16 (Properties of I1). Let ∆ ⊆ F ∪ F ♯ where f ∈ ∆ and f ❂1 g
implies g ∈ ∆. Let t, s, tσ ∈ T (F ∪ F ♯,V) be terminating terms and let σ be a
terminating substitution.

(i) If t ∈ T (∆,V) then I1(tσ) = t I1(σ).
(ii) I1(tσ) →∗

Cε
t I1(σ).

(iii) If t →{l→r} s by a root reduction step where l → r ∈ R and root(l) ∈ ∆,
then I1(t) →

+
{l→r}∪Cε

I1(s).

(iv) If t →R s with root(t) 6∈ ∆, then I1(t) →
+
Cε

I1(s).
(v) If t →{l→r} s where l → r ∈ R,

then I1(t) →
+
{l→r}∪Cε

I1(s) if root(l) ∈ ∆ and I1(t) →
+
Cε

I1(s) otherwise.

Proof.

(i) The proof is a straightforward structural induction on t.
(ii) The proof is by structural induction on t. The only interesting case is t =

g(t1, . . . , tn) where g /∈ ∆. Then we obtain

I1(g(t1, ..., tn)σ) = Comp({g(I1(t1σ), ..., I1(tnσ))} ∪ Red1(g(t1σ, . . . , tnσ)))

→+
Cε

g(I1(t1σ), ..., I1(tnσ)) by Lemma 15
→∗

Cε
g(t1 I1(σ), . . . , tn I1(σ)) by induction hypothesis

= g(t1, . . . , tn) I1(σ)

(iii) We have t = lσ →R rσ = s. By the definition of ❂1, r is a term of T (∆,V).
Using (ii) and (i) we get I1(lσ) →∗

Cε
l I1(σ) →{l→r} r I1(σ) = I1(rσ).

(iv) follows by I1(t) = Comp({. . .}∪Red1(t)), I1(s) ∈ Red1(t), and Lemma 15.

(v) We do induction on the position p of the redex. If root(t) /∈ ∆, we use
(iv). If root(t) ∈ ∆ and p is the root position, we apply (iii). Otherwise, p
is below the root, t = f(t1, . . . , ti, . . . , tn), s = f(t1, . . . , si, . . . , tn), f ∈ ∆,
and ti →{l→r} si. Then the claim follows from the induction hypothesis. ⊓⊔

Now we show that in Thm. 11 one may replace ∆0 by ∆1.

Theorem 17 (Improved Modular Termination, Version 1). A TRS R is
terminating if for every cycle P of the dependency graph there is a Cε-compatible
reduction pair (%,≻) and an argument filtering π satisfying both constraint
Thm. 7 (a) and

(b) l %π r for all rules l → r ∈ Rls(∆1(P ,R))

8 Here, equalities in the lemmas of [24, 29] are replaced by Cε-steps. This is possible
by including the term g(I1(t1), . . . , I1(tn)) in the definition of I1(g(t1, ..., tn)).

Proof. The proof is as for Thm. 11, but instead of (9) one uses this observation:

Every minimal P-chain over R is a P-chain over Rls(∆1(P ,R)) ∪ Cε. (10)

To prove (10), let s1 → t1, s2 → t2, . . . be a minimal P-chain over R. Hence,
there is a substitution σ such that tiσ →∗

R si+1σ and all terms siσ and tiσ are
terminating. This enables us to apply I1 to both tiσ and siσ (where we choose ∆
to be ∆1(P ,R)). Using Lemma 16 (v) we obtain I1(tiσ) →∗

Rls(∆1)∪Cε
I1(si+1σ).

Moreover, by the definition of ❂1, all ti are terms over the signature ∆1. Thus,
by Lemma 16 (i) and (ii) we get ti I1(σ) = I1(tiσ) →∗

Rls(∆1)∪Cε
I1(si+1σ) →∗

Cε

si+1 I1(σ) stating that s1 → t1, s2 → t2, . . . is also a chain over Rls(∆1)∪Cε. ⊓⊔

4 Dependences With Respect to Argument Filterings

For innermost termination, one may first apply the argument filtering π and de-
termine the usable rules U(P , π) afterwards, cf. [12]. The advantage is that the
argument filtering may eliminate some symbols f from right-hand sides of de-
pendency pairs and rules. Then, the f -rules do not have to be weakly decreasing
anymore. We also presented an algorithm to determine suitable argument filter-
ings, which is non-trivial since the filtering determines the resulting constraints.

We now introduce a corresponding improvement for termination by defining
“dependence” w.r.t. an argument filtering. Then a cycle only depends on those
symbols that are not dropped by the filtering. However, this approach is only
sound for non-collapsing argument filterings. Consider the non-terminating TRS

f(s(x)) → f(double(x)) double(0) → 0 double(s(x)) → s(s(double(x)))

In the cycle {F(s(x)) → F(double(x))}, the filtering π(double) = 1 results in
{F(s(x)) → F(x)}. Since the filtered pair has no defined symbols, we would
conclude that no rule must be weakly decreasing for this cycle. But then we can
solve the cycle’s only constraint F(s(x)) ≻ F(x) and falsely prove termination.9

Example 18. We extend the TRS of Ex. 12 by rules for prime numbers.

prime(s(s(x))) → pr(s(s(x)), s(x)) pr(x, s(0)) → true

eq(0, 0) → true pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
eq(s(x), 0) → false if(true, x, y) → false

eq(0, s(y)) → false if(false, x, y) → pr(x, y)
eq(s(x), s(y)) → eq(x, y) divides(y, x) → eq(x, times(div(x, y), y))

The cycle {PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y)), IF(false, x, y) → PR(x,
y)} depends on divides and hence, on div and times. So for this cycle, Thm. 17

9 Essentially, we prove absence of infinite π(P)-chains over π(R). But if π is collapsing,
then the rules of π(R) may have left-hand sides l with root(l) ∈ C or l ∈ V. Thus,
inspecting the defined symbols in a term π(t) is not sufficient to estimate which rules
may be used for the π(R)-reduction of π(t).

requires the div- and times-rules to be weakly decreasing. This is impossible with
reduction pairs based on RPOS, KBO, or polynomial orders, cf. Ex. 12.

But if we first use the filtering π(IF) = [2, 3] and compute dependences after-
wards, then the cycle no longer depends on divides, div, or times. If one modifies
“dependence” in this way, then the constraints can again be solved by LPO.

Definition 19 (Refined Dependence, Version 2). Let π be a non-collapsing
argument filtering. For two function symbols f and g we define f ❂2 g iff there
is a rule l → r ∈ Rls({f}) where g occurs in π(r). For a cycle of dependency
pairs P, we define P ❂2 g iff there is a pair s → t ∈ P where g occurs in π(t).
We define ∆2(P ,R, π) = {f | P ❂

+
2 f} and omit P, R, π if they are clear from

the context.

To show that∆1 may be replaced by∆2 in Thm.17, we define a new mapping I2.

Definition 20. Let π be a non-collapsing argument filtering, ∆⊆F ∪ F ♯, t ∈
T (F∪F ♯,V) be terminating. We define I2(t). Here, Red2(t) = {I2(t

′) |t →R t′}.

I2(x) = x for x ∈ V
I2(f(t1, . . . , tn)) = f(I2(ti1), . . . , I2(tik

)) for f ∈ ∆, π(f) = [i1, ..., ik]
I2(g(t1, . . . , tn)) = Comp({g(I2(ti1), . . . , I2(tik

))}
∪ Red2(g(t1, . . . , tn))) for g /∈ ∆, π(g) = [i1, ..., ik]

Lemma 21 differs from the earlier Lemma 16, since I2 already applies the
argument filtering π and in (v), we have “∗” instead of “+”, as a reduction on
a position that is filtered away leads to the same transformed terms w.r.t. I2.

Lemma 21 (Properties of I2). Let π be a non-collapsing argument filtering
and let ∆ ⊆ F ∪ F ♯ such that f ∈ ∆ and f ❂2 g implies g ∈ ∆. Let t, s, tσ ∈
T (F ∪ F ♯,V) be terminating and let σ be a terminating substitution.

(i) If π(t) ∈ T (∆π,V) then I2(tσ) = π(t) I2(σ).
(ii) I2(tσ) →∗

Cε
π(t) I2(σ).

(iii) If t →{l→r} s by a root reduction step where l → r ∈ R and root(l) ∈ ∆,
then I2(t) →

+
{π(l)→π(r)}∪Cε

I2(s).

(iv) If t →R s with root(t) 6∈ ∆, then I2(t) →
+
Cε

I2(s).
(v) If t →{l→r} s where l → r ∈ R, then

I2(t) →
∗
{π(l)→π(r)}∪Cε

I2(s) if root(l) ∈ ∆ and I2(t) →
∗
Cε

I2(s) otherwise.

Proof. The proof is analogous to the proof of Lemma 16. ⊓⊔

We are restricted to non-collapsing filterings when determining the rules that
have to be weakly decreasing. But one can still use arbitrary (possibly collapsing)
filterings in the dependency pair approach. For every filtering π we define its
non-collapsing variant π′ as π′(f) = π(f) if π(f) = [i1, . . . , ik] and π′(f) = [i] if
π(f) = i. Now we show that in Thm. 17 one may replace ∆1 by ∆2.

Theorem 22 (Improved Modular Termination, Version 2). A TRS R is
terminating if for every cycle P of the dependency graph there is a Cε-compatible
reduction pair (%,≻) and an argument filtering π satisfying both constraint
Thm. 7 (a) and

(b) l %π r for l → r ∈ Rls(∆2(P ,R, π′)), where π′ is π’s non-collapsing variant

Proof. Instead of (10), now we need the following main observation for the proof.

If s1 → t1, s2 → t2, . . . is a minimal P-chain over R, then π′(s1) →
π′(t1), π

′(s2) → π′(t2), . . . is a π′(P)-chain over π′(Rls(∆2(P ,R, π′)))∪Cε.
(11)

Similar to the proof of (10), tiσ →∗
R si+1σ implies that π′(ti)I2(σ) = I2(tiσ)

→∗
π′(Rls(∆2))∪Cε

I2(si+1σ) →∗
Cε

π′(si+1) I2(σ) by Lemma 21 (i), (v), and (ii),

which proves (11).
To show that (11) implies Thm. 22, assume that s1 → t1, s2 → t2, . . . is a

minimal infinite P-chain over R. Then by (11) there is a substitution δ (I2(σ)
from above) with π′(ti) δ →∗

π′(Rls(∆2))∪Cε
π′(si+1) δ for all i. Let π′′ be the argu-

ment filtering for the signature Fπ′∪F ♯
π′ which only performs the collapsing steps

of π (i.e., if π(f) = i and thus π′(f) = [i], we have π′′(f) = 1). All other symbols

of Fπ′ ∪ F ♯
π′ are not filtered by π′′. Hence, π = π′′ ◦ π′. We extend π′′ to the

new symbol c by defining π′′(c) = [1, 2]. Hence, Cε-compatibility of % implies Cε-
compatibility of %π′′ . Constraint (b) requires π(l) % π(r) for all rules of Rls(∆2).
Therefore, we have π′(l) %π′′ π′(r), and thus, all rules of π′(Rls(∆2)) ∪ Cε are
decreasing w.r.t. %π′′ . This implies π′(ti) δ %π′′ π′(si+1) δ for all i. Moreover, (a)
implies π′(si) δ ≻π′′ π′(ti) δ for infinitely many i and π′(si) δ %π′′ π′(ti) δ for all
remaining i. This contradicts the well-foundedness of ≻π′′ . ⊓⊔

Now we are nearly as powerful as for innermost termination. The only differ-
ence between ∆2(P ,R, π) and U(P , π) is that U(P , π) may disregard subterms
of right-hand sides of dependency pairs if they also occur on the left-hand side
[12], since they are instantiated to normal forms in innermost chains. But for
the special case of constructor systems, the left-hand sides of dependency pairs
are constructor terms and thus ∆2(P ,R, π) = U(P , π). The other differences be-
tween termination and innermost termination are that the innermost dependency
graph is a subgraph of the dependency graph and may have fewer cycles. More-
over, the conditions for applying dependency pair transformations by narrowing,
rewriting, or instantiation [2, 10, 12] are less restrictive for innermost termina-
tion. Finally for termination, we use Cε-compatible reduction pairs, which is not
necessary for innermost termination. However, virtually all reduction pairs used
in practice are Cε-compatible. So in general, innermost termination is still easier
to prove than termination, but the difference has become much smaller.

5 Removing Rules

To reduce the constraints for termination proofs even further, in this section
we present a technique to remove rules of the TRS that are not relevant for
termination. To this end, the constraints for a cycle P may be pre-processed
with a reduction pair (%,≻). If all dependency pairs of P and all rules that
P depends on are at least weakly decreasing (w.r.t. %), then one may remove

all those rules R≻ that are strictly decreasing (w.r.t. ≻). So instead of proving
absence of infinite P-chains over R one only has to regard P-chains over R\R≻.

In contrast to related approaches to remove rules [15, 23, 30], we permit arbi-
trary reduction pairs and remove rules in the modular framework of dependency
pairs instead of pre-processing a full TRS. So when removing rules for a cycle P ,
we only have to regard the rules P depends on. Moreover, removing rules can be
done repeatedly with different reduction pairs (%,≻). Thm. 23 can also be adap-
ted for innermost termination proofs with similar advantages as for termination.

Theorem 23 (Modular Removal of Rules). Let P be a set of pairs, R be a
TRS, and (%,≻) be a reduction pair where ≻ is monotonic and Cε-compatible.
If l

(
%

)
r for all l → r ∈ Rls(∆1(P ,R)) and s

(
%

)
t for all s → t ∈ P then the

absence of minimal infinite P-chains over R\R≻ implies the absence of minimal
infinite P-chains over R where R≻ = {l → r ∈ Rls(∆1(P ,R)) | l ≻ r}.10

Proof. Let s1 → t1, s2 → t2, . . . be an infinite minimal P-chain over R. Hence,
tiσ →∗

R si+1σ. We show that in these reductions, R≻-rules are only applied
for finitely many i. So tiσ →∗

R\R≻
si+1σ for all i ≥ n for some n ∈ IN. Thus,

sn → tn, sn+1 → tn+1, . . . is a minimal infinite P-chain over R \ R≻ which
proves Thm. 23.

Assume that R≻-rules are applied for infinitely many i. By Lemma 16 (v)
we get I1(tiσ) →∗

Rls(∆1)∪Cε
I1(si+1σ). As ≻ is Cε-compatible and →Rls(∆1) ⊆

(
%

)
, we have I1(tiσ)

(
%

)
I1(si+1σ). Moreover, whenever an R≻-rule is used in

tiσ →∗
R si+1σ, then by Lemma 16 (v), the same rule or at least one Cε-rule is

used in the reduction from I1(tiσ) to I1(si+1σ). (This would not hold for I2, cf.
Lemma 21 (v).) Thus, then we have I1(tiσ) ≻ I1(si+1σ) since ≻ is monotonic.
As R≻-reductions are used for infinitely many i, we have I1(tiσ) ≻ I1(si+1σ)
for infinitely many i. Using Lemma 16 (ii), (i), and s

(
%

)
t for all pairs in P , we

obtain I1(siσ) →∗
Cε

siI1(σ)
(
%

)
tiI1(σ) = I1(tiσ). By Cε-compatibility of ≻, we

get I1(siσ)
(
%

)
I1(tiσ) for all i. This contradicts the well-foundedness of ≻. ⊓⊔

Rule removal has three benefits. First, the rules R≻ do not have to be weakly
decreasing anymore after the removal. Second, the rules that R≻ depends on do
not necessarily have to be weakly decreasing anymore either. More precisely,
since we only regard chains over R \ R≻, only the rules in ∆1(P ,R \ R≻) or
∆2(P ,R\R≻, . . .) must be weakly decreasing. And third, it can happen that P
is not a cycle anymore. Then no constraints at all have to be built for P . More
precisely, we can delete all edges in the dependency graph between pairs s → t
and u → v of P where s → t, u → v is an R-chain, but not an R \R≻-chain.

Example 24. We extend the TRS of Ex. 18 by the following rules.

p(s(x)) → x plus(s(x), y) → s(plus(p(s(x)), y)) plus(x, s(y)) → s(plus(x, p(s(y))))

10 Using ∆2 instead of ∆1 makes Thm. 23 unsound. Consider {f(a, b) → f(a, a), a → b}.
With π(F) = [1], an LPO-reduction pair makes the filtered dependency pair weakly
decreasing and the rule strictly decreasing (F(a) % F(a) and a ≻ b). But then Thm.
23 would state that we can remove the rule and only prove absence of infinite chains
of F(a,b) → F(a, a) over the empty TRS. Then we could falsely prove termination.

For the cycle {PLUS(s(x), y) → PLUS(p(s(x)), y), PLUS(x, s(y)) → PLUS(x,
p(s(y)))} there is no argument filtering and reduction pair (%,≻) with a quasi-
simplification order % satisfying the constraints of Thm. 22. The reason is that
due to p’s rule, the filtering cannot drop the argument of p. So π(PLUS(p(s(x)),
y)) % π(PLUS(s(x), y)) and π(PLUS(x, p(s(y)))) % π(PLUS(x, s(y))) hold for
any quasi-simplification order %. Furthermore, the transformation technique of
“narrowing dependency pairs” [2, 10, 12] is not applicable, since the right-hand
side of each dependency pair above unifies with the left-hand side of the other
dependency pair. Therefore, automated tools based on dependency pairs fail.

In contrast, by Thm. 23 and a reduction pair with the polynomial interpreta-
tion Pol(PLUS(x, y)) = x+y, Pol(s(x)) = x+1, Pol(p(x)) = x, p’s rule is strictly
decreasing and can be removed. Then, p is a constructor. If one uses the technique
of “instantiating dependency pairs” [10, 12], for this cycle the second dependency
pair can be replaced by PLUS(p(s(x)), s(y)) → PLUS(p(s(x)), p(s(y))). Now the
two pairs form no cycle anymore and thus, no constraints at all are generated.

If we also add the rule p(0) → 0, then again p(s(x)) → x can be removed by
Thm. 23 but p does not become a constructor and we cannot delete the whole
cycle. Still, the resulting constraints are satisfied by an argument filtering with
π(PLUS) = [1, 2], π(s) = π(p) = [] and an LPO with the precedence s > p > 0.

Note that here, it is essential that Thm. 23 only requires l % r for rules l → r
that P depends on. In contrast, previous techniques [15, 23, 30] would demand
that all rules including the ones for div and times would have to be at least
weakly decreasing. As shown in Ex. 12, this is impossible with standard orders.

To automate Thm. 23, we use reduction pairs (%,≻) based on linear polyno-
mial interpretations with coefficients from {0, 1}. Since ≻ must be monotonic,
n-ary function symbols can only be mapped to

∑n
i=1 xi or to 1+

∑n
i=1 xi. Thus,

there are only two possible interpretations resulting in a small search space.
Moreover, polynomial orders can solve constraints where one inequality must be
strictly decreasing and all others must be weakly decreasing in just one search
attempt without backtracking [13]. In this way, Thm. 23 can be applied very
efficiently. Since removing rules never complicates termination proofs, Thm. 23
should be applied repeatedly as long as some rule is deleted in each application.

Note that whenever a dependency pair (instead of a rule) is strictly decreas-
ing, one has solved the constraints of Thm. 17 and can delete the cycle. Thus,
one should not distinguish between rule- and dependency pair-constraints when
applying Thm. 23 and just search for a strict decrease in any of the constraints.

6 Conclusion and Empirical Results

We presented new results to reduce the constraints for termination proofs with
dependency pairs substantially. By Sect. 3 and 4, it suffices to require weak de-
crease of the dependent rules, which correspond to the usable rules regarded for
innermost termination. So surprisingly, the constraints for termination and in-
nermost termination are (almost) the same. Moreover, we showed in Sect. 5 that

one may pre-process the constraints for each cycle and eliminate rules that are
strictly decreasing. All our results can also be used together with dependency pair
transformations [2, 10, 12] which often simplify (innermost) termination proofs.

We implemented our results in the system AProVE11 [14] and tested it on the
130 terminating TRSs from [3, 8, 25]. The following table gives the percentage of
the examples where termination could be proved within a timeout of 30 s and
the time for running the system on all examples (including the ones where the
proof failed). Our experiments were performed on a Pentium IV with 2.4 GHz
and 1 GB memory. We used reduction pairs based on the embedding order, LPO,
and linear polynomial interpretations with coefficients from {0, 1} (“Polo”). The
table shows that with every refinement from Thm. 7 to Thm. 22, termination
proving becomes more powerful and for more complex orders than embedding,
efficiency also increases considerably. Moreover, a pre-processing with Thm. 23
using “Polo” makes the approach even more powerful. Finally, if one also uses
dependency pair transformations (“tr”), one can increase power further. To mea-
sure the effect of our contributions, in the first 3 rows we did not use the tech-
nique for innermost termination proofs, even if the TRS is non-overlapping. (If
one applies the innermost termination technique in these examples, we can prove
termination of 95 % of the examples in 23 s with “Polo”.) Finally, in the last row
(“Inn”) we verified innermost termination with “Polo” and usable rules U(P) as
in Thm. 17, with usable rules U(P , π) as in Thm. 22, with a pre-processing as
in Thm. 23, and with dependency pair transformations. This row demonstrates
that termination is now almost as easy to prove as innermost termination. To
summarize, our experiments show that the contributions of this paper are in-
deed relevant and successful in practice, since the reduction of constraints makes
automated termination proving significantly more powerful and faster.

Thm. 7 Thm. 11 Thm. 17 Thm. 22 Thm. 22, 23 Thm. 22, 23, tr

Emb 39 s, 28 % 7 s, 30 % 42 s, 38 % 50 s, 52 % 51 s, 65 % 82 s, 78 %
LPO 606 s, 51 % 569 s, 54 % 261 s, 59 % 229 s, 61 % 234 s, 75 % 256 s, 84 %
Polo 9 s, 61 % 8 s, 66 % 5 s, 73 % 5 s, 78 % 6 s, 85 % 9 s, 91 %

Inn 8 s, 78 % 8 s, 82 % 10 s, 88 % 31 s, 97 %

References

1. T. Arts. System description: The dependency pair method. In L. Bachmair, editor,
Proc. 11th RTA, LNCS 1833, pages 261–264, Norwich, UK, 2000.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133–178, 2000.
3. T. Arts and J. Giesl. A collection of examples for termination of term rewriting

using dependency pairs. Technical Report AIB-2001-0912, RWTH Aachen, 2001.
4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
5. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path

orderings. In D. McAllester, editor, Proc. 17th CADE, LNAI 1831, pages 346–364,
Pittsburgh, PA, USA, 2000.

11 http://www-i2.informatik.rwth-aachen.de/AProVE. Our contributions are inte-
grated in AProVE 1.1-beta, which does not yet contain all options of AProVE 1.0.

6. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.
7. N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3:69–116, 1987.
8. N. Dershowitz. 33 examples of termination. In Proc. French Spring School of

Theoretical Computer Science, LNCS 909, pages 16–26, Font Romeux, 1995.
9. O. Fissore, I. Gnaedig, and H. Kirchner. Cariboo: An induction based proof tool

for termination with strategies. In C. Kirchner, editor, Proc. 4th PPDP, pages
62–73, Pittsburgh, PA, USA, 2002. ACM Press.

10. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl.

Algebra in Engineering, Communication and Computing, 12(1,2):39–72, 2001.
11. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting

using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.
12. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving dependency

pairs. In Vardi and Voronkov, editors, Proc 10th LPAR, LNAI 2850, 165–179, 2003.
13. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing dependency

pairs. Technical Report AIB-2003-0812 , RWTH Aachen, Germany, 2003.
14. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination

proofs with AProVE. In v. Oostrom, editor, Proc. 15th RTA, LNCS, Aachen, 2004.
15. J. Giesl and H. Zantema. Liveness in rewriting. In R. Nieuwenhuis, editor, Proc.

14th RTA, LNCS 2706, pages 321–336, Valencia, Spain, 2003.
16. B. Gramlich. Generalized sufficient conditions for modular termination of rewrit-

ing. Appl. Algebra in Engineering, Communication & Computing, 5:131–158, 1994.
17. B. Gramlich. Abstract relations between restricted termination and confluence

properties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.
18. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In

F. Baader, editor, Proc. 19th CADE, LNAI 2741, Miami Beach, FL, USA, 2003.
19. N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In R. Nieuwenhuis,

editor, Proc. 14th RTA, LNCS 2706, pages 311–320, Valencia, Spain, 2003.
20. S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering.

Unpublished Manuscript, University of Illinois, IL, USA, 1980.
21. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,

editor, Computational Problems in Abstract Algebra, pages 263–297. 1970.
22. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.

In G. Nadathur, editor, Proc. 1st PPDP, LNCS 1702, pages 48–62, Paris, 1999.
23. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report

MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
24. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
25. J. Steinbach. Automatic termination proofs with transformation orderings. In

J. Hsiang, editor, Proc. 6th RTA, LNCS 914, pages 11–25, Kaiserslautern, Germany,
1995. Full version in Technical Report SR-92-23, Universität Kaiserslautern.

26. J. Steinbach. Simplification orderings: History of results. Fund. I., 24:47–87, 1995.
27. R. Thiemann and J. Giesl. Size-change termination for term rewriting. In R. Nieu-

wenhuis, editor, Proc. 14th RTA, LNCS 2706, pages 264–278, Valencia, Spain, 2003.
28. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-

ing systems. Information Processing Letters, 25:141–143, 1987.
29. X. Urbain. Automated incremental termination proofs for hierarchically defined

term rewriting systems. In R. Goré, A. Leitsch, and T. Nipkow, editors, Proc.

IJCAR 2001, LNAI 2083, pages 485–498, Siena, Italy, 2001.
30. H. Zantema. TORPA: Termination of rewriting proved automatically. In Proc. 15th

RTA, LNCS, Aachen, 2004. Full version in TU/e CS-Report 03-14, TU Eindhoven.

12 Available from http://aib.informatik.rwth-aachen.de

