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Abstract The dependency pair technique is a powerful method for automated
termination and innermost termination proofs of term rewrite systems (TRSs). For
any TRS, it generates inequality constraints that have to be satisfied by well-founded
orders. We improve the dependency pair technique by considerably reducing the
number of constraints produced for (innermost) termination proofs. Moreover, we
extend transformation techniques to manipulate dependency pairs that simplify (in-
nermost) termination proofs significantly. To fully mechanize the approach, we show
how transformations and the search for suitable orders can be mechanized efficiently.
We implemented our results in the automated termination prover AProVE and
evaluated them on large collections of examples.
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1 Introduction

Termination is an essential property of term rewrite systems. Before the develop-
ment of dependency pairs in the mid-1990s, most methods to prove termination
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of TRSs automatically used simplification orders [7], where a term is greater than
its proper subterms (subterm property). Examples for simplification orders include
lexicographic or recursive path orders possibly with status (RPOS [7]), the Knuth-
Bendix order (KBO [28]), and many polynomial orders [31]. However, there are
numerous important TRSs that are not simply terminating; that is, their termination
cannot be shown by simplification orders. Therefore, the dependency pair approach
[1, 11, 12] was developed that allows the application of simplification orders to non-
simply terminating TRSs. In this way, the class of systems where termination is
provable mechanically increased significantly.

Example 1 The following TRS from [1] is not simply terminating because the left-
hand side of div’s last rule is embedded in the right-hand side if y is instantiated with
s(x). Hence, approaches for termination proofs based on simplification orders fail,
while the example is easy to handle with dependency pairs.

minus(x,0) → x
minus(s(x), s(y)) → minus(x, y)

div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))

In Section 2, we discuss the dependency pair technique for termination and inner-
most termination proofs. Then we present new results that improve the technique
significantly: Section 3 shows that for termination, it suffices to require only the same
constraints as for innermost termination. Section 4 introduces a refinement to reduce
the constraints (for both termination and innermost termination) even more by
combining the concepts of “usable rules” and “argument filtering.” Section 5 presents
techniques for transforming dependency pairs in order to simplify (innermost)
termination proofs further. Compared to previous such transformations, Section 5
weakens their applicability conditions, introduces an additional new transformation,
and shows how to combine the transformations with the improvements of Section 3
and Section 4.

The remainder of the paper is concerned with mechanizing dependency pairs.
To this end, we show how to solve the indeterminisms and search problems of the
dependency pair technique efficiently. One problem is the question of when and
how often to apply the dependency pair transformations discussed above. Therefore,
in Section 5 we also show how to use these transformations in practice in order to
guarantee the termination of their application without compromising their power.

For automated (innermost) termination proofs, one tries to solve the constraints
generated by the dependency pair technique with standard orders like RPOS, KBO,
or polynomial orders. If one uses classical simplification orders, however, then the
constraints should first be pre-processed by an argument filtering in order to benefit
from the full power of dependency pairs. Since the number of possible argument
filterings is exponential, the search for a suitable filtering is one of the main problems
when automating dependency pairs. We present an algorithm to generate argument
filterings efficiently for our improved dependency pair technique in Section 6. Instead
of using orders such as RPOS or KBO in combination with argument filterings, one
can also apply polynomial orders, which already simulate the concept of argument
filtering themselves. In Section 7 we show how to mechanize the dependency pair
approach using polynomial orders efficiently.
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Our improvements and algorithms are implemented in our termination prover
AProVE [17]. In Section 8 we give empirical results that show that our algorithms
are extremely successful in practice. Thus, the contributions of this paper are also
very helpful for other current tools that use dependency pairs (e.g., CiME [6],
TORPA [45], TPA [29], TTT [24]). Dependency pairs can also be combined with
other termination techniques (e.g., [40] integrates dependency pairs and the size-
change principle from termination analysis of functional [32] and logic programs
[8]). Moreover, the systems TALP [36] and AProVE also use dependency pairs for
termination proofs of logic programs. So techniques to mechanize and to improve
dependency pairs are useful for termination analysis of other kinds of programming
languages as well. Of course, dependency pairs are not the only successful method
for automated termination proofs of non-simply terminating TRSs. Other powerful
methods include semantic labeling [44], match-bounds [9], and the monotonic seman-
tic path order [5]. For that reason, several tools (including AProVE) also offer other
termination techniques, possibly in combination with dependency pairs.

2 Dependency Pairs

We briefly present the dependency pair method and refer to [1, 11, 12, 15, 16, 22,
25, 34, 35] for refinements and motivations. Here, we use the new formulation of
[15], where the method is presented as a general framework for termination proofs
that combines several separate subtechniques. This formulation was inspired by the
cycle analysis algorithm of [25], and it is related to the constraint-based approach
of [4, Chapter 7]. A main advantage of this formulation is that one can incorporate
other termination techniques into the cycle analysis algorithm of [25], which leads to
a substantial increase in modularity and power. After presenting the structure of the
dependency pair framework in Section 2.1, we introduce two of the main components
of the framework in Section 2.2 and 2.3: the dependency graph processor and the
reduction pair processor.

2.1 The Dependency Pair Framework

We assume familiarity with term rewriting (see, e.g., [3]). For a signature F and a set
of variables V , let T (F ,V) denote the set of terms over F and V . For a TRS R over
a signature F , the defined symbols DR are the root symbols of the left-hand sides of
rules. We restrict ourselves to finite signatures and TRSs. For every defined symbol
f ∈ DR, we extend the signature F by a fresh tuple symbol f �, where f � has the same
arity as f . To ease readability, in the examples we usually adopt the original notation
of [1] where tuple symbols were written with capital letters; that is, we often write F
for f �, and so forth. If t = g(t1, . . . , tm) with g ∈ DR, we write t� for g�(t1, . . . , tm).

Definition 2 (Dependency Pair) If l → r ∈ R and t is a subterm of r with defined root
symbol, then the rule l� → t� is a dependency pair of R. The set of all dependency
pairs of R is denoted by DP(R).
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So the dependency pairs of the TRS in Example 1 are

MINUS(s(x), s(y)) → MINUS(x, y) (1)

DIV(s(x), s(y)) → MINUS(x, y) (2)

DIV(s(x), s(y)) → DIV(minus(x, y), s(y)). (3)

To use dependency pairs for (innermost) termination proofs, we need the notion
of (innermost) chains. Intuitively, a dependency pair corresponds to a (possibly
recursive) function call, and a chain of dependency pairs represents a sequence of
calls that can occur during a reduction. We always assume that different occurrences
of dependency pairs are variable disjoint and consider substitutions whose domains
may be infinite. In the following, P is usually a set of dependency pairs.

Definition 3 (Chain) Let P,R be TRSs. A (possibly infinite) sequence of pairs s1 →
t1, s2 → t2, . . . from P is a (P,R)-chain iff there is a substitution σ with tiσ →∗

R si+1σ

for all i. The chain is minimal if all tiσ are terminating w.r.t. R. The chain is an
innermost (P,R)-chain iff tiσ i→∗

R si+1σ and siσ is in normal form w.r.t. R for all i.
Here, “ i→R” denotes innermost reductions. An innermost (P,R)-chain as above is
minimal if all tiσ are innermost terminating w.r.t. R.

In Example 1, the following sequence is a minimal (innermost) chain

DIV(s(x1), s(y1)) → DIV(minus(x1, y1), s(y1)), (4)

DIV(s(x2), s(y2)) → DIV(minus(x2, y2), s(y2)) (5)

since DIV(minus(x1, y1), s(y1))σ →∗
R DIV(s(x2), s(y2))σ holds for a suitable substi-

tution σ . For example, σ could instantiate x1 with s(0) and y1, x2, y2 with 0. While
there are chains of arbitrary finite length in Example 1, we have no infinite chains. We
obtain the following sufficient and necessary criterion for termination and innermost
termination.

Theorem 4 (Termination Criterion [1]) A TRS R is terminating iff there is no infinite
minimal (DP(R),R)-chain. R is innermost terminating iff there is no infinite minimal
innermost (DP(R),R)-chain.

To prove absence of infinite minimal (innermost) chains automatically, we
consider so-called dependency pair problems (“DP problems”).1 A DP problem
consists of two TRSs P and R (where initially, P = DP(R)) and a flag e ∈ {t, i}
for “termination” or “innermost termination.” Instead of “(P,R)-chains” we also
speak of “(P,R, t)-chains”, and instead of “innermost (P,R)-chains” we speak of
“(P,R, i)-chains.” Our goal is to show that there is no infinite minimal (P,R, e)-
chain. In this case, we call the problem finite. So Theorem 4 can be reformulated as
follows: A TRS R is terminating iff the DP problem (DP(R),R, t) is finite, and it is
innermost terminating iff (DP(R),R, i) is finite.

1To ease readability, we use a simpler definition of DP problems than [15], since this simple definition
suffices for the presentation of the new results of this paper.
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A DP problem (P,R, e) that is not finite is called infinite. But in addition, (P,R, t)
is already infinite whenever R is not terminating and (P,R, i) is already infinite if R
is not innermost terminating. The reason for this nonsymmetric definition of “finite”
and “infinite” is that in this way there are more finite (resp. infinite) DP problems,
and therefore, it becomes easier to detect (in)finiteness of a problem.2 While the
initial DP problem (DP(R),R, e) is either finite or infinite, other DP problems
(P,R, e) that can occur in termination proofs can be both finite and infinite. For
example, the DP problem (P,R, e) with P = {F(s(x)) → F(x)} and R = {f(s(x)) →
f(x),a → a} is finite since there is no infinite minimal (P,R, e)-chain, but also infinite
since R is not (innermost) terminating.

Such DP problems do not cause difficulties. If one detects an infinite problem
during a termination proof, one can always abort the proof, since termination
has been disproved (if all proof steps were “complete”, i.e., if they preserved the
termination behavior). If the problem is both finite and infinite, then even if one only
considers it as being finite, the proof is still correct, since then there exists another
resulting DP problem that is infinite and not finite. The reason is that by Theorem 4,
non-termination implies that there is an infinite minimal chain. Indeed, when proving
termination of the TRS R above, one also obtains a DP problem with the infinite
minimal chain A → A, A → A, . . .

Termination techniques should now operate on DP problems instead of TRSs. We
refer to such techniques as dependency pair processors (“DP processors”). Formally,
a DP processor is a function Proc that takes a DP problem as input and returns a
new set of DP problems that then have to be solved instead. Alternatively, it can
also return “no”. A DP processor Proc is sound if for all DP problems d, d is finite
whenever Proc(d) is not “no” and all DP problems in Proc(d) are finite. Proc is
complete if for all DP problems d, d is infinite whenever Proc(d) is “no” or when
Proc(d) contains an infinite DP problem.

Soundness of Proc is required to prove termination (in particular, to conclude
that d is finite if Proc(d) = ∅). Completeness is needed to prove non-termination (in
particular, to conclude that d is infinite if Proc(d) = no). Completeness also ensures
that one does not transform non-infinite DP problems into infinite ones (i.e., applying
the processor does not “harm” – but of course it could still have a negative impact on
the success or efficiency of the termination proof attempt).

Corollary 5 introduces the DP framework. The idea is to start with the initial DP
problem (DP(R),R, e), where e depends on whether one wants to prove termination
or innermost termination. Then this problem is transformed repeatedly by sound DP
processors. If the final processors return empty sets of DP problems, termination is
proved. If one of the processors returns “no” and all processors used before were
complete, one has disproved termination of the TRS R.

Corollary 5 (Dependency Pair Framework) Let R be a TRS. We construct a tree
whose nodes are labeled with DP problems or “yes” or “no” and whose root is labeled

2That a DP problem is already “infinite” if R is not terminating is required for the completeness of
the dependency pair transformations in Section 5 (cf. Ex. 32 in Section 5.1).
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with (DP(R),R, e), where e ∈ {t, i}. For every inner node labeled with d, there is a
sound DP processor Proc satisfying one of the following conditions.

– Proc(d) = no and the node has just one child, labeled with “no”
– Proc(d) = ∅ and the node has just one child, labeled with “yes”
– Proc(d) �= no, Proc(d) �= ∅, and the children of the node are labeled with the DP

problems in Proc(d)

If all leaves of the tree are labeled with “yes,” then R is terminating if e = t (resp.
innermost terminating if e = i). Otherwise, if there is a leaf labeled with “no” and if
all processors used on the path from the root to this leaf are complete, then R is not
terminating if e = t (resp. not innermost terminating if e = i).

Example 6 If d0 is the initial problem (DP(R),R, e), if Proc0, Proc1, Proc2 are sound
DP processors, and if Proc0(d0) = {d1, d2}, Proc1(d1) = ∅, and Proc2(d2) = ∅, then
one could obtain the first tree below and conclude (innermost) termination.

d0

��
� ��

�

d1 d2

yes yes

d0

��� ���

d1

��� ���
d2

d3 d4 d5 no

But if Proc1(d1) = {d3, d4, d5} and Proc2(d2) = no, one could obtain the second tree.
If both Proc0 and Proc2 are complete, then now one could conclude non-termination.

2.2 The Dependency Graph Processor

We first introduce a processor to decompose a DP problem into several subproblems.
To this end, one tries to determine which pairs can follow each other in chains by
constructing a so-called dependency graph.

Definition 7 (Dependency Graph) For a problem (P,R, e), the nodes of the
(P,R, e)-dependency graph are the pairs of P , and there is an arc from s → t to
v → w iff s → t, v → w is a (P,R, e)-chain.

In Example 1, we have the following dependency graph for both e ∈ {t, i}.

DIV(s(x),s(y)) → MINUS(x, y ) (2)

DIV(s(x),s(y))→DIV(minus(x, y ),s(y)) (3) MINUS(s(x),s(y))→MINUS(x, y ) (1)

A set P ′ �= ∅ of dependency pairs is a cycle if for any s → t and v → w in P ′ there
is a non-empty path from s → t to v → w in the graph that traverses only pairs of P ′.
A cycle P ′ is a strongly connected component (“SCC”) if P ′ is not a proper subset of
another cycle.
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Note that in standard graph terminology, a path n0 ⇒ n1 ⇒ . . .⇒ nk in a directed
graph forms a cycle if n0 = nk and k ≥ 1. In our context we identify cycles with the set
of elements that occur in it; that is, we call {n0, n1, . . . , nk−1} a cycle (cf. [12]). Since a
set never contains multiple occurrences of an element, this results in several cycling
paths being identified with the same set. Similarly, an “SCC” is a graph in standard
graph terminology, whereas we identify an SCC with the set of elements occurring in
it. Then indeed, SCCs are the same as maximal cycles.

In Example 1, we have the SCCs P1 = {(1)} and P2 = {(3)}. Since we consider
only finite TRSs, any infinite chain of dependency pairs corresponds to a cycle of the
dependency graph. Therefore, one can prove the absence of infinite chains separately
for every cycle of the dependency graph. As observed in [25], to avoid exponential
blowup, one should not compute all cycles of the dependency graph but consider the
SCCs instead. Therefore, the following DP processor decomposes a DP problem into
the subproblems corresponding to the different SCCs.

Theorem 8 (Dependency Graph Processor [1, 15, 25]) Let Proc((P,R, e) ) =
{(P1,R, e), . . . , (Pn,R, e)}, where P1, . . . ,Pn are the SCCs of the (P,R, e)-
dependency graph. Then Proc is sound and complete.

The initial problem in Example 1 is (P,R, e) with P = {(1), (2), (3)}. The above
processor transforms it into ({(1)}, R, e) and ({(3)}, R, e).

Unfortunately, the dependency graph is not computable. Therefore, for automa-
tion one constructs an estimated graph containing at least all arcs from the real
graph. Obviously, the dependency graph processor of Theorem 8 remains sound and
complete if one uses any such estimation.

Let capR(t) result from replacing all subterms of t with defined root symbol (i.e.,
with a root symbol from DR) by different fresh variables. Here, multiple occurrences
of the same subterm are also replaced by pairwise different variables. Let ren(t)
result from replacing all occurrences of variables in t by different fresh variables
(i.e., ren(t) is a linear term). So capR(DIV(minus(x, y), s(y))) = DIV(z, s(y)) and
ren(DIV(x, x)) = DIV(x1, x2).

Definition 9 (Estimated Dependency Graph) For a DP problem (P,R, e), the nodes
of the estimated dependency graph EDG(P,R) are the pairs of P , and there is an arc
from s → t to v → w iff ren(capR(t)) and v are unifiable. In the estimated innermost
dependency graph EIDG(P,R) there is an arc from s → t to v → w iff capR(t) and
v are unifiable by an mgu μ such that sμ and vμ are in normal form.

The above estimations are sound; that is, the EDG contains the (P,R, t)-
dependency graph and the EIDG contains the (P,R, i)-dependency graph. Of
course, to check whether there is an arc from s → t to v → w in E(I)DG, one
has to rename the variables of s → t and v → w to make them variable disjoint.
In Example 1, the E(I)DG is identical to the real dependency graph. Alternative
improved techniques to estimate (innermost) dependency graphs can be found in
[1, 14, 16, 25, 34, 35]. In particular, the EIDG in Definition 9 is a slightly weaker
simplified variant of the “estimated innermost dependency graph” from [1].



162 J. Giesl, et al.

2.3 The Reduction Pair Processor

To prove that a DP problem is finite, we now generate constraints that should be
satisfied by some reduction pair (�,	) [30] consisting of a quasi-rewrite order �
(i.e., � is reflexive, transitive, monotonic (closed under contexts), and stable (closed
under substitutions)) and a stable well-founded order 	 that is compatible with
� (i.e., �◦	 ⊆ 	 or 	◦� ⊆ 	). However, 	 need not be monotonic. For a DP
problem (P,R, e), the generated constraints ensure that at least one rule in P is
strictly decreasing (w.r.t. 	) and all remaining rules in P and R are weakly decreasing
(w.r.t. �). Requiring l�r for all l→r ∈ R ensures that in a chain s1 → t1, s2 → t2, ...
with tiσ →∗

R si+1σ , we have tiσ � si+1σ for all i. Hence, if a reduction pair satisfies
these constraints, then the strictly decreasing pairs of P cannot occur infinitely often
in chains. Thus, one can delete all these pairs from P .

For innermost termination, a weak decrease is not required for all rules but only
for the usable rules. These rules are a superset of those rules that may be used to
reduce right-hand sides of dependency pairs if their variables are instantiated with
normal forms.3 In Example 1, the usable rules of dependency pair (3) are the minus-
rules, whereas the other dependency pairs have no usable rules.

Definition 10 (Usable Rules) For f ∈ F , let RlsR( f ) = {l→ r∈R | root(l) = f },
and let R′ = R \ RlsR( f ). For any term, we define

– UR(x) = ∅ for x ∈ V and
– UR( f (t1, ..., tn)) = RlsR( f ) ∪ ⋃

l→r∈RlsR( f ) UR′(r) ∪ ⋃n
i=1 UR′(ti).

For any TRS P , we define UR(P) = ⋃
s→t∈P UR(t).

We want to use standard techniques to synthesize reduction pairs satisfying the
constraints generated by the dependency pair technique. Most existing techniques
generate monotonic orders 	 such as RPOS or KBO. But for the dependency pair
approach we need only a monotonic quasi-order �, whereas 	 does not have to
be monotonic. (This is often called “weak monotonicity”). For that reason, before
synthesizing a suitable order, some arguments of function symbols can be eliminated.
In order to perform this elimination, the concept of argument filtering was introduced
in [1] (we use the notation of [30]).

Definition 11 (Argument Filtering) An argument filtering π for a signature F maps
every n-ary function symbol to an argument position i ∈ {1, . . . , n} or to a (possibly
empty) list [i1, . . . , im] with 1 ≤ i1 < . . . < im ≤ n. The signature Fπ consists of all
function symbols f such that π( f ) = [i1, . . . , im], where in Fπ the arity of f is m.
Every argument filtering π induces a mapping from T (F ,V) to T (Fπ ,V).

π(t) =
⎧
⎨

⎩

t if t is a variable
π(ti) if t = f (t1, ..., tn) and π( f ) = i
f (π(ti1), ..., π(tim)) if t = f (t1, ..., tn) and π( f ) = [i1, ..., im]

3Improved definitions of the “usable rules” that lead to a better approximation of these rules can be
found in [13, 14, 16].
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An argument filtering with π( f ) = i for some f ∈ F is called collapsing. For any TRS
R, let π(R) = {π(l) → π(r) | l → r ∈ R}.

For any relation 	, let 	π be the relation where t 	π u holds iff π(t) 	 π(u). In
[1] it was shown that if (�,	) is a reduction pair, then (�π ,	π ) is a reduction pair
as well. For any TRS P and any relation 	, let P	 = {s → t ∈ P | s 	 t}; that is, P	
contains those rules of P that decrease w.r.t. 	. Now we can define a DP processor
that deletes all pairs from P that are strictly decreasing w.r.t. a reduction pair and an
argument filtering (i.e., all pairs of P	π

).

Theorem 12 (Reduction Pair Processor [1, 12, 25]) Let (�,	) be a reduction pair,
and let π be an argument filtering. Then the following DP processor Proc is sound and
complete. Here, Proc( (P,R, e) ) =

– {(P \ P	π
,R, e)}, if the following conditions (a) and (b) hold:

(a) P	π
∪ P�π

= P and P	π
�= ∅

(b) either e = t and R�π
= R

or e = i and R�π
⊇ UR(P)

– {(P,R, e)}, otherwise .

So in Example 1, we obtain the following ten constraints for termination. Here,
(�i, 	i) is the reduction pair, and πi is the argument filtering for the DP problem
(Pi,R, t), where i ∈ {1, 2}.

π1(MINUS(s(x), s(y))) 	1 π1(MINUS(x, y)) (6)

π2(DIV(s(x), s(y))) 	2 π2(DIV(minus(x, y), s(y))) (7)

πi(minus(x,0)) �i πi(x) (8)

πi(minus(s(x), s(y))) �i πi(minus(x, y)) (9)

πi(div(0, s(y))) �i πi(0) (10)

πi(div(s(x), s(y))) �i πi(s(div(minus(x, y), s(y)))) (11)

We use the filtering πi(minus)=[1], which replaces all terms minus(t1, t2) by
minus(t1) and does not modify other function symbols. With this filtering, (6)–(11)
are satisfied by the lexicographic path order (LPO) with the precedence div > s >

minus. Hence, one can remove the only dependency pair from the DP problems
(P1,R, t) and (P2,R, t), respectively. The remaining DP problems (∅,R, t) are
transformed into the empty set by the dependency graph processor of Definition 8;
that is, termination of the TRS is proved. Similarly, one can use a collapsing filtering
πi(minus) = πi(div) = 1 that replaces all terms minus(t1, t2) or div(t1, t2) by t1. Then
even the embedding order orients the resulting constraints.

For innermost termination, (P1,R, i) gives rise only to the constraint (6), since P1

has no usable rules. For (P2,R, i), the constraints (10) and (11) are not necessary,
since the div-rules are not usable. Indeed, the constraints for innermost termination
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are always a subset of the constraints for termination. Hence, for TRSs where inner-
most termination already implies termination (e.g., locally confluent overlay systems
and in particular, non-overlapping TRSs [20]), one should always use techniques for
innermost termination when attempting termination proofs.

Whenever a processor modifies a DP problem, one should apply the dependency
graph processor afterwards. This generalizes the strategy of the recursive SCC
algorithm of [25] that was suggested for the classical dependency pair approach.
Here, SCCs of the dependency graph were recomputed whenever some dependency
pairs were strictly oriented and therefore removed. In the DP framework, this
approach would correspond to a repeated alternating application of the processors
in Theorem 8 and 12. However, by formulating other termination techniques as DP
processors as well, they can now be incorporated into this strategy, too.

3 Improving Termination Proofs by Usable Rules

Now we improve Theorem 12 such that its constraints for termination become as
simple as the ones for innermost termination.4 As observed in [43], the following
definition is useful to weaken the constraints.

Definition 13 (Cε [19]) Cε is the TRS {c(x, y) → x, c(x, y) → y}, where c is a new
function symbol. A TRS R is Cε-terminating iff R ∪ Cε is terminating. A relation
� is Cε-compatible iff c(x, y)�x and c(x, y) � y.5 A reduction pair (�,	) is Cε-
compatible iff � is Cε-compatible.

Toyama’s TRS R = {f(0,1, x) → f(x, x, x)} [41] is terminating but not Cε-
terminating, since R ∪ Cε has the infinite reduction f(0,1, c(0,1)) → f(c(0,1),
c(0,1), c(0,1))→2 f(0,1, c(0,1))→ . . . Thus, requiring l �π r only for the usable
rules is not sufficient for termination: R ∪ Cε’s only SCC {F(0,1, x) → F(x, x, x)} has
no usable rules, and there is a reduction pair (�,	) such that the dependency pair
is strictly decreasing.6 Hence, R ∪ Cε is innermost terminating, but not terminating,
since we cannot satisfy both F(0,1, x) 	π F(x, x, x) and l �π r for the Cε-rules.

So a reduction of the constraints in Theorem 12 is impossible in general, but it
is possible if we restrict ourselves to Cε-compatible quasi-orders �. For automation,
this is not a restriction if one uses a quasi-simplification order � (i.e., a monotonic
and stable quasi-order with the subterm property f (. . . t . . .) � t for any term t and
symbol f ). Thus, any quasi-simplification order orients Cε. A similar observation
holds for polynomial orders, although polynomial orders are no quasi-simplification
orders if one permits the coefficient 0 in polynomials. However, they can always be
extended to orient Cε. For example, one could associate c with the polynomial that
adds its two arguments; that is, one could define Pol(c(x, y)) = x + y.

4Independently, Hirokawa and Middeldorp obtained a corresponding result in [22].
5Instead of “Cε-compatibility,” [43] uses the notion “π expandability.”
6For example, one can use the reduction pair (→∗

DP(R)∪R,→+
DP(R)∪R).
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The first step in this direction was taken by Urbain [43]. He showed that in a
hierarchy of Cε-terminating TRSs, one can disregard all rules occurring “later” in the
hierarchy when proving termination. Hence in Example 1, to show the termination
of minus, [43] would require only that the MINUS-dependency pair (1) be strictly
decreasing and the minus-rules weakly decreasing. Compared to the reduction pair
processor of Theorem 12, the advantage is that no weak decrease of the div-rules is
required anymore, since minus does not depend on div. But the constraints are still
harder than the ones for innermost termination, since one requires a weak decrease
for theminus-rules although they are not usable for theMINUS-dependency pair. We
will improve this approach further and show in Theorem 17 that even for termination,
it suffices only to require a weak decrease for the usable rules. So compared to [43],
our result leads to significantly fewer constraints for termination proofs.

Moreover, because of the restriction to Cε-termination, [43] could not use the
full power of dependency graphs. For example, recent improved dependency graph
estimations [25, 35] can detect that the dependency graph for Toyama’s TRS R
has no SCC and thus is terminating. But since it is not Cε-terminating, it cannot be
handled by [43]. In contrast, our result can be combined with arbitrary estimations
of dependency graphs. More precisely, before applying the new reduction pair
processor of Theorem 17, one can use any other DP processor (e.g., the dependency
graph processor with any sound graph estimation). In this way, one can also prove
termination of non-Cε-terminating TRSs.

To prove that it suffices to regard the usable rules in termination proofs, we show
that for every minimal (P,R)-chain s1 → t1, s2 → t2, . . . , there exists a substitution
σ such that tiσ reduces to si+1σ using only the rules of UR(P) ∪ Cε. In other words,
every minimal (P,R)-chain is also a (P, UR(P) ∪ Cε)-chain. However, the resulting
(P, UR(P) ∪ Cε)-chain is not necessarily minimal.

For example, let P consist of the DIV-dependency pair (3). Then UR(P) only
contains the minus-rules. Two (variable-renamed) occurrences of (3) (like (4) and
(5)) form a minimal chain, as DIV(minus(x1, y1), s(y1))σ →∗

R DIV(s(x2), s(y2))σ

holds for some σ (e.g., σ(x1) = s(0), σ(y1) = div(0, s(0)), σ(x2) = σ(y2) = 0). If
one uses this particular substitution σ , then one indeed needs the non-usable rule
div(0, s(y)) → 0 to reduce σ(y1) to 0, that is, to reduce DIV(minus(x1, y1), s(y1))σ to
DIV(s(x2), s(y2))σ . However, we will show that for any σ , there is also a substitution
I1(σ ) such that DIV(minus(x1, y1), s(y1))I1(σ ) reduces to DIV(s(x2), s(y2))I1(σ ) by
applying only usable rules and Cε-rules.

We proceed in a similar way as in the proof of [43] and in the original proofs
of Gramlich [19]. More precisely, we map any R-reduction to a reduction w.r.t.
UR(P) ∪ Cε. Let � contain all function symbols occurring in right-hand sides of P ∪
UR(P) (i.e., all usable symbols of P). Thus, UR(P) = RlsR(�) (where RlsR(�) =⋃

f∈� RlsR( f )). So for P = {(3)}, we have � = {DIV,minus, s}. Our mapping I1

modifies the earlier mappings of [19, 43] by treating terms g(t1, . . . , tn) with g /∈ �

differently. Figure 1 illustrates that by this mapping, every minimal chain over R
corresponds to a chain over RlsR(�) ∪ Cε, but instead of the substitution σ one uses
a different substitution I1(σ ).

Intuitively, I1(t) “collects” all terms that t can be reduced to in zero or more steps.
However, we regard reductions only on or below non-usable symbols, that is, symbols
that are not from �. To represent a collection t1, . . . , tn of terms by just one single
term, one uses the term c(t1, c(t2, . . . c(tn,d) . . . )) with a fresh constant d.
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Fig. 1 Transformation of chains

Definition 14 (I1) Let � ⊆ F , and let t ∈ T (F ,V) be a terminating term (i.e., t starts
no infinite R-reductions). We define I1(t):

I1(x)= x for x ∈ V
I1( f (t1, ..., tn))= f (I1(t1), ..., I1(tn)) for f ∈ �

I1(g(t1, ..., tn))=Comp({g(I1(t1), ..., I1(tn))} ∪ Red1(g(t1, ..., tn))) for g /∈ �

where Red1(t) = {I1(t′) | t →R t′}. Moreover, Comp({t} � M) = c(t, Comp(M)) and
Comp(∅) = d, where d is a fresh constant. To make Comp well defined, in “{t} � M”,
we assume that t is smaller than all terms in M w.r.t. some total well-founded order
>T on terms.

For a terminating substitution σ (i.e., σ(x) terminates for all x∈V), we define the
substitution I1(σ ) as I1(σ ) (x) = I1(σ (x)) for all x ∈ V .

Hence, for P = {(3)} and � = {DIV,minus, s}, we obtain

I1(div(0, s(0))) = Comp( { div(I1(0),I1(s(0))), I1(0) } )

= c( div(I1(0), s(I1(0))), c(I1(0), d) )

= c( div(c(0,d), s(c(0,d))), c( c(0,d), d) ).

So in contrast to the above substitution σ , the substitution I1(σ ) instantiates y1

by I1(div(0, s(0))) instead of div(0, s(0)), and it instantiates y2 by I1(0) instead
of 0. Now one can reduce I1(σ )(y1) to I1(σ )(y2) by applying Cε-rules instead of
applying a non-usable div-rule. Thus, the rules of RlsR(�) ∪ Cε suffice to reduce
DIV(minus(x1, y1), s(y1))I1(σ ) to DIV(s(x2), s(y2))I1(σ ).

Note that Definition 14 is possible only for terminating terms t; otherwise, I1(t)
could be infinite. Before we prove the desired theorem, we need some additional
properties of Comp and I1. We want to show that for any minimal (P,R)-chain
s1 → t1, s2 → t2, . . . with tiσ →∗

R si+1σ , we also have ti I1(σ ) →∗
RlsR(�)∪Cε

si+1 I1(σ ).
In contrast to the corresponding lemmas in [37, 43], Lemma 16 shows that even if
the left-hand sides of dependency pairs and rules are not from T (�,V), the rules of
R \ RlsR(�) are not needed to reduce ti I1(σ ) to si+1 I1(σ ). Therefore, Lemma 16
(b) and (c) replace equalities from the lemmas of [37, 43] by “→∗

Cε
.” This is possible

by including “g(I1(t1), . . . ,I1(tn))” in the definition of I1(g(t1, . . . , tn)) for g /∈ �.
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Lemma 15 (Properties of Comp) If t ∈ M, then Comp(M) →+
Cε

t.

Proof For t1 <T · · · <T tn and 1 ≤ i ≤ n we have Comp({t1, . . . , tn}) = c(t1, . . .
c(ti, . . . c(tn,d) . . . ) . . . ) →∗

Cε
c(ti, . . . c(tn,d) . . . ) →Cε

ti. ��

Lemma 16 (Properties of I1) Let �⊆F such that f ∈� implies g∈� whenever
g occurs in the right-hand side of a rule from RlsR( f ). Let t, s, tσ ∈ T (F ,V) be
terminating, and let σ be a terminating substitution.

(a) If t ∈ T (�,V), then I1(tσ) = t I1(σ ).
(b) I1(tσ) →∗

Cε
t I1(σ ).

(c) If t →{l→r} s by a root reduction step, where l → r ∈ R and root(l) ∈ �, then
I1(t) →+

{l→r}∪Cε
I1(s).

(d) If t →R s with root(t) �∈ �, then I1(t) →+
Cε

I1(s).
(e) If t →{l→r} s, where l → r ∈ R, then I1(t)→+

{l→r}∪Cε
I1(s) if root(l)∈� and

I1(t)→+
Cε
I1(s) otherwise.

Proof

(a) The proof is a straightforward structural induction on t.
(b) The proof is by structural induction on t. The only interesting case is t =

g(t1, . . . , tn), where g /∈ �. Then we obtain the following.

I1(g(t1, ..., tn)σ ) = Comp({g(I1(t1σ), ...,I1(tnσ))} ∪ Red1(g(t1σ, ..., tnσ)))

→+
Cε

g(I1(t1σ), ...,I1(tnσ)) by Lemma 15
→∗

Cε
g(t1 I1(σ ), . . . , tn I1(σ )) by induction hypothesis

= g(t1, . . . , tn)I1(σ )

(c) We have t= lσ →R rσ =s and r∈T (�,V) by the condition on �. By (b) and (a)
we get I1(lσ) →∗

Cε
l I1(σ ) →{l→r} r I1(σ ) = I1(rσ).

(d) The claim follows by I1(t) = Comp({. . .} ∪ Red1(t)), I1(s) ∈ Red1(t), and
Lemma 15.

(e) We perform induction on the position p of the redex. If root(t) /∈ �, we use (d).
If root(t) ∈ � and p is the root position, we apply (c). Otherwise, p is below
the root, t = f (t1, . . . , ti, . . . , tn), s = f (t1, . . . , si, . . . , tn), f ∈ �, and ti →{l→r} si.
Then the claim follows from the induction hypothesis. ��

Now we show the desired theorem that improves upon Theorem 12 since the
constraints are reduced significantly. Thus, it becomes easier to find a reduction pair
satisfying the resulting constraints.

Theorem 17 (Reduction Pair Processor Based on Usable Rules) Let (�,	) be a
reduction pair and π be an argument filtering. Then the DP processor Proc is sound
and complete. Here, Proc( (P,R, e) ) =
– {(P \ P	π

,R, e)}, if the following conditions (a) and (b) hold:

(a) P	π
∪ P�π

= P and P	π
�= ∅
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(b) either e = t and R�π
⊇ UR(P) and � is Cε-compatible

or e = i and R�π
⊇ UR(P)

– {(P,R, e)}, otherwise.

Proof P\P	π
⊆P implies completeness. For soundness, we consider only the new

case e = t. If (P,R, t) is not finite, then there is a minimal infinite (P,R)-chain s1 →
t1, s2 → t2, . . . with tiσ →∗

R si+1σ for all i.
Since all terms tiσ and si+1σ are terminating, we can apply I1 to both tiσ and

si+1σ (where � are the usable symbols of P again). Using Lemma 16 (e), we obtain
I1(tiσ) →∗

RlsR(�)∪Cε
I1(si+1σ).

Moreover, by the definition of UR, all ti are terms over the signature �.
So by Lemma 16 (a) and (b) we get ti I1(σ ) = I1(tiσ) →∗

RlsR(�)∪Cε
I1(si+1σ) →∗

Cε

si+1 I1(σ ) stating that s1 → t1, s2 → t2, . . . is also a (P, RlsR(�) ∪ Cε)-chain, i.e., a
(P, UR(P) ∪ Cε)-chain.

Thus, we have

– si I1(σ ) 	π ti I1(σ ) for all i where si → ti ∈ P	π

– si I1(σ ) �π ti I1(σ ) for all other i
– ti I1(σ ) �π si+1 I1(σ ) for all i

Since 	π is well founded and compatible with �π , dependency pairs from P	π

cannot occur infinitely often in this chain. Thus, there is an n ≥ 0 such that all pairs
si → ti with i ≥ n are from P \ P	π

. Therefore, if we omit the first n − 1 pairs from
the original chain, we obtain a minimal infinite (P \ P	π

, R)-chain sn → tn, sn+1 →
tn+1, . . . Hence, (P \ P	π

,R, t) is not finite either. ��

Note that in Theorem 17, one has to orient only the usable rules UR(P), but one
keeps all rules R in the resulting DP problem (P \ P	π

,R, e). As an alternative, one
might be tempted to replace Theorem 17 by a “usable rule processor” followed by an
application of the reduction pair processor of Theorem 12. The usable rule processor
ProcU would remove all non-usable rules and add the Cε-rules in the termination
case, cf. [15, Theorem 28 and Theorem 37]:

ProcU ((P,R, t)) = {(P,UR(P) ∪ Cε, t)}
ProcU ((P,R, i)) = {(P,UR(P), i)}

However, the following example shows that ProcU is not sound in the termination
case. In the example, there is an infinite minimal (P,R)-chain, and thus there is
also an infinite (P,UR(P) ∪ Cε)-chain. However, there exists no infinite minimal
(P,UR(P) ∪ Cε)-chain. Therefore, (P,UR(P) ∪ Cε, t) is finite, whereas (P,R, t) is
not finite.

Example 18 The following DP problem (P,R, t) is a variant of Toyama’s TRS. Let
P consist of

F(0, 1, x1, 0, 1, x2, 0, 1, x3, y) → F(x1, x1, x1, x2, x2, x2, x3, x3, x3, g(x1, x2, x3))
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and let R consist of the following ten rules.

a → 0 g(x, x, y) → h(x, x)

a → 1 g(x, y, x) → h(x, x)

b → 0 g(y, x, x) → h(x, x)

b → 1 h(0,1) → h(0,1)
e → 0
e → 1

There is an infinite minimal (P,R)-chain, as can be shown by using the substi-
tution σ with σ(x1) = a, σ(x2) = b, σ(x3) = e, and σ(y) = g(a,b, e). The reason is
that the instantiated right-hand side of P ’s only rule now reduces to its instantiated
left-hand side.

F(x1, x1, x1, x2, x2, x2, x3, x3, x3, g(x1, x2, x3))σ

= F(a,a,a, b,b,b,e,e, e,g(a,b,e))
→6

R F(0,1, a,0,1,b,0, 1,e,g(a,b,e))
= F(0,1, x1, 0,1, x2, 0,1, x3, y)σ

The resulting infinite chain is minimal, since the instantiated right-hand side
F(a,a,a,b,b,b, e,e,e,g(a,b,e)) is terminating. The reason is that g(a,b, e) can
be reduced to h(0,0) or to h(1,1) but not to h(0,1). Thus, the DP problem (P,R, t)
is not finite.

However, the DP problem (P,UR(P) ∪ Cε, t) is finite, and therefore any processor
that transforms (P,R, t) into (P,UR(P) ∪ Cε, t) is unsound. Here, UR(P) consists
of all g-rules and the h-rule, i.e., UR(P) = RlsR({g,h}). To prove that (P,UR(P) ∪
Cε, t) is finite, we have to show that there is no infinite minimal (P,UR(P) ∪ Cε)-
chain.

In any chain of length greater than 1, the right-hand side of P ’s rule has to be
instantiated by a substitution σ such that all xiσ can be reduced to both 0 and 1 with
UR(P) ∪ Cε. It is easy to see that then each xiσ can also be reduced to c(0,1) or to
c(1,0). So there are at least two xiσ and x jσ with i �= j that can be reduced to the
same term c(0,1) or c(1,0). Hence, the subterm g(x1, x2, x3)σ of P ’s instantiated
right-hand side can be reduced to h(c(0,1), c(0,1)) or to h(c(1,0), c(1,0)) and
further to the non-terminating term h(0,1). So the instantiated right-hand side of
P ’s rule is not terminating, and thus there is no minimal chain of length greater
than 1.

The following variant of an example from [1] shows that Theorem 17 not only
increases efficiency but also leads to a more powerful method than Theorem 12 (if
one is restricted to Cε-compatible quasi-orders �).

Example 19 In the following TRS, div(x, y) computes � x
y� for x, y ∈ IN if y �= 0 and

quot(x, y, z) computes 1 + � x−y
z � if x ≥ y and z �= 0 and it computes 0 if x < y.

div(0, y) → 0 (12)

div(x, y) → quot(x, y, y) (13)
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quot(0, s(y), z) → 0 (14)

quot(s(x), s(y), z) → quot(x, y, z) (15)

quot(x,0, s(z)) → s(div(x, s(z))) (16)

In contrast to our new processor, Urbain’s result [43] is not applicable in this
example. The reason is that this TRS is not a hierarchical combination (since div
and quot are mutually recursive).

Note also that this TRS does not belong to known classes of TRSs where
innermost termination implies termination, since it is not locally confluent: div(0,0)
reduces to the normal forms 0 and quot(0,0,0).

A termination proof is impossible with the previous processors from Theorem 8
and Theorem 12 if one uses standard reduction pairs (�,	) where � is a quasi-
simplification order. In contrast, innermost termination can easily be proved. We
obtain the following dependency pairs that form an SCC of the dependency graph.

DIV(x, y) → QUOT(x, y, y) (17)

QUOT(s(x), s(y), z) → QUOT(x, y, z) (18)

QUOT(x,0, s(z)) → DIV(x, s(z)) (19)

There are no usable rules because the dependency pairs have no defined symbols
in their right-hand sides. Thus, the reduction pair processor requires a decrease
only for the dependency pairs. Hence, with a filtering π(QUOT) = π(DIV) = 1 and
the embedding order, (17) and (19) are weakly decreasing, while (18) is strictly
decreasing and can be removed. So the reduction pair processor transforms the
initial DP problem ({(17), (18), (19)}, R, i) into ({(17), (19)}, R, i). With the new
improved processor of Theorem 17 this step can now also be done when proving
full termination. Afterwards, the remaining DP problem can easily be solved by
the existing DP processors: we apply the reduction pair processor once more with
a filtering π(s) = [ ], π(QUOT) = π(DIV) = 2 and the LPO with a precedence 0 > s.
Now (17) is weakly decreasing and (19) is strictly decreasing and can be removed.
The resulting DP problem ({(17)}, R, e) is solved by the dependency graph processor,
since the estimated dependency graph has no cycle anymore.

Now our technique for termination is nearly as powerful as the one for inner-
most termination. The remaining difference between termination and innermost
termination proofs is that the innermost dependency graph is a subgraph of the
dependency graph and may have fewer cycles. Moreover, in Section 5 we will see
that the conditions for applying dependency pair transformations are less restrictive
for innermost termination than for termination. Moreover, for termination, we use
Cε-compatible quasi-orders, which is not necessary for innermost termination.
Hence, in general, innermost termination is still easier to prove than termination,
but the difference has become much smaller.

4 Improving Termination Proofs by Argument Filtering

Now we introduce a further improvement for both termination and innermost
termination proofs in order to reduce the usable rules (and hence, the resulting
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constraints) further. The idea is to apply the argument filtering first and to determine
the usable rules afterwards. The advantage is that after the argument filtering, some
symbols g may have been eliminated from the right-hand sides of dependency pairs
and thus, the g-rules do not have to be included in the usable rules anymore.
Moreover, if f ’s rules are usable and f calls a function g, then up to now g’s rules
are also considered usable. However, if all calls of g are only on positions that are
eliminated by the argument filtering, now also g’s rules are not considered usable
anymore.

However, for collapsing argument filterings this refinement is not sound. Consider
the following non-innermost terminating TRS.

f(s(x))→ f(double(x)) double(0)→0 double(s(x))→s(s(double(x)))

In the SCC {F(s(x))→F(double(x))}, we can use the filtering π(double) = 1,
which results in {F(s(x)) → F(x)}. Since the filtered dependency pair contains no
defined symbols, we would conclude that the SCC has no usable rules. Then we could
easily orient the only resulting constraint F(s(x)) 	 F(x) for this SCC and falsely
prove (innermost) termination. Note that the elimination of double in F(double(x))

is due not to the outer symbol F but to a collapsing argument filtering for double
itself. For that reason, a defined symbol like double may be ignored only when
constructing the usable rules, if all its occurrences are in positions that are filtered
away by the function symbols above them. To capture this formally, we define the
regarded positions w.r.t. an argument filtering. In this definition, collapsing argument
filterings with π( f ) = i are treated in the same way as filterings of the form π( f ) = [i].

Definition 20 (Regarded Positions) Let π be an argument filtering. For an n-ary
function symbol f , the set rpπ ( f ) of regarded positions is {i} if π( f ) = i, and it is
{i1, . . . , im} if π( f ) = [i1, . . . , im].

Hence, if π(F) = [1] or π(F) = 1, then rpπ (F) = {1}. Now we can define the usable
rules w.r.t. an argument filtering. For a term like F(double(x)), the rules for all
symbols on regarded positions are considered usable. Thus, if rpπ (F) = {1}, then the
double-rules are usable.

Definition 21 (Usable Rules w.r.t. Argument Filtering) For f ∈ F , let R′ denote
R\RlsR( f ). For any argument filtering π , we define the following.

– UR(x, π) = ∅ for x ∈ V and
– UR( f (t1, . . . , tn), π) = RlsR( f ) ∪ ⋃

l→r∈RlsR( f ) UR′(r, π)

∪ ⋃
i∈rpπ ( f ) UR′(ti, π)

For any TRS P , we define UR(P, π) = ⋃
s→t∈P UR(t, π).

Obviously, this new definition of usable rules improves upon the previous one of
Definition 10; that is UR(t, π) ⊆ UR(t) for any term t.
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Example 22 We illustrate the new definition of usable rules with the following TRS
of [27] for list reversal.

rev(nil) → nil

rev(cons(x, l)) → cons(rev1(x, l), rev2(x, l))

rev1(x,nil) → x

rev1(x, cons(y, l)) → rev1(y, l)

rev2(x,nil) → nil

rev2(x, cons(y, l)) → rev(cons(x, rev(rev2(y, l))))

For the SCC P containing the dependency pair REV2(x, cons(y, l)) → REV(cons(x,

rev(rev2(y, l)))), up to now all rules were usable, since rev and rev2 occur in the right-
hand side and the function rev calls rev1. In contrast, if one uses an argument filtering
with π(cons) = [2], then with our new definition of usable rules from Definition 21,
the rev1-rules are no longer usable, since rev1 is not in right-hand sides of filtered
rev-rules. This reduction of the set of usable rules is crucial for the success of the
(innermost) termination proof with dependency pairs, cf. Example 27.

The following lemma is needed to show that one may replace UR(P) by UR(P, π)

in innermost termination proofs.

Lemma 23 (Properties of Usable Rules) Let R be a TRS, let π be an argument
filtering, and let σ be a normal substitution (i.e., σ(x) is in normal form for all x ∈ V).
For all terms t, v we have the following:

(a) If tσ i→R v, then π(tσ) = π(v) or π(tσ) →π(UR(t,π)) π(v). Moreover, there is a
term u and a normal substitution σ ′ such that v = uσ ′ and UR(u, π) ⊆ UR(t, π).

(b) If tσ i→∗
R v, then π(tσ) →∗

π(UR(t,π))
π(v).

Proof

(a) We perform induction on the position of the reduction. This position must be
in t because σ is normal. So t has the form f (t1, ..., tn).
If the reduction is on the root position, then we have tσ = lσ ′ i→R rσ ′ = v,
where l → r ∈ RlsR( f ) ⊆ UR(t, π) and thus π(l) → π(r) ∈ π(UR(t, π)). Let
σ ′

π be the substitution with σ ′
π (x) = π(σ ′(x)) for all x ∈ V . Then, π(tσ) =

π(l)σ ′
π →π(UR(t,π)) π(r)σ ′

π = π(v). Moreover, σ ′ is a normal substitution be-
cause of the innermost strategy, and by defining u = r we obtain v = uσ ′. We
have UR(u, π) = UR(r, π) ⊆ RlsR( f ) ∪ ⋃

l′→r′∈RlsR( f ) UR′(r′, π) ⊆ UR(t, π).
Otherwise, tσ = f (t1σ . . . tiσ . . . tnσ)→R f (t1σ . . . vi . . . tnσ)=v, where tiσ →R
vi. If π(tσ) �= π(v), then i ∈ rpπ ( f ). The induction hypothesis implies π(tiσ)

→π(UR(ti,π)) π(vi) and thus, π(tσ) →π(UR(ti,π)) π(v). As UR(ti, π)⊆ RlsR( f ) ∪⋃
l′→r′∈RlsR( f ) UR′(r′, π) ∪ UR′(ti, π) ⊆ UR(t, π), we also have π(tσ) →π(UR(t,π))

π(v).
By the induction hypothesis there is some term ui and some normal substitution
σi with vi = uiσi. Let u′

i result from ui by replacing its variables x by correspond-
ing fresh variables x′. We define σ ′(x′) = σi(x) for all these fresh variables and
σ ′(x) = σ(x) for all x ∈ V(t). Then for u = f (t1 . . . u′

i . . . tn) we obtain v = uσ ′.
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Obviously, we have UR(u′
i, π) = UR(ui, π), and the induction hypothesis im-

plies UR(ui, π) ⊆ UR(ti, π). As UR(ti, π) ⊆ UR(t, π) (see above), we also have
UR(u′

i, π) ⊆ UR(t, π). Since UR(u, π) differs from UR(t, π) only by containing
UR′(u′

i, π) instead of UR′(ti, π) and since UR′(u′
i, π) ⊆ UR(u′

i, π) ⊆ UR(t, π), we
also obtain UR(u, π) ⊆ UR(t, π).

(b) The claim immediately follows from (a) by induction on the length of the
reduction tσ i→∗

R v. ��

The refinement of coupling the usable rules with argument filterings can be used
for both innermost and full termination proofs. In the previous section we showed
that it suffices for termination proofs if just the usable rules UR(P) are weakly
decreasing. To show that one may replace UR(P) by UR(P, π) here, we define a
new mapping I2 that already incorporates the argument filtering π .

For instance, let � = F \ {rev1} and let π(cons) = [2], π(rev2) = [2].
I2(cons(rev1(x, l), rev2(x, l))) differs from I1(cons(rev1(x, l), rev2(x, l))) by remov-
ing the first arguments of all cons- and rev2-terms. So I1 results in cons(c(rev1(x,

l),d), rev2(x, l)) and I2 yields cons(rev2(l)).

Definition 24 (I2) Let π be a non-collapsing argument filtering, let � ⊆ F , and let
t ∈ T (F ,V) be terminating. We define I2(t):

I2(x)= x for x∈V
I2( f (t1, . . . , tn))= f (I2(ti1), . . . , I2(tim)) for f ∈�,π( f )=[i1, ..., im]
I2(g(t1, . . . , tn))= Comp( {g(I2(ti1), . . . , I2(tim))}

∪ Red2(g(t1, . . . , tn)) ) for g /∈�,π(g)=[i1, ..., im]

where Red2(t) = {I2(t′) | t →R t′}. For every terminating substitution σ , we define
I2(σ ) as I2(σ ) (x) = I2(σ (x)) for all x ∈ V .

Lemma 25 differs from Lemma 16 because I2 already applies the filtering π , and
in (e) we have “∗” instead of “+,” since a reduction on a position that is filtered away
yields the same transformed terms w.r.t. I2.

Lemma 25 (Properties of I2) Let π be a non-collapsing filtering, and let � ⊆ F such
that f ∈ � implies g ∈ � whenever there is a rule l → r ∈ RlsR( f ) such that g occurs
in π(r). Let t, s, tσ ∈ T (F ,V) be terminating, and let σ be a terminating substitution.

(a) If π(t) ∈ T (�π,V) then I2(tσ) = π(t)I2(σ ).
(b) I2(tσ) →∗

Cε
π(t)I2(σ ).

(c) If t →{l→r} s by a root reduction step where l → r ∈ R and root(l) ∈ �, then
I2(t) →+

{π(l)→π(r)}∪Cε
I2(s).

(d) If t →R s with root(t) �∈ �, then I2(t) →+
Cε

I2(s).
(e) If t →{l→r} s where l → r ∈ R, then I2(t) →∗

{π(l)→π(r)}∪Cε
I2(s) if root(l) ∈ � and

I2(t) →∗
Cε

I2(s) otherwise.

Proof The proof is analogous to the proof of Lemma 16. As in Lemma 16, the
condition on � in the prerequisites of Lemma 25 is needed for (c). ��
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Now we can refine the processor of Theorem 17 to the following one where the
set of usable rules is reduced significantly.

Theorem 26 (Reduction Pair Processor Based on Filtering) Let (�,	) be a reduction
pair and let π be an argument filtering. Then the following processor Proc is sound and
complete. Here, Proc( (P,R, e) ) =
– {(P \ P	π

,R, e)}, if the following conditions (a) and (b) hold:

(a) P	π
∪ P�π

= P and P	π
�= ∅

(b) either e = t and R�π
⊇ UR(P, π) and � is Cε-compatible

or e = i and R�π
⊇ UR(P, π)

– {(P,R, e)}, otherwise

Proof Again, P \ P	π
⊆ P implies completeness. For soundness, we first regard the

case e = i. If (P,R, i) is not finite, then there is an infinite innermost (P,R)-chain
s1 → t1, s2 → t2, . . . So we have tiσ i→∗

R si+1σ , where all siσ are in normal form. By
Lemma 23 (b), we obtain π(tiσ) →∗

π(UR(P,π))
π(si+1σ). All rules of UR(P, π) are

decreasing w.r.t. �π , and thus all rules of π(UR(P, π)) are decreasing w.r.t. �. This
implies π(tiσ) � π(si+1σ), that is, tiσ �π si+1σ . Since P	π

∪ P�π
= P , pairs of P	π

cannot occur infinitely often in the chain.
Now we prove soundness for e = t. If (P,R, t) is not finite, then there is a minimal

infinite (P,R)-chain s1 → t1, s2 → t2, . . . with tiσ →∗
R si+1σ .

Let π ′ be the non-collapsing variant of π where π ′( f ) = π( f ) if π( f ) = [i1, . . . , ik]
and π ′( f ) = [i] if π( f ) = i. Let � be the usable symbols w.r.t. π ′ of P . So �

is the smallest set of function symbols such that � contains all function sym-
bols occurring in right-hand sides of π ′(P) and f ∈ � implies g ∈ � whenever
there is a rule l → r ∈ RlsR( f ) such that g occurs in π ′(r). Thus, π ′(UR(P, π ′)) =
π ′(RlsR(�)). Note that by definition we have UR(P, π ′) = UR(P, π). Then similar to
the proof of Theorem 17, tiσ →∗

R si+1σ implies π ′(ti)I2(σ ) = I2(tiσ) →∗
π ′(UR(P,π))∪Cε

I2(si+1σ) →∗
Cε

π ′(si+1)I2(σ ) by Lemma 25 (a), (e), (b). So π ′(s1) → π ′(t1), π ′(s2) →
π ′(t2), . . . is an infinite (π ′(P), π ′(UR(P, π)) ∪ Cε)-chain.

Now we show that in this chain, pairs from π ′(P	π
) cannot occur infinitely often.

Thus, there is an n ≥ 0 such that all si → ti with i ≥ n are from P \ P	π
. Then

sn → tn, sn+1 → tn+1, . . . is a minimal infinite (P \ P	π
, R)-chain, and thus (P \

P	π
,R, t) is not finite either.

To show that pairs from π ′(P	π
) cannot occur infinitely often in the (π ′(P),

π ′(UR(P, π)) ∪ Cε)-chain π ′(s1) → π ′(t1), π ′(s2) → π ′(t2), . . . , let π ′′ be the argu-
ment filtering for the signature Fπ ′ which only performs the collapsing steps of π

(i.e., if π( f ) = i and thus π ′( f ) = [i], we have π ′′( f ) = 1). All other symbols of Fπ ′

are not filtered by π ′′. Hence, π = π ′′ ◦ π ′. We extend π ′′ to the new symbol c by
defining π ′′(c) = [1, 2]. Hence, Cε-compatibility of � implies Cε-compatibility of �π ′′ .

Now regard the reduction pair (�π ′′ , 	π ′′). For all terms s and t, the constraint
“s	π t” implies that the rule π ′(s)→π ′(t) is strictly decreasing (i.e., π ′(s) 	π ′′ π ′(t))
and the constraint “s �π t” implies that the rule π ′(s) → π ′(t) is weakly decreas-
ing (i.e., π ′(s) �π ′′ π ′(t)). Thus by (a), the pairs of π ′(P	π

) are strictly decreasing
and by (b), all remaining pairs of π ′(P) and all rules of π ′(UR(P, π)) ∪ Cε are
weakly decreasing w.r.t. the reduction pair (	π ′′ , �π ′′). Thus, the chain π ′(s1) →
π ′(t1), π ′(s2) → π ′(t2), . . . contains only finitely many pairs from π ′(P	π

). ��



Mechanizing and improving dependency pairs 175

Example 27 The TRS R for list reversal from Example 22 shows the advantages of
Theorem 26. The dependency graph processor decomposes the initial DP problem
(DP(R),R, e) into ({(20)}, R, e) and ({(21)–(24)}, R, e) where (20)–(24) are the
following dependency pairs.

REV1(x, cons(y, l)) → REV1(y, l) (20)

REV(cons(x, l)) → REV2(x, l) (21)

REV2(x, cons(y, l)) → REV(cons(x, rev(rev2(y, l)))) (22)

REV2(x, cons(y, l)) → REV(rev2(y, l)) (23)

REV2(x, cons(y, l)) → REV2(y, l) (24)

Since {(20)} has no usable rules, already the reduction pair processor of Theorem 17
requires only to make the dependency pair (20) strictly decreasing. For example,
this is possible by using an argument filtering with π(REV1) = 2 and the embedding
order. The resulting DP problem (∅,R, e) is then removed by the dependency graph
processor.

However, when proving (innermost) termination with Theorem 17, for the prob-
lem ({(21)–(24)}, R, e) we obtain inequalities from the dependency pairs and π(l) �
π(r) for all rules l → r, since all rules are usable. But with standard reduction pairs
based on RPOS, KBO, or polynomial orders, these constraints are not satisfiable for
any argument filtering [14]. In contrast, with Theorem 26 we can use the filtering
π(cons) = [2], π(REV) = π(rev) = 1, and π(REV1) = π(REV2) = π(rev2) = 2 to-
gether with the embedding order. Now we obtain no constraints from the rev1-rules,
cf. Example 22. Then the filtered dependency pairs (21), (23) and (24) are strictly
decreasing and the filtered pair (22) and all filtered usable rules are at least weakly
decreasing. Thus, the reduction pair processor of Theorem 26 results in the DP
problem ({(22)}, R, e) which is again removed by the dependency graph processor.

5 Transforming Dependency Pairs

In order to increase the power of the dependency pair technique, a dependency
pair may be transformed into new pairs. Section 5.1 introduces improved versions
of these transformations that permit a combination with our new results from the
previous sections. Then in Section 5.2, we discuss a heuristic in order to mechanize
these transformations in practice.

5.1 Improving Dependency Pair Transformations

In [1, 11], techniques were presented to modify dependency pairs by narrowing,
rewriting, and instantiation. This approach is often crucial for the success of a
termination proof. The basic idea of narrowing and rewriting is the following: if there
is a chain s → t, v → w, where tσ →∗

R vσ implies that tσ must be rewritten at least
one step before it reaches vσ , then these transformations perform this reduction step
directly on the pair s → t. The rewriting technique can be used only for innermost
termination. Here, the right-hand side t must contain a redex. Then one may rewrite
this redex, even if t contains other redexes as well. In contrast, for the narrowing
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transformation, one has to build all narrowings of t instead of doing just one rewrite
step. A term t′ is an R-narrowing of t with mgu μ if a subterm t|p /∈ V of t unifies
with the left-hand side of a (variable-renamed) rule l → r ∈ R with mgu μ, and
t′ = t[r]p μ. Now s → t can be replaced by all narrowings sμ → t′.

The idea of the instantiation technique is to examine all pairs v → w that precede
s → t in chains. Here, we analyze what “skeleton” w′ of w remains unchanged when
we reduce wσ to sσ . Then sσ must also be of this form; that is, w′ and s unify.
This idea was already used in E(I)DG (Definition 9), where w′ is computed by the
functions capR and ren and where one only draws an arc from v → w to s → t if w′
and s unify with some mgu μ. Then wσ →∗

R sσ implies that σ is an instance of μ.
Hence, the instantiation transformation replaces s → t by sμ → tμ.

The following definition improves the transformations of [1, 11]. Moreover, we
introduce a new forward instantiation technique. Here, we consider all pairs v →
w that follow s → t in chains. For each such v → w we have tσ →∗

R vσ , that is,
vσ →∗

R−1 tσ . Now we compute the mgu between t and a skeleton of v. However,
since the R-reduction goes from an instantiation of t to an instantiation of v and not
the other way around, the skeleton of v is not constructed with capR, but with the
function cap−1

R . For any set of non-collapsing rules R′ ⊆ R, let cap−1
R′(v) result from

replacing all subterms of v whose root is from {root(r) | l → r ∈ R′} by different fresh
variables. If R′ is collapsing, then cap−1

R′(v) is a fresh variable. As usual, a rule l → r is
collapsing if r ∈ V . The modifications cap−1

R and cap−1
UR(t) were originally introduced

in [25, 35, E(I)DG∗] in order to improve the estimation of (innermost) dependency
graphs. Thus, while the instantiation transformation is influenced by the E(I)DG-
estimation, the new forward instantiation is influenced by the E(I)DG∗-estimation.

Definition 28 (Transformation Processors) Let P ′ = P � {s → t}.

(a) For (P ′,R, e), the narrowing processor Procn returns

– {(P ∪ {sμ1 → t1, . . . , sμn → tn},R, e)}, if either of the following occur:

- e = t and t1, . . . , tn are all R-narrowings of t with mgu’s μ1, . . . , μn and
t does not unify with (variable-renamed) left-hand sides of pairs in P ′.
Moreover, t must be linear.

- e = i and t1, . . . , tn are all R-narrowings of t with the mgu’s μ1, . . . , μn

such that sμi is in normal form. Moreover, for all v → w ∈ P ′ where t
unifies with the (variable-renamed) left-hand side v by a mgu μ, one of
the terms sμ or vμ must not be in normal form.

– {(P ′,R, e)}, otherwise.

(b) For (P ′,R, e), the rewriting processor Procr returns

– {(P ∪ {s → t′},R, e)}, if e = i, UR(t|p) is non-overlapping, and t →R t′,
where p is the position of the redex.

– {(P ′,R, e)}, otherwise.

(c) For (P ′,R, e), the instantiation processor Proci returns

– {(P ∪ {sμ→ tμ | μ=mgu(ren(capR(w)), s), v→w ∈ P ′},R, e)},
if e = t
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– {(P ∪ {sμ→ tμ | μ=mgu(capR(w), s), v→w∈P ′, sμ, vμnormal},R, e)},
if e = i

(d) For (P ′,R, e), the forward instantiation processor Procf returns

– {(P ∪ {sμ → tμ | μ = mgu(ren(cap−1
R (v)), t), v → w ∈ P ′},R, e)},

if e = t
– {(P ∪ {sμ → tμ | μ = mgu(ren(cap−1

UR(t)(v)), t), v → w ∈ P ′},R, e)},
if e = i

Example 29 shows the advantage of the new forward instantiation technique.

Example 29 Without forward instantiation, termination of the TRS {f(x, y, z) →
g(x, y, z), g(0,1, x) → f(x, x, x)} cannot be shown by any Cε-compatible reduction
pair. The instantiation processor is useless here because, in chains v → w, s → t,
the mgu of ren(capR(w)) and s does not modify s. But the forward instantiation
processor instantiates F(x, y, z) → G(x, y, z) to F(0,1, z) → G(0,1, z). The reason
is that in the chain F(x, y, z) → G(x, y, z), G(0,1, x′) → F(x′, x′, x′), the mgu of
ren(cap−1

R (G(0,1, x′))) = G(0,1, x′′) and G(x, y, z) is [x/0, y/1, x′′/z]. Now the ter-
mination proof succeeds because the dependency graph has no cycle (as detected by
the EDG∗-estimation of [25, 35]).

In addition to forward instantiation, Definition 28 also extends the existing
narrowing, rewriting, and instantiation transformations [1, 11] by permitting their
application for slightly more TRSs if e= i. In [11], narrowing s → t was not permitted
if t unifies with the left-hand side of a dependency pair, whereas now this is possible
under certain conditions. Rewriting dependency pairs was allowed only if all usable
rules for the current cycle were non-overlapping, whereas now this is required only
for the usable rules of the redex to be rewritten. Moreover, for both instantiation
and narrowing, now one has to consider only instantiations that turn left-hand sides
of dependency pairs into normal forms.

However, while these liberalized applicability conditions only have a minor
impact, the most important improvement of Definition 28 over [1, 11] is that now
the transformations are formulated within the DP framework and that they now
work for minimal instead of ordinary chains of dependency pairs. This is needed
to combine the transformations with the improvements of Section 3 and 4 that
require the consideration of minimal chains. Moreover, because of the formulation
as processors, transformations can now be applied at any time during a termination
proof.

Before proving soundness and completeness, Example 30 illustrates that transfor-
mations are often crucial for the success of the proof.

Example 30 The following alternative TRS for division is from [2].

le(0, y) → true div(x, s(y)) → if(le(s(y), x), x, s(y))

le(s(x),0) → false if(true, x, y) → s(div(minus(x, y), y))

le(s(x), s(y)) → le(x, y) if(false, x, y) → 0
minus(x,0) → x

minus(s(x), s(y)) → minus(x, y)
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Without transformations, no simplification order satisfies Theorem 26’s con-
straints for innermost termination of the following SCC [14].

DIV(x, s(y)) → IF(le(s(y), x), x, s(y)) (25)

IF(true, x, y) → DIV(minus(x, y), y) (26)

But when transforming the dependency pairs, the resulting constraints can easily be
satisfied. Intuitively, x 	 minus(x, y) has to be required only if le(s(y), x) reduces
to true. This argumentation can be simulated by using the transformations of
Definition 28. By narrowing, we perform a case analysis on how the le-term in (25)
can be evaluated. In the first narrowing, x is instantiated by 0. The result is a pair
DIV(0, s(y))→ IF(false,0, s(y)), which is not in a cycle. The other narrowing is

DIV(s(x), s(y)) → IF(le(y, x), s(x), s(y)), (27)

which forms an SCC with (26). Now we perform instantiation of (26) and see that x
and y must be of the form s(. . .). So (26) is replaced by

IF(true, s(x), s(y)) → DIV(minus(s(x), s(y)), s(y)), (28)

which forms an SCC with (27). Finally, by rewriting (28), we obtain

IF(true, s(x), s(y)) → DIV(minus(x, y), s(y)). (29)

The constraints of the resulting SCC {(27), (29)} (and all other SCCs) are solved by
π(minus)=π(DIV)=1, π(IF)=2, and the embedding order.

Theorem 31 states that the transformations in Definition 28 are sound, and it gives
conditions under which they are also complete. A counterexample that shows that
Procn is not complete in general is [1, Example 43].

Theorem 31 (Sound- and Completeness) Procn, Procr, Proci, and Procf are sound.
Moreover, Procr, Proci, and Procf are also complete.7 Procn is not complete in
general, but it is complete for DP problems (P,R, e) where e = t or where UR(P) is
non-overlapping.

Proof

Soundness of Procn

First let e = t. We show that for every minimal (P ′,R)-chain “. . . , v1 → w1, s → t,
v2 → w2, . . . ,” there is a narrowing t′ of t with the mgu μ such that “. . . , v1 → w1,

sμ → t′, v2 → w2, . . .” is also a minimal chain. Here, s → t may also be the first
pair (i.e., v1 → w1 may be missing). Then all occurrences of s → t in a chain may
be replaced by pairs from {sμ1 → t1, . . . , sμn → tn}. Hence, every infinite minimal

7Related proofs for previous versions of the transformations can be found in [1, 11]. But in contrast
to [1, 11], now we regard these techniques within the DP framework, we use them to prove absence
of minimal chains, and we have more liberal applicability conditions. Furthermore, the forward
instantiation technique is completely new (its soundness proof builds on proof ideas for the E(I)DG∗-
approximation of [25, 35]).



Mechanizing and improving dependency pairs 179

(P ′,R)-chain results in an infinite minimal (P ∪ {sμ1 → t1, . . . , sμn → tn},R)-chain.
Thus, if (P ∪ {sμ1 → t1, . . . , sμn → tn},R) is finite, then so is (P ′,R).

If “. . . , v1 → w1, s → t, v2 → w2, . . .” is a minimal chain, then there must be a
substitution such that

(t1) every instantiated right-hand side reduces to the instantiated left-hand side of
the next pair in the chain and

(t2) all instantiated right-hand sides are terminating w.r.t. R.

Let σ be a substitution satisfying (t1) and (t2) where the reduction tσ →∗
R v2σ has

minimal length. Note that tσ �= v2σ as t and v2 do not unify. Hence, we have tσ →R
q →∗

R v2σ for some term q.
First, we assume that the reduction tσ →R q takes place “in σ”. Hence, t|p = x

for some position p such that σ(x) →R r and q = t[r]p. The variable x occurs only
once in t (as t is linear), and therefore q = tσ ′ for the substitution σ ′ with σ ′(x) = r
and σ ′(y) = σ(y) for all variables y �= x. As all (occurrences of) pairs in the chain are
variable disjoint, σ ′ behaves like σ for all pairs except s → t. Here, we have

w1σ
′ = w1σ →∗

R sσ →∗
R sσ ′ and tσ ′ = q →∗

R v2σ = v2σ
′.

Hence, σ ′ satisfies (t1), and it satisfies (t2) as well because tσ ′ = q is terminating.
But as the reduction tσ ′ →∗

R v2σ
′ is shorter than the reduction tσ →∗

R v2σ , this is a
contradiction to the definition of σ .

So the reduction tσ →R q cannot take place “in σ”. Hence, there is a sub-
term t|p /∈ V such that a rule l → r has been applied to t|pσ (i.e., lρ = t|pσ for some
matcher ρ). Hence, the reduction has the form

tσ = tσ [t|pσ ]p = tσ [lρ]p →R tσ [rρ]p = q.

We assume that V(l) are fresh variables. Then we extend σ to “behave” like ρ on
V(l) (but it remains the same on all other variables). Now σ unifies l and t|p. Hence,
there is also an mgu μ with σ =μτ for some τ .

Let t′ be tμ[rμ]p. Then t narrows to t′ with the mgu μ. As we may assume sμ → t′
to be variable disjoint from all other pairs, we can extend σ to behave like τ on the
variables of sμ and t′. Then we have

w1σ →∗
R sσ = sμτ = sμσ and

t′σ = t′τ = tμτ [rμτ ]p = tσ [rσ ]p = tσ [rρ]p = q →∗
R v2σ.

Hence, “. . . , v1 → w1, sμ → t′, v2 → w2, . . .” is also a chain that is minimal, since
t′σ = q is terminating.

Now we regard the case e = i. Here, we prove that for every minimal innermost
(P ′,R)-chain “. . . , v1 → w1, s → t, v2 → w2, . . . ”, there exists a narrowing t′ of t
with the mgu μ such that sμ is in normal form and such that “. . . , v1 → w1, sμ →
t′, v2 → w2, . . .” is a minimal innermost chain as well. There must be a substitution σ

such that

(i1) every instantiated right-hand side reduces innermost to the instantiated left-
hand side of the next pair in the chain,

(i2) all instantiated left-hand sides are normal forms, and
(i3) all instantiated right-hand sides terminate innermost w.r.t. R.
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Note that tσ �= v2σ . Otherwise σ would unify t and v2, where both sσ and v2σ are
normal forms. Hence, tσ i→R q i→∗

R v2σ for some term q.

The reduction tσ
i→R q cannot take place “in σ”, because V(t) ⊆ V(s). Hence,

then sσ would not be a normal form, which violates (i2). The remainder of the proof
is completely analogous to the case e = t.

Completeness of Procn

We first regard e = t. Let (P ∪ {sμ1 → t1, . . . , sμn → tn},R, t) be infinite. If R is not
terminating, then trivially (P ′,R, t) is infinite as well. Otherwise, we show that any
infinite (P ∪ {sμ1 → t1, . . . , sμn → tn},R)-chain can be transformed into an infinite
(P ′,R)-chain. (Now all chains are minimal, since R is terminating.)

To this end, we prove that if “. . . , v1 → w1, sμ → t′, v2 → w2, . . .” is a chain where
t narrows to t′ with the mgu μ, then “. . . , v1 → w1, s → t, v2 → w2, . . .” is a chain as
well. There is a substitution σ satisfying (t1). So in particular we have

w1σ →∗
R sμσ and t′σ →∗

R v2σ.

Since the variables in s → t are disjoint from all other variables, we may extend σ

to behave like μσ on V(s). Then sσ = sμσ , and hence

w1σ →∗
R sσ. (30)

Moreover, by the definition of narrowing, we have tμ →R t′. This implies tμσ →R
t′σ and as tσ = tμσ , we obtain

tσ →R t′σ →∗
R v2σ. (31)

Hence, “. . . , v1 → w1, s → t, v2 → w2, . . .” is also a chain.
Now we show completeness for e = i if UR(P) is non-overlapping. Again, the non-

trivial case is if R is innermost terminating. We show that if “. . . , v1 → w1, sμ → t′,
v2 → w2, . . .” is an innermost chain, where t narrows to t′ with mgu μ, then “. . . , v1 →
w1, s → t, v2 → w2, . . .” is an innermost chain as well. There is a substitution σ

satisfying (i1) and (i2). Analogous to (30) and (31) in the termination case, one
obtains w1σ

i→∗
R sσ and tσ →R t′σ i→∗

R v2σ where v2σ is a normal form by (i2).
Since R is innermost terminating, repeated application of innermost reduction steps
to tσ also yields some normal form q, that is, tσ i→∗

R q. Note that all rules used in any
reduction of tσ are from UR(P). So tσ is weakly innermost terminating w.r.t. UR(P).
Since UR(P) is non-overlapping, tσ is terminating and confluent w.r.t. UR(P) by [21,
Theorem 3.2.11] and thus w.r.t. R as well. This implies that tσ only has a unique
normal form q = v2σ , i.e., tσ i→∗

R v2σ . Thus, “. . . , v1 → w1, s → t, v2 → w2, . . .” is
also an innermost chain.

Soundness of Procr

We show that if “. . . , s → t, v → w, . . .” is a minimal innermost (P ′,R)-chain, then
“. . . , s → t′, v → w, . . .” is a minimal innermost chain as well. There must be a σ with
tσ = tσ [t|pσ ]p

i→∗
R tσ [q]p

i→∗
R vσ , where t|pσ

i→∗
R q, the terms q and vσ are normal

forms, and all instantiated right-hand sides (like tσ ) are innermost terminating.
We proceed as in the completeness proof of Procn in the case e = i. All rules

applicable in a reduction of t|pσ are contained in UR(t|p). Since t|pσ is weakly
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innermost terminating and UR(t|p) is non-overlapping, by [21, Theorem 3.2.11] t|pσ

is confluent and terminating. Note that t′ = t[r]p where t|p →R r for some term
r. Hence, t|pσ →R rσ and thus, rσ is terminating as well. Thus, it also reduces
innermost to some normal form q′. Now confluence of t|pσ implies q = q′. Hence,
t′σ = tσ [rσ ]p

i→∗
R tσ [q]p

i→∗
R vσ . Therefore, “. . . , s → t′, v → w, . . .” is an inner-

most chain, too. Moreover, the innermost chain is minimal, since t′σ is innermost
terminating. The reason is that w.l.o.g., every infinite reduction of t′σ starts with
reducing the subterm at position p, that is, with t′σ = tσ [rσ ]p

i→∗
R tσ [q]p. However,

tσ [q]p is innermost terminating, since tσ is innermost terminating and since tσ i→∗
R

tσ [q]p.

Completeness of Procr

If R is not innermost terminating, then completeness is again trivial. Otherwise, we
show that if “. . . , s → t′, v → w, . . .” is an innermost chain, then so is “. . . , s → t,
v → w, . . .”. Note that t′ = t[r]p where t|p →R r for some r. There must be a σ with
t′σ = tσ [rσ ]p

i→∗
R tσ [q]p

i→∗
R vσ where rσ i→∗

R q and the terms q and vσ are normal
forms.

Again, all rules applicable in a reduction of t|pσ are contained in UR(t|p).
Since t|pσ is weakly innermost terminating and UR(t|p) is non-overlapping, t|pσ is
terminating and confluent [21, Theorem 3.2.11]. Thus, the only normal form of t|pσ is
q. Hence, this normal form can also be reached by innermost reductions. This implies
tσ = tσ [t|pσ ]p

i→∗
R tσ [q]p

i→∗
R vσ . So “. . . , s → t, v → w, . . .” is an innermost chain,

too.

Soundness of Proci

We first regard e = t and show that if “. . . , v1 → w1, s → t, v2 → w2, . . .” is a minimal
chain, then “. . . , v1 → w1, sμ → tμ, v2 → w2, . . .” is also a minimal chain, where μ =
mgu(ren(capR(w1)), s).

Let w1 have the form C[p1, . . . , pn], where the context C contains no defined
symbols or variables and all pi have a defined root symbol or they are variables.
There is a substitution σ satisfying (t1) and (t2). Then sσ = C[q1, . . . , qn] for some
terms qi with piσ →∗

R qi.
We have ren(capR(w1)) = C[y1, . . . , yn], where the yi are fresh variables. Let σ ′

be the modification of σ such that σ ′(yi) = qi. Then ren(capR(w1))σ
′ = sσ = sσ ′,

namely, ren(capR(w1)) and s unify. Let μ = mgu(ren(capR(w1)), s). Thus, σ ′ =μτ

for some substitution τ . As the variables of all (occurrences of all) pairs may
be assumed disjoint, we may modify σ to behave like τ on the variables of
sμ → tμ. Then w1σ →∗

R sσ = sσ ′ = sμτ = sμσ and tμσ = tμτ = tσ →∗
R v2σ . Thus,

“. . . , v1 → w1, sμ → tμ, v2 → w2, . . .” is a chain, too. Moreover, since tσ is terminat-
ing and tμσ = tσ , the chain is minimal as well.

In this way, one can replace all occurrences of s → t in chains by instantiated
pairs sμ → tμ, except for the first pair in the chain. However, if s → t, v1 → w1, v2 →
w2, . . . is an infinite minimal chain, then so is v1 → w1, v2 → w2, . . . Thus, by deleting
the possibly remaining first occurrence of s → t in the end, every infinite minimal
(P ′,R)-chain can indeed be transformed into an infinite minimal chain that contains
only instantiations of s → t.
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Now we regard e = i. Let “. . . , v1 → w1, s → t, v2 → w2, . . .” be a minimal inner-
most chain. We show that then “. . . , v1 → w1, sμ → tμ, v2 → w2, . . .” is a minimal
innermost chain as well. Here, we have μ = mgu(capR(w1), s), and sμ and v1μ are in
normal form.

Let w1 have the form C[p1, . . . , pn], where C contains no defined symbols (but
C may contain variables) and all root(pi) are defined. There is a σ satisfying
(i1)–(i3). Then sσ = C[q1, . . . , qn] for some qi with piσ

i→∗
R qi, since σ instantiates

all variables by normal forms.
We have capR(w1) = C[y1, . . . , yn], where the yi are fresh variables. Let σ ′ be the

modification of σ with σ ′(yi) = qi. Then capR(w1)σ
′ = sσ = sσ ′, namely, capR(w1)

and s unify. Let μ = mgu(capR(w1), s). Since sσ and v1σ are normal forms by (i2) and
since μ is more general than σ , sμ and v1μ are normal forms as well. The remainder
is as for e = t.

Completeness of Proci

Again, if R is not (innermost) terminating, completeness is trivial. Otherwise, let
“. . . , sμ → tμ, . . .” be an (innermost) chain. Since different occurrences of pairs may
be assumed variable disjoint, we can extend every substitution σ to behave like μσ

on the variables of s. Then one immediately obtains that “. . . , s → t, . . .” is also an
(innermost) chain.

Soundness of Procf

We first regard e = t and show that if “. . . , v1 → w1, s → t, v2 → w2, . . .” is
a minimal chain, then so is “. . . , v1 → w1, sμ → tμ, v2 → w2, . . .,” where μ =
mgu(ren(cap−1

R (v2)), t). The nontrivial case is if R is not collapsing, since otherwise
μ does not modify s or t.

Let v2 have the form C[p1, . . . , pn], where C contains no root symbols of R’s right-
hand sides or variables and the pi are variables or terms where root(pi) occurs on
root positions of R’s right-hand sides. There is a substitution σ satisfying (t1) and
(t2). Then tσ = C[q1, . . . , qn] for some terms qi with qi →∗

R piσ , that is, piσ →∗
R−1 qi.

We have ren(cap−1
R (v2)) = C[y1, . . . , yn], where the yi are fresh variables. Let

σ ′ be the modification of σ where σ ′(yi) = qi. Then ren(cap−1
R (v2))σ

′ = tσ = tσ ′,
namely, ren(cap−1

R (v2)) and t unify. Let μ = mgu(ren(cap−1
R (v2)), t). The rest is as

in Proci’s soundness proof.
Now we regard e = i. We show that if “. . . , v1 → w1, s → t, v2 → w2, . . .” is a

minimal innermost chain, then so is “. . . , v1 → w1, sμ → tμ, v2 → w2, . . .”, where
μ = mgu(ren(cap−1

UR(t)(v2)), t). Again, we consider only the nontrivial case where
UR(t) is not collapsing.

Let v2 have the form C[p1, . . . , pn], where C and pi are as in the termination case.
There is a substitution σ satisfying (i1)–(i3). The only rules applicable in a reduction
of tσ are from UR(t). Thus, tσ = C[q1, . . . , qn] for some qi with qi

i→∗
UR(t) piσ and

hence, piσ →∗
UR(t)−1 qi.

We have ren(cap−1
UR(t)(v2)) = C[y1, . . . , yn], where the yi are fresh variables. Let

σ ′ be the modification of σ such that σ ′(yi) = qi. Then ren(cap−1
UR(t)(v2))σ

′ = tσ =
tσ ′, namely, ren(cap−1

UR(t)(v2)) and t unify. Let μ = mgu(ren(cap−1
UR(t)(v2)), t). The

remainder of the proof is analogous to the soundness proof of Proci.
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Completeness of Procf

The proof is analogous to the completeness proof of Proci. ��

The following example shows that the processors Procn and Procr are not com-
plete if one considers only those DP problems as “infinite” that are not finite. Instead,
a DP problem (P,R, e) should also be considered “infinite” whenever R is not
(innermost) terminating.

Example 32 For the TRS R = {f(b) → f(g(a)),g(x) → b,a → a}, the dependency
graph processor of Theorem 8 results in the DP problems ({A → A},R, e) and
({F(b) → F(g(a))},R, e). The latter DP problem is finite as F(g(a)) is not terminat-
ing, and thus the pair F(b) → F(g(a)) cannot occur in infinite minimal chains. On the
other hand, applying Procn or Procr to this DP problem leads to a new DP problem
(P ′,R, e), where P ′ contains F(b) → F(b). But since F(b) → F(b) leads to an infinite
minimal chain, the problem (P ′,R, e) is not finite.

5.2 Mechanizing Dependency Pair Transformations

By Theorem 31, the transformations are sound and (under certain conditions)
complete. Then they cannot transform a non-infinite DP problem into an infinite
one, but they may still be disadvantageous. The reason is that transformations may
increase the size of DP problems (and thus, runtimes may increase, too). On the
other hand, transformations are often needed to prove (innermost) termination, as
shown by Example 30.

In practice, the main problem is that these transformations may be applied infi-
nitely many times. For instance, already in our initial Example 1 with the dependency
pair

DIV(s(x), s(y)) → DIV(minus(x, y), s(y)) (3)

we can obtain an infinite sequence of narrowing steps. The DP problem ({(3)}, R, i)
can be narrowed to ({(32), (33)}, R, i) with

DIV(s(x), s(0)) → DIV(x, s(0)) (32)

DIV(s(s(x)), s(s(y))) → DIV(minus(x, y), s(s(y))) (33)

Another narrowing step yields ({(32), (34), (35)}, R, i) with

DIV(s(s(x)), s(s(0))) → DIV(x, s(s(0))) (34)

DIV(s(s(s(x))), s(s(s(y)))) → DIV(minus(x, y), s(s(s(y)))) (35)

Obviously, narrowing can be repeated infinitely many times here, although the DP
problems are finite and the TRS is terminating.

Therefore, we have developed restricted safe transformations that are guaranteed
to terminate. Our experiments in Section 8 show that applying transformations only
in these safe cases is indeed successful in practice. The experiments also demonstrate
that this is clearly advantageous to the alternative straightforward heuristic that
simply applies transformations a fixed number of times.
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A narrowing, instantiation, or forward instantiation step is safe if it reduces
the number of pairs in SCCs of the estimated (innermost) dependency graph. Let
SCC(P) be the set of SCCs built from the pairs in P . Then the transformation is safe
if | ⋃S∈SCC(P) S| decreases. So the forward instantiation in Example 29 was safe, since
the estimated dependency graph had an SCC before, but not afterwards. Moreover,
a transformation step is also considered safe if, by this step, all descendants of an
original dependency pair disappear from SCCs. For every pair s→ t, o(s→ t) denotes
an original dependency pair whose repeated transformation led to s→ t. Now a trans-
formation is also safe if {o(s→ t) | s→ t ∈ ⋃

S∈SCC(P) S} decreases. Finally, for each
pair that was not narrowed yet, one single narrowing step that does not satisfy the
above requirements is also considered safe. The benefits of this are demonstrated by
our experiments in Section 8. We use a similar condition for instantiation and forward
instantiation, where for forward instantiation, we require that the transformation
may yield only one new pair. So the narrowing and instantiation steps in Example 30
were safe as well.

The rewriting transformation may be applied without any restriction provided that
the rules used for (innermost) rewriting are (innermost) terminating. Therefore, one
should consider the recursion hierarchy in termination proofs. A symbol f depends
on the symbol h ( f ≥d h) if f = h or if some symbol g occurs in the right-hand side
of an f -rule where g depends on h. Note that ≥d also corresponds to the definition
of usable rules in Definition 10, since UR( f (x1, . . . , xn)) consists of RlsR(g) for all
f ≥d g. We define >d = ≥d \ ≤d. For example, the div- and if-rules depend on the
minus-and le-rules in Example 30. If one has to solve two DP problems (P1,R, e) and
(P2,R, e) where there exist l�1 → r�

1 ∈ P1 and l�2 → r�

2 ∈ P2 with root(l1) >d root(l2),
then it is advantageous to treat (P2,R, e) before (P1,R, e). In other words, in
Example 30 one should solve the DP problems for minus and le before handling the
DP problem of div and if. Then innermost termination of minus is already verified
when proving innermost termination of div, and therefore innermost rewriting the
DIV-dependency pair with the minus-rules is guaranteed to terminate. Thus, the
rewrite step from (28) to (29) was safe.

Definition 33 (Safe Transformations) Let Q result from the set P by transforming
s→ t ∈ P as in Definition 28. The transformation is safe if

(1) s → t was transformed by Procn, Proci, or Procf and

– | ⋃S∈SCC(P) S| > |⋃S∈SCC(Q) S|, or
–

{
o(s→ t) | s→ t ∈ ⋃

S∈SCC(P) S
}

�

{
o(s→ t) | s→ t ∈ ⋃

S∈SCC(Q) S
}

(2) s → t was transformed by innermost rewriting and UR(P) is innermost
terminating

(3) s → t was transformed by narrowing and all previous steps that transformed
o(s → t) to s → t were not narrowing steps

(4) s → t was transformed by instantiation and all previous steps that transformed
o(s → t) to s → t were not instantiation steps

(5) s → t was transformed by forward instantiation, there is only one pair v → w

where ren(cap−1
R (v)) and t (resp. ren(cap−1

UR(t)(v)) and t) are unifiable, and all
previous steps that transformed o(s→ t) to s→ t were not forward instantiation
steps
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Theorem 34 proves that the application of safe transformations terminates.

Theorem 34 (Termination) Let (P,R, e) be a DP problem. Then any repeated
application of safe transformations on P terminates.

Proof We define a measure on sets P consisting of four components:

(a) |{o(s → t) | s → t ∈ ⋃
S∈SCC(P) S}|

(b) | ⋃S∈SCC(P) S|
(c) |P |
(d) {t | s → t ∈ P}

These 4-tuples are compared lexicographically by the usual order on naturals for
components (a)–(c). For (d), we use the multiset extension of the innermost rewrite
relation of UR(P) if it is innermost terminating. Thus, we obtain a well-founded
relation 	 where P1 	 P2 iff P1’s measure is greater than P2’s measure. From (a),
(b), and (d), any safe transformation of P with (1) or (2) decreases P ’s measure.

Let w(P) = 〈P¬n,¬i,¬ f , Pn,¬i,¬ f , P¬n,i,¬ f , P¬n,¬i, f , P¬n,i, f , Pn,¬i, f , Pn,i,¬ f , Pn,i, f 〉.
P¬n,¬i,¬ f consists of those s→ t∈P where no narrowing, instantiation, or forward
instantiation was used to transform o(s→ t) to s→ t. Pn,¬i,¬ f are the pairs where
narrowing, but no instantiation or forward instantiation, was used, and so forth.
Every safe transformation step decreases w(P) lexicographically w.r.t. 	: the left-
most component of w(P) that is changed decreases w.r.t. 	, whereas components on
its right-hand side may increase. In particular, transformations with (3)–(5) decrease
one component of w(P) w.r.t. 	 by (c). ��

A good strategy is to apply the processors of this paper according to the following
precedence. This strategy is also used in our experiments in Section 8. Here, one
always uses the first processor in the list that modifies the current DP problem. More
elaborate strategies that also take other processors into account can be found in [15].

1. Dependency Graph Processor (Theorem 8)
2. Transformation Processor (Definition 28) restricted to Definition 33 (1, 2)
3. Reduction Pair Processor (Theorem 12, Theorem 17, or Theorem 26)
4. Transformation Processor (Definition 28) restricted to Definition 33 (3–5)

So after each transformation, one should recompute the dependency graph. Here,
one has to consider only the former neighbors of the transformed pair in the old
graph. The reason is that only former neighbors may have arcs to or from the
new pairs resulting from the transformation. Regarding neighbors in the graph
also suffices for the unifications required for narrowing, instantiation, and forward
instantiation. In this way, the transformations can be performed efficiently.

6 Computing Argument Filterings

One of the most important processors of the DP framework is the reduction pair
processor (Theorem 12), which we improved considerably in Theorem 17 and 26.
Here, we may apply an argument filtering π to the constraints before orienting them
with a reduction pair. When using reduction pairs based on monotonic orders 	
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like RPOS or KBO, this is necessary to benefit from the fact that in a reduction
pair (�,	), 	 need not be monotonic. However, the number of argument filterings
is exponential in the number and the arities of the function symbols. We now
show how to search for suitable filterings efficiently. More precisely, for each DP
problem (P,R, e), we show how to compute a small set 	(P,R). This set includes
all argument filterings that may satisfy the constraints of the reduction pair proces-
sor. A corresponding algorithm was presented in [25] for termination proofs with
Theorem 12. However, in Section 6.1 and Section 6.2 we now develop algorithms
that can also be used for the improved versions of the reduction pair processor from
Theorem 17 and 26. In particular for Theorem 26, the algorithm is considerably more
involved because the set of constraints depends on the argument filtering used.

6.1 Argument Filterings for the Processor of Theorem 17

We use the approach of [25] to consider partial argument filterings, which are defined
only on a subset of the signature. For example, in a term f (g(x), y), if π( f ) = [2],
then we do not have to determine π(g), since all occurrences of g are filtered
away. Thus, we leave argument filterings as undefined as possible and permit the
application of π to a term t whenever π is sufficiently defined for t. More precisely,
any partial argument filtering π is sufficiently defined for a variable x. So the domain
of π may even be empty, that is, DOM(π) = ∅. An argument filtering π is sufficiently
defined for f (t1, . . . , tn) iff f ∈ DOM(π) and π is sufficiently defined for all ti with
i ∈ rpπ ( f ). An argument filtering is sufficiently defined for a set of terms T iff
it is sufficiently defined for all terms in T. To compare argument filterings that
differ only in their domain DOM, Hirokawa and Middeldorp [25] introduced the
following relation “⊆”: π ⊆ π ′ iff DOM(π) ⊆ DOM(π ′) and π( f ) = π ′( f ) for all
f ∈ DOM(π).

In [25], one regards all ⊆-minimal filterings that permit a term to be evaluated.
We now use the same concept to define the set 	(P) of those argument filterings
where at least one pair in P is strictly decreasing and the remaining ones are
weakly decreasing. Here, 	(P) should contain only ⊆-minimal elements; that is, if
π ′ ∈ 	(P), then 	(P) does not contain any π ⊂ π ′. Of course, all filterings in 	(P)

must be sufficiently defined for the terms in the pairs of P . Let RP be a class of
reduction pairs describing the particular base order used (e.g., RP may contain all
reduction pairs based on LPO). In the termination case, we restrict ourselves to Cε-
compatible reduction pairs.

Definition 35 (	(P)) For a set P of pairs of terms, let 	(P) consist of all ⊆-minimal
elements of {π | there is a (�,	) ∈ RP such that π(s)	π(t) for some s→ t ∈ P and
π(s)�π(t) for all other s→ t ∈ P}.

In Example 1, if P = {DIV(s(x), s(y)) → DIV(minus(x, y), s(y))} and RP are all
reduction pairs based on LPO, then 	(P) consists of the 12 filterings π where
DOM(π) = {DIV, s,minus}, π(DIV) ∈ {1, [1], [1, 2]}, and either π(minus)∈{[ ], 1, [1]}
and π(s) = [1] or both π(minus) = π(s) = [ ].

For any DP problem (P,R, e), we now define a superset 	(P,R) of all argument
filterings where the constraints of the reduction pair processor from Theorem 17 are
satisfied by some reduction pair of RP . So only these filterings have to be regarded
when automating Theorem 17; cf. Theorem 43. As in [25], one therefore has to
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extend partial filterings in order to obtain all filterings that can possibly satisfy certain
inequalities.

Definition 36 (Ex f , 	(P,R)) For a partial filtering π and f ∈ DR, Ex f (π) con-
sists of all ⊆-minimal filterings π ′ with π ⊆ π ′ such that there is a (�,	) ∈ RP
with π ′(l) � π ′(r) for all l → r ∈ RlsR( f ). For a set 	 of filterings, let Ex f (	) =⋃

π∈	 Ex f (π). We define 	(P,R) = Ex fk(. . . Ex f1(	(P)) . . .), where f1, . . . , fk are
UR(P)’s defined symbols. Note that the order of f1, . . . , fk is irrelevant for the
definition of 	(P,R).

So for the DIV-SCC P in Example 1, we have 	(P,R) = Exminus(	(P)).
Note that all π ∈ 	(P) remove the second argument of minus. Therefore in
Exminus(	(P)), their domain does not have to be extended to the symbol 0, since
0 occurs only in minus’ second argument. However, in Exminus(	(P)), all filterings
π with π(minus) = [ ] are eliminated, since they contradict the weak decrease of
the first minus-rule. Thus, while there exist 6 · 3 · 6 · 1 = 144 possible argument
filterings for the symbols DIV, s, minus, and 0, our algorithm reduces this set to only
|	(P,R)| = 6 candidates. For TRSs with more function symbols, the reduction of
the search space is of course even more dramatic.

Moreover, in successful proofs we compute only a small subset of 	(P,R), since
its elements are determined step by step in a depth-first search until a proof is found.
To this end, we start with a π ∈ 	(P) and extend it to a minimal π ′ such that f1’s
rules are weakly decreasing. Then π ′ is extended such that f2’s rules are weakly
decreasing, and so forth. Here, f1 is considered before f2 if f1 >d f2, where >d is
again the “dependence” relation from Section 5.2. When we have 	(P,R)’s first
element π1, we check whether the constraints of Theorem 17 are satisfiable with
π1. In case of success, we do not compute further elements of 	(P,R). Only if the
constraints are not satisfiable with π1 do we determine 	(P,R)’s next element, and
so on. The advantage of this approach is that 	(P) is usually small because it contains
only filterings that satisfy a strict inequality. Thus, by taking 	(P)’s restrictions into
account, only a fraction of the search space is examined. This depth-first strategy
differs from the corresponding algorithm in [25] where the constraints are treated
separately in order to share and reuse results.

Example 37 The following TRS illustrates the depth-first algorithm

f(s(s(x))) → f(g(x)) g(x) → h(x)

f(s(x)) → f(x) h(x) → s(x)

The only SCC of the dependency graph is P = {F(s(s(x))) → F(g(x)),F(s(x)) →
F(x)}. Let RP contains all reduction pairs based on LPO. Then 	(P) consists of the
six partial argument filterings where π(F) is 1 or [1], π(s) = [1], and π(g) ∈ {1, [1], [ ]}.

To demonstrate the depth-first algorithm, we inspect filterings in the order where
collapsing filterings are checked first; otherwise, filterings that do not filter anything
are preferred (so the order of preference is 1, [1], [ ]). Then we start with π1 ∈ 	(P),
where π1(F) = 1, π1(s) = [1], and π1(g) = 1. When computing Exg(π1), the argument
filtering has to be extended in order to filter h as well. Moreover, we must ensure that
the g-rule can be made weakly decreasing by some LPO. Thus, we have to use the
extension π ′

1 of π1, where π ′
1(h) = 1. But then, when trying to compute Exh(π ′

1), it
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turns out that this set is empty because the h-rule cannot be weakly decreasing with
this filtering.

So one backtracks and considers π2 ∈ 	(P) with π2(F) = 1, π2(s) = [1], and
π2(g) = [1]. Now we compute the first element π ′

2 of Exg(π2). We have π ′
2(h) = 1,

and again Exh(π ′
2) is empty. Hence, we backtrack and compute the next element

π ′′
2 of Exg(π2). Now π ′′

2 (h) = [1] and Exh(π ′′
2 ) consists of π ′′

2 . Thus, we have found
the first element of 	(P,R) = Exh(Exg(	(P))). Hence, we stop the computation
of 	(P,R) and check whether the reduction pair processor is successful with π ′′

2 .
Indeed, the constraints can be solved by using an LPO where s, g, and h have equal
precedence. Then both dependency pairs are decreasing and can be removed. Thus,
termination can immediately be proved.

The example demonstrates that the depth-first search generates only a small part
of the search space when looking for argument filterings. This is also illustrated by
the following tree, which depicts the whole search space for determining 	(P,R).
Since we use depth-first search and stop as soon as the first solution is found, we do
not compute this full tree in a successful termination proof. Instead we stop as soon
as we reach the third leaf, which corresponds to the first element of 	(P,R). Here,
those leaves where Exh is underlined denote success (i.e., computing Exh does not
result in the empty set).
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Exh Exh Exh Exh Exh Exh Exh Exh Exh Exh

6.2 Argument Filterings for the Processor of Theorem 26

When automating the improved reduction pair processor of Theorem 26 instead of
Theorem 17, the set of constraints to be satisfied depends on the argument filtering
used. If f ≥d g, then when orienting the rules of f , we do not necessarily have to
orient g’s rules as well, since all occurrences of g in f -rules may have been deleted
by the argument filtering. To formalize this, we define a relation “ �P,R” on sets of
argument filterings. We extend rpπ to partial filterings by defining rpπ ( f ) = ∅ for
f /∈ DOM(π). Now UR(P, π) is also defined for partial filterings by disregarding all
subterms of function symbols where π is not defined.

For a partial filtering π , whenever RlsR( f ) is included in the usable rules
UR(P, π), then the relation “ �P,R” can extend π in order to make the f -rules
weakly decreasing. We label each filtering by those function symbols whose rules
are already guaranteed to be weakly decreasing.

Definition 38 (�P,R) Each argument filtering π is labeled with a set G ⊆ DR and we
denote a labeled argument filtering by πG . For labeled argument filterings, we define
πG �P,R π ′

G∪{ f } if f ∈ DR \ G, RlsR( f ) ⊆ UR(P, π), and π ′ ∈ Ex f (π). We extend
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“ �P,R” to sets of labeled filterings as follows: 	 � {πG} �P,R 	 ∪ {π ′
G ′ | πG �P,R

π ′
G ′ }.

To automate the reduction pair processor of Theorem 26, we consider only
filterings that result from 	(P) by applying �P,R-reductions as long as possible. So
each π ∈ 	(P) is extended individually by �P,R instead of building Ex f (	(P)) as
in Theorem 17’s automation. The advantage of �P,R is that only those filterings π

are extended to include f in their domain where this is required by the usable rules
UR(P, π). We denote the set of filterings that should be considered when automating
Theorem 26 by 	′(P,R) and compute it by depth-first search, similar to 	(P,R).

Example 39 We consider the SCC P = {(21)–(24)} of the REV- and REV2-
dependency pairs in Example 22 and 27. Here, the filterings in 	(P) are not defined
on rev1, since rev1 does not occur in P . When performing �P,R-reductions, those
π ∈ 	(P) that eliminate the first argument of cons will never be extended to rev1,
whereas this is necessary for other filterings in 	(P).

For example (possibly after some backtracking), the depth-first search could
consider the partial filtering π ∈ 	(P): π(cons) = [2], π(REV) = π(rev) = 1, and
π(REV1) = π(REV2) = π(rev2) = 2, where π is undefined on rev1. Initially, this
filtering is labeled with ∅, since no rule is guaranteed to be weakly decreasing yet. We
have RlsR(rev) ⊆ UR(P, π). In order to make rev’s rules weakly decreasing, π has
to be extended to a filtering π ′, which is also defined on nil, that is, π∅ �P,R π ′

{rev}.
Since UR(P, π ′) = RlsR(rev) ∪ RlsR(rev2) and since π ′ also allows us to make all
rev2-rules weakly decreasing, we obtain π ′

{rev} �P,R π ′
{rev,rev2}. Thus, π ′ is a normal

form w.r.t. �P,R, and therefore it is an element of 	′(P,R). As soon as one finds
a filtering where the constraints of Theorem 26 can be solved, the depth-first search
stops, and we do not determine further elements of 	′(P,R).

Hence, to compute the set of regarded argument filterings 	′(P,R) for Theorem
26, our aim is to construct the normal form of 	(P) w.r.t. �P,R. To ensure that this
normal form always exists and that it is unique, we will prove that �P,R is confluent
and terminating.

For this proof, we need the following lemma. It states that Ex f (π) always consists
of pairwise incompatible argument filterings. Here, two argument filterings π1 and π2

are compatible if π1( f ) = π2( f ) for all f ∈ DOM(π1) ∩ DOM(π2), cf. [25].8

Lemma 40 (Incompatibility) Let T be a finite set of terms.

(a) Let π, π1, π2 be (partial) argument filterings. Let π1, π2 ∈ {π ′ | π ⊆ π ′ and π ′ is
sufficiently defined for T}, where π1 is a ⊆-minimal element of this set. If π1 and
π2 are compatible, then π1 ⊆ π2.

(b) If π1, π2 ∈ Ex f (π) are compatible, then π1 = π2. In other words, Ex f (π) consists
of pairwise incompatible argument filterings.

8The notion of compatibility was introduced in [25] for a different purpose: there it was used to
merge sets of argument filterings, whereas a statement like Lemma 40 was not presented in [25]. In
the setting of [25], Lemma 40 would mean that “AF(T)” consists of pairwise incompatible argument
filterings. Here, “AF(T)” are all minimal argument filterings that are sufficiently defined for all terms
in the set T.
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(c) If 	 consists of pairwise incompatible argument filterings, then Ex f (	) consists
of pairwise incompatible argument filterings, too.

Proof

(a) We perform induction on T using the (multi)set version of the proper subterm
relation. If T = ∅, then the only minimal extension of π that is sufficiently
defined for T is π1 = π . Hence, π1 = π ⊆ π2.
Next let T = T ′ � {x} for x ∈ V . Now the claim follows from the induction
hypothesis, since π1 and π2 are also sufficiently defined for T ′ and π1 is a
minimal extension of π with this property.
If T = T ′ � { f (t1, . . . , tn)}, then f ∈ DOM(π1). Let T ′′ = T ′ ∪ {ti | i ∈ rpπ1( f )}.
Both π1 and π2 are sufficiently defined for T ′′ (for π2 this follows from π2( f ) =
π1( f ) by compatibility of π1 and π2). If π1 is a minimal extension of π that is
sufficiently defined for T ′′, then the claim is implied by the induction hypothesis.
Otherwise, f /∈ DOM(π), and we obtain the following minimal extension π ′

1 of
π that is sufficiently defined for T ′′: DOM(π ′

1) = DOM(π1) \ { f } and π ′
1(g) =

π1(g) for all g ∈ DOM(π ′
1). Then the induction hypothesis implies π ′

1 ⊆ π2.
Since π1 differs only from π ′

1 on f and since π1( f ) = π2( f ), we obtain π1 ⊆ π2.
(b) Let π1, π2 ∈ Ex f (π) be compatible. As both filterings are minimal extensions of

π that are sufficiently defined for the terms on left- or right-hand sides of rules
from RlsR( f ), we use (a) to conclude both π1 ⊆ π2 and π2 ⊆ π1, which implies
π1 = π2.

(c) Let π ′
1, π

′
2 ∈ 	, π1 ∈ Ex f (π

′
1), π2 ∈ Ex f (π

′
2), and π1 �= π2. If π ′

1 = π ′
2, then π1

and π2 are incompatible by (b). Otherwise π ′
1 �= π ′

2, and π ′
1 and π ′

2 are incom-
patible by the assumption about 	. As π ′

1 ⊆ π1 and π ′
2 ⊆ π2, then π1 and π2 are

incompatible as well. ��

The next theorem shows the desired properties of the relation �P,R.

Theorem 41 �P,R is terminating and confluent on sets of filterings.

Proof Termination of �P,R is obvious as the labelings increase in every �P,R-
step. Hence, for confluence, it suffices to show local confluence. The only crucial
indeterminism in the definition of �P,R is the choice of f . Let f0, f1 ∈ DR \ G with
f0 �= f1 and RlsR( f0) ∪ RlsR( f1) ⊆ UR(P, π) for some labeled filtering πG . This
leads to two possible steps.

	 � {πG} �P,R 	 ∪ 	0, where 	0 = {π0
G∪{ f0} | π0 ∈ Ex f0(π)}

	 � {πG} �P,R 	 ∪ 	1, where 	1 = {π1
G∪{ f1} | π1 ∈ Ex f1(π)}

Note that UR(P, π) ⊆ UR(P, π i) holds for all π i ∈ Ex fi(π). Thus, for all π i
G∪{ fi} ∈

	i, we have f1−i ∈ DR \ (G ∪ { fi}) and RlsR( f1−i) ⊆ UR(P, π i). Hence, we obtain
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the following reductions (where we also apply Ex f to labeled filterings by simply
ignoring their labels):

	 ∪ 	0

|	0|
�P,R (	 \ 	0) ∪

{
π ′
G∪{ f0, f1} | π ′ ∈ Ex f1(Ex f0(π))

}

|	∩	1|
�P,R (	 \ (	0 ∪ 	1)) ∪

{
π ′
G∪{ f0, f1} | π ′ ∈ Ex f1(Ex f0(π))

}

∪
{
π ′
G∪{ f1, f0} | π ′ ∈ Ex f0(	 ∩ 	1)

}

	 ∪ 	1

|	1|
�P,R (	 \ 	1) ∪

{
π ′
G∪{ f1, f0} | π ′ ∈ Ex f0(Ex f1(π))

}

|	∩	0|
�P,R (	 \ (	1 ∪ 	0)) ∪

{
π ′
G∪{ f1, f0} | π ′ ∈ Ex f0(Ex f1(π))

}

∪
{
π ′
G∪{ f0, f1} | π ′ ∈ Ex f1(	 ∩ 	0)

}

where Ex f0(	 ∩ 	1) ⊆ Ex f0(Ex f1(π)), Ex f1(	 ∩ 	0) ⊆ Ex f1(Ex f0(π)). To finish the
proof we show Ex f0(Ex f1(π)) = Ex f1(Ex f0(π)). By symmetry, it suffices to prove
Ex f0(Ex f1(π)) ⊆ Ex f1(Ex f0(π)). Here, we need only to show that for every π01 ∈
Ex f0(Ex f1(π)) there is a π10 ∈ Ex f1(Ex f0(π)) with π10 ⊆ π01. The reason is that in an
analogous way one can show that for π10 there also exists a π ′

01 ∈ Ex f0(Ex f1(π)) with
π ′

01 ⊆ π10. Hence, π ′
01 ⊆ π10 ⊆ π01. By Lemma 40 (b), Ex f1(π) consists of pairwise

incompatible argument filterings and hence by Lemma 40 (c), this also holds for
Ex f0(Ex f1(π)). However, π ′

01 ⊆ π01 implies that π ′
01 and π01 are compatible. So

π ′
01 = π01, and thus π ′

01 = π10 = π01.
Let π01 ∈ Ex f0(Ex f1(π)). By the definition of Ex, there is a π1 ∈ Ex f1(π) and

a reduction pair (�,	) ∈ RP with π1 ⊆ π01 and π01(l) � π01(r) for all l → r ∈
RlsR( f0). As π1 ∈ Ex f1(π), we also have π ⊆ π1 and π1(l) �′ π1(r) for all f1-rules
and some (�′,	′) ∈ RP . Since π ⊆ π01 and since the f0-rules can be oriented in
a weakly decreasing way using π01, there exists a π0 ∈ Ex f0(π) with π ⊆ π0 ⊆ π01

such that the f0-rules can also be oriented using π0. Since π0 ⊆ π01 and since the
f1-rules can be oriented with π01, there is a π10 ∈ Ex f1(π0) with π0 ⊆ π10 ⊆ π01 such
that π10 also permits an orientation of the f1-rules. As explained above, this proves
Ex f0(Ex f1(π)) ⊆ Ex f1(Ex f0(π)). ��

Now we can define the set of argument filterings 	′(P,R) that are regarded when
automating the reduction pair processor of Theorem 26. From Theorem 41, we can
define 	′(P,R) in an unambiguous way (as the unique normal form of 	(P)).

Definition 42 (	′(P,R)) Let Nf �P,R(	) be the normal form of 	 w.r.t. �P,R. Then
we define 	′(P,R) = Nf �P,R({π∅ | π ∈ 	(P)}).

Theorem 43 states that 	(P,R) (resp. 	′(P,R)) indeed contain all argument
filterings that could possibly solve the constraints of Theorem 17 (resp. Theorem 26).
In this way the set of argument filterings is reduced dramatically, and thus efficiency
is increased.
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Theorem 43 Let (P,R, e) be a DP problem. If the constraints of Theorem 17 (26) are
satisfied by some reduction pair from RP and argument filtering π , then π ′ ⊆ π for
some π ′ ∈ 	(P,R) (π ′ ∈ 	′(P,R)).

Proof Let the constraints (a) and (b) from Theorem 17 or 26 be solved by some
filtering π and some (�,	) ∈ RP . We first consider Theorem 17. Let f1, . . . , fk

be the defined symbols of UR(P). So we have 	(P,R) = Ex fk(. . . Ex f1(	(P)) . . .).
We show that for all 0 ≤ j ≤ k there is a π j ∈ Ex f j(. . . Ex f1(	(P)) . . .) with π j ⊆ π

by induction on j. For j = 0, since π solves the constraints in (a), there is a
minimal filtering π0 ∈ 	(P) with π0 ⊆ π . For j > 0, we assume that there is a π j−1 ∈
Ex f j−1(. . . Ex f1(	(P)) . . .) with π j−1 ⊆ π . As π(l) � π(r) for all f j-rules l → r, there
is a filtering π j ∈ Ex f j(π j−1) with π j ⊆ π .

For Theorem 26, let 	(P) = 	0 �P,R 	1 �P,R . . . �P,R 	k = 	′(P,R) be a
�P,R-reduction to normal form. We show that for all 0 ≤ j ≤ k there is a π j ∈ 	 j

with π j ⊆ π by induction on j. For j = 0, since π solves the constraints in (a),
there is again a minimal filtering π0 ∈ 	(P) with π0 ⊆ π . For j > 0, we assume that
there is a π j−1 ∈ 	 j−1 with π j−1 ⊆ π . So we either have π j−1 ∈ 	 j as well or else,
	 j results from 	 j−1 by replacing π j−1 by all elements of Ex f (π j−1) for some f
with RlsR( f ) ⊆ UR(P, π j−1). Since π j−1 ⊆ π , we have UR(P, π j−1) ⊆ UR(P, π), and
hence π also makes f ’s rules weakly decreasing by the constraints in (b). Thus, there
is a π j ∈ Ex f (π j−1) ⊆ 	 j with π j ⊆ π . ��

The converse directions of this theorem do not hold, since in the computation
of 	(P,R) and 	′(P,R), when extending argument filterings, one does not take
the orders into account. So even if Ex f (Exg(. . .)) �= ∅, it could be that there is no
reduction pair such that both f - and g-rules are weakly decreasing w.r.t. the same
reduction pair from RP .

7 Using Polynomial Orders for Dependency Pairs

In Section 6 we showed how to mechanize the reduction pair processor with argu-
ment filterings and monotonic orders like RPOS or KBO. Now we regard reduction
pairs based on polynomial orders instead, which are not necessarily monotonic if one
also permits the coefficient 0 in polynomials.9 In contrast to RPOS and KBO, it is
undecidable whether a set of constraints is satisfiable by polynomial orders, and thus
one can use only sufficient criteria to automate them. However, in combination with
dependency pairs, even linear polynomial interpretations with coefficients from {0, 1}
are already very powerful, cf. Section 8.

An advantage of polynomial orders is that one does not need any extra argument
filtering anymore, since argument filtering can be simulated directly by the corre-
sponding polynomials. If

Pol( f (x1, ..., xn)) = a1 xb 1,1

1 . . . xb n,1
n + · · · + am xb 1,m

1 . . . xb n,m
n (36)

9We consider only polynomial orders with natural coefficients. Approaches for polynomials with
negative or real coefficients can be found in [23, 33].
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for coefficients a j ≥ 0, then this corresponds to the argument filtering πPol with
πPol( f ) = [ i | a j > 0 ∧ bi, j > 0 for some 1 ≤ j ≤ m ]. However, disregarding argu-
ment filterings is a problem in our improved reduction pair processor (Theorem
26), since the filtering π is needed to compute the constraints resulting from the
usable rules UR(P, π). Hence, in Section 7.1 we adapt the reduction pair processor
to polynomial orders such that it does not use argument filterings anymore. In
Section 7.2 we improve this special reduction pair processor by eliminating the
indeterminism in the constraints of type (a). Here, for any DP problem (P,R, e)
one had to select at least one pair from P that should be strictly decreasing.

7.1 Reduction Pair Processor with Polynomial Orders

When automating Theorem 26 with polynomial orders, one fixes the degree of the
polynomials, and then suitable coefficients have to be found automatically. So, one
starts with an abstract polynomial interpretation Pol. For every function symbol f ,
Pol( f (x1, . . . , xn)) is as in (36), but m and bi, j are fixed numbers, whereas a j are
variable coefficients. Then the constraints (a) of Theorem 26 have the form

− Pol(s) − Pol(t) > 0 for all s→ t ∈ P ′ for a non-empty P ′ ⊆ P

− Pol(s) − Pol(t) ≥ 0 for all s→ t ∈ P \ P ′. (37)

An abstract polynomial interpretation Pol can be turned into a concrete one by
assigning a natural number to each variable coefficient a j. We denote such assign-
ments by α and let α(Pol) be the corresponding concrete polynomial interpretation.
A set of constraints of the form p

(
≥

)
0 is satisfiable iff there exists an assignment

α such that all instantiated constraints α(p)
(
≥

)
0 hold. Here α(p) still contains the

variables x, y, . . . occurring in P , and we say that α(p)
(
≥

)
0 holds iff it is true for

all instantiations of x, y, . . . by natural numbers. For example, a1x + a2 − a3 y > 0 is
satisfied by the assignment α, where α(a1) = 1, α(a2) = 1, and α(a3) = 0. The reason
is that α turns the above constraint into x + 1 > 0, which holds for all instantiations
of x with natural numbers.

The constraints of type (b) in Theorem 26 require l � r for all l → r ∈
UR(P, πα(Pol)). The problem is how to determine these constraints in the case of
polynomial orders where the argument filtering πα(Pol) is not given explicitly but
depends on the assignment α of natural numbers to variable coefficients a j. Thus,
πα(Pol) is not available yet when building the constraints although we need it to
compute UR(P, πα(Pol)).

The solution is to translate the constraints of type (b) to polynomial constraints of
the following form.

q · (Pol(l) − Pol(r)) ≥ 0 for all rules l → r of UR(P) (38)

Here, q will be a polynomial containing only variable coefficients a j but no variables
x, y, . . . from the rules of R. So for any assignment α, α(q) is a number. We
generate the constraints such that for any assignment α, we have α(q) = 0 iff l →
r /∈ UR(P, πα(Pol)). So for any α, the constraints (38) are equivalent to requiring
Pol(l) − Pol(r) ≥ 0 for all l → r in UR(P, πα(Pol)), but the advantage is that the
constraints (38) can be constructed before determining the assignment α.
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Let Pol be an abstract polynomial interpretation as in (36). To generate the
constraints (38), we first define a polynomial that sums up the coefficients of those
monomials of Pol( f (x1, ..., xn)) that contain xi.

rpPol( f, i) =
∑

1≤ j≤m, bi, j>0
a j.

So for any assignment α, α(rpPol( f, i)) is a number that is greater than 0 iff i∈
rpπα(Pol) ( f ). Now the constraints corresponding to (b) in Theorem 26 can be built
similar to the definition of usable rules (Definition 21).

Definition 44 (Usable Rules for Polynomial Orders) Let Pol be an abstract poly-
nomial interpretation. Again, let R′ = R \ RlsR( f ). For any term t, we define the
usable rule constraints ConR(t,Pol) as

− ConR(x,Pol) = ∅ for x ∈ V and

− ConR( f (t1, . . . , tn),Pol) = {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR( f )}

∪ ⋃
l→r∈RlsR( f ) ConR′(r,Pol)

∪ ⋃
1≤i≤n {rpPol( f, i) · p ≥ 0 | “p ≥ 0” ∈ ConR′(ti,Pol)}.

For any TRS P , let ConR(P,Pol) = ⋃
s→t∈P ConR(t,Pol).

Example 45 Consider the TRS from Example 22 again. We use the linear
abstract polynomial interpretation Pol(nil) = anil, Pol( f (x)) = a f,0 + a f,1 x for
f ∈ {rev,REV}, and Pol( f (x, y)) = a f,0 + a f,1 x + a f,2 y for all other f . Thus,
rpPol( f, i) = a f,i for all symbols f and positions i.

We compute ConR for the right-hand side ofREV2(x, cons(y, z))→ REV(rev2(y,

z)). Let R′ = R \ RlsR(rev2) and R′′ = R′ \ RlsR′(rev).

ConR(REV(rev2(y, z)),Pol)={Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR(REV) = ∅}∪⋃
l→r∈RlsR(REV)=∅

ConR(r,Pol)∪
{aREV,1 · p ≥ 0 |“p ≥ 0” ∈ ConR(rev2(y, z),Pol)}

= {aREV,1 · p ≥ 0 |“p ≥ 0” ∈ ConR(rev2(y, z),Pol)}

ConR(rev2(y, z),Pol) ={Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR(rev2)}∪
ConR′(nil,Pol) ∪ ConR′(rev(cons(x, ...)),Pol)∪
{arev2,1 · p ≥ 0 |“p ≥ 0” ∈ ConR′(y,Pol)}∪
{arev2,2 · p ≥ 0 |“p ≥ 0” ∈ ConR′(z,Pol)}

= {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR(rev2)}∪
ConR′(rev(cons(x, ...)),Pol)

ConR′(rev(cons(x, ...)),Pol) ={Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′(rev)}∪
ConR′′(nil,Pol) ∪ ConR′′(cons(rev1(...), ...),Pol)∪
{arev,1 · p ≥ 0 |“p ≥ 0” ∈ ConR′′(cons(x, ...),Pol)}

= {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′(rev)}∪
ConR′′(cons(rev1(...), ...),Pol)
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ConR′′(cons(rev1(..), ..),Pol)={Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′′(cons) = ∅}∪⋃
l→r∈RlsR′′ (cons)=∅

ConR′′(r,Pol)∪
{acons,1 · p ≥ 0 |“p ≥ 0” ∈ ConR′′(rev1(x, l),Pol)}∪
{acons,2 · p ≥ 0 |“p ≥ 0” ∈ ConR′′(rev2(x, l),Pol)}

= {acons,1 · p ≥ 0 |“p ≥ 0” ∈ ConR′′(rev1(x, l),Pol)}

ConR′′(rev1(x, l),Pol) ={Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′′(rev1)}∪⋃
l→r∈RlsR′′ (rev1) Con∅(r,Pol)∪

{arev1,1 · p ≥ 0 |“p ≥ 0” ∈ Con∅(x,Pol)}∪
{arev1,2 · p ≥ 0 |“p ≥ 0” ∈ Con∅(l,Pol)}

= {Pol(l) − Pol(r) ≥ 0 | l → r ∈ RlsR′′(rev1)}

So ConR(REV(rev2(y, z)),Pol) contains aREV,1 · (Pol(l) − Pol(r))≥0 for rev2-
and rev-rules and aREV,1 · acons,1 · (Pol(l) − Pol(r))≥0 for rev1-rules.

This indicates that if cons is mapped to a polynomial that disregards its first
argument (i.e., if acons,1 = 0), then one does not have to require that the rev1-rules be
weakly decreasing. As shown in Example 27, this observation is crucial for the success
of the innermost termination proof. For example, all constraints (for all SCCs) are
satisfied by the assignment α, which maps acons,0, acons,2, aREV,1, arev,1, aREV1,2, aREV2,2,
and arev2,2 to 1 and all other variable coefficients to 0. So α turns Pol into a concrete
polynomial interpretation where nil and rev1(x, y) are mapped to 0, cons(x, y) is
mapped to 1 + y, REV(x) and rev(x) are mapped to x, and REV1(x, y), REV2(x, y),
and rev2(x, y) are mapped to y.

The following lemma shows that ConR indeed corresponds to the constraints
resulting from the usable rules.

Lemma 46 (Con and U) Let Pol be an abstract polynomial interpretation and t be
a term. An assignment α for Pol’s coefficients satisfies ConR(t,Pol) iff α satisfies
Pol(l) − Pol(r)≥0 for all l→r∈UR(t,πα(Pol)).

Proof We use induction over the sizes of R and t. If t ∈ V , then the claim is trivial.
Otherwise, let t = f (t1, . . . , tn). The assignment α satisfies ConR( f (t1, . . . , tn),Pol)
iff it satisfies Pol(l) − Pol(r) ≥ 0 and ConR′(r,Pol) for all l→r ∈ RlsR( f ), and if it
also satisfies rpPol( f, i) · p ≥ 0 for all constraints p ≥ 0 from ConR′(ti,Pol), where
i ∈ {1, . . . , n}.

We have α(rpPol( f, i)) > 0 if i ∈ rpπα(Pol) ( f ) and α(rpPol( f, i)) = 0, otherwise. So
α satisfies the last condition iff it satisfies ConR′(ti,Pol) for i∈rpπα(Pol) ( f ). Now the
claim follows by the induction hypothesis. ��

Now the reduction pair processor from Theorem 26 can be reformulated to permit
the use of reduction pairs based on polynomial orders.

Theorem 47 (Reduction Pair Processor with Polynomials) Let Pol be an abstract
polynomial interpretation, and let α be an assignment. Then the following DP proces-
sor Proc is sound and complete. We define Proc( (P,R, e) ) =
– {(P\P ′,R, e)}, if α satisfies the constraints (37) and ConR(P,Pol)
– {(P,R, e)}, otherwise.
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Proof The theorem follows from Theorem 26: for the reduction pair “(�π ,	π )” in
Theorem 26 we choose the polynomial order α(Pol) and for computing the usable
rules “UR(P, π)” in Theorem 26 we use the filtering πα(Pol). Then (37) clearly
corresponds to the constraints (a) in Theorem 26 and ConR(P,Pol) corresponds
to the constraints (b) by Lemma 46. ��

7.2 Finding Strict Constraints Automatically

For termination proofs with dependency pairs and polynomial orders, we have to
solve constraints like (37) that have the form

pj ≥ 0 for all 1 ≤ j ≤ k and pj > 0 for one 1 ≤ j ≤ k (39)

for polynomials pj. The reason is that for a DP problem (P,R, e), all pairs in P
must be weakly decreasing but at least one has to be strictly decreasing. The basic
approach is to iterate over all k possible choices for the strict constraint. So in the
worst case, the satisfiability checker for polynomial inequalities is called k times in
order to find an assignment α satisfying (39). We present an equivalent but more
efficient method where the satisfiability checker is called only once. The solution is
to transform (39) into the following constraint.

pj ≥ 0 for all 1 ≤ j ≤ k and
∑

1≤ j≤k

p j > 0 (40)

Theorem 48 ((39) iff (40)) Let the pj be variable disjoint, except for variable coeffi-
cients. An assignment α satisfies (39) iff it satisfies (40).

Proof If α satisfies (39), then w.l.o.g. we have α(p1) > 0. Using α(pj) ≥ 0 for all j ∈
{2, . . . , k} we obtain α(

∑
1≤ j≤k p j) > 0.

For the other direction, let α satisfy (40), and assume that α(pj) �> 0 for all
j ∈ {1, . . . , k}. Hence, for all j there exists a variable assignment β j of the variables
x, y, . . . in α(pj) such that β j(α(pj)) = 0. Since the polynomials α(pj) are pairwise
variable disjoint, the assignments β j can be combined to one assignment β that
coincides with each β j on β j’s domain. Thus, β(α(pj))=0 for all j, and there-
fore β(α(

∑
1≤ j≤k p j))=0. But then α cannot satisfy

∑
1≤ j≤k p j > 0, which gives a

contradiction. ��

There exist several methods to find variable assignments α satisfying polynomial
constraints p ≥ 0 or p > 0. Most of them search for an assignment α where p is
absolutely positive [26]. A polynomial p is absolutely positive if, in addition to p ≥ 0
or p > 0, all successive partial derivatives of p are non-negative (i.e., ∂p(x1,...,xn)

∂xi
≥ 0

for all i, ∂2 p(x1,...,xn)

∂xi∂x j
≥ 0 for all i and j, etc.). Examples of such approaches to determine

polynomial interpretations are the method of partial derivation [10, 31] and the
shifting method [26].
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If in addition to p ≥ 0 or p > 0, the satisfiability checker for polynomial con-
straints ensures that at least the first partial derivatives are non-negative (i.e.,
∂p(x1,...,xn)

∂xi
≥ 0 for all i), then (40) can be simplified further to

pj ≥ 0 for all 1 ≤ j ≤ k and
∑

1≤ j≤k

p j(0, . . . , 0) > 0. (41)

The reason is that then the constraints pj ≥ 0 ensure that all first partial derivatives
of pj must be at least 0. But then, the first partial derivatives of

∑
1≤ j≤k p j are also

at least 0. Thus, it suffices to require
∑

1≤ j≤k p j > 0 only for the instantiation of all
variables x, y, . . . by 0.

Example 49 For the TRS of Example 19 we obtain constraints like (39).

Pol(DIV(x1, y1)) − Pol(QUOT(x1, y1, y1)) (
≥

)
0 (42)

Pol(QUOT(s(x2), s(y2), z2)) − Pol(QUOT(x2, y2, z2)) (
≥

)
0 (43)

Pol(QUOT(x3, 0, s(z3))) − Pol(DIV(x3, s(z3))) (
≥

)
0 (44)

Instead of choosing one of the above constraints to be strict, with our refinement
in (40) one obtains the constraints (42)–(44) with weak inequalities (i.e., with “ ≥”)
and the additional constraint

Pol(DIV(x1, y1)) − Pol(QUOT(x1, y1, y1))

+Pol(QUOT(s(x2), s(y2), z2)) − Pol(QUOT(x2, y2, z2))

+Pol(QUOT(x3,0, s(z3))) − Pol(DIV(x3, s(z3))) > 0. (45)

If the satisfiability checker guarantees absolute positiveness, then the above
constraint may be simplified by instantiating all xi, yi, and zi with 0. If we
use a linear abstract polynomial interpretation Pol with Pol(DIV(x, y)) = aDIV,0 +
aDIV,1 x + aDIV,2 y, Pol(QUOT(x, y, z)) = aQUOT,0 + aQUOT,1 x + aQUOT,2 y + aQUOT,3 z,
Pol(s(x)) = as,0 + as,1 x, and Pol(0) = a0, then instead of (45), we obtain

(aQUOT,1 + aQUOT,2 + aQUOT,3 − aDIV,2) as,0 + aQUOT,2 a0 > 0. (46)

The resulting constraints are satisfied by the assignment that maps aDIV,1, aQUOT,1,
as,0, and as,1 to 1 and all other variable coefficients to 0. In this way, the QUOT-
dependency pair corresponding to Constraint (43) is strictly decreasing and can be
removed. The remaining proof is similar to the one in Example 19.10

8 Conclusion and Empirical Results

We improved the dependency pair technique by significantly reducing the sets of
constraints to be solved for (innermost) termination proofs. To combine these im-
provements with dependency pair transformations, we extended the transformations

10To remove the dependency pair QUOT(x,0, s(z)) → DIV(x, s(z)), one uses Pol(QUOT(x, y, z)) =
Pol(DIV(x, y)) = y, Pol(s) = 0, and Pol(0) = 1. Afterwards, the estimated dependency graph has
no cycle anymore.
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and developed a criterion to ensure that their application is terminating without
compromising their power in practice. Afterwards, we introduced new techniques
to mechanize the approach both with polynomial orders and with monotonic orders
combined with argument filterings. These implementation techniques are tailored to
the improvements of dependency pairs presented before.

Preliminary versions of parts of this paper appeared in [13, 39]. The present
article extends [13, 39] substantially, for example, by detailed proofs, by extension
of all results to the new DP framework of [15], by the new forward instantiation
transformation, by a new section on automating dependency pairs with polynomial
orders, by a detailed description of our experiments, and by several additional
explanations and examples.

We implemented the results of the paper in the system AProVE [17], available at
http://aprove.informatik.rwth-aachen.de/. Due to the results of this paper, AProVE
was the most powerful tool for (innermost) termination proofs of TRSs at the
International Annual Competition of Termination Tools in 2004–2006 [42].

In our experiments, we tested AProVE on the examples of the Termination
Problem Data Base. This is the collection of problems used in the annual termination
competition [42]. It contains 773 TRSs from different sources as a benchmark for
termination analysis of term rewriting. Our experiments are presented in two tables.
In the first table we tried to prove (full) termination,11 and in the second, we tried to
prove innermost termination of all examples.

In our experiments, we used AProVE with the following techniques:

– Theorem 12 applies the dependency graph processor with the estimation of
Definition 9 and the reduction pair processor of Theorem 12. This is the basic
dependency pair technique without new improvements.

– Theorem 17 uses the dependency graph and the reduction pair processor of
Theorem 17. Thus, usable rules are also applied for termination proofs. For
innermost termination, this is the same as Theorem 12.

– Theorem 26 uses the dependency graph and the reduction pair processor of
Theorem 26. Thus, now one applies the usable rules w.r.t. argument filterings
for both termination and innermost termination.

Moreover, we use five different kinds of reduction pairs for the reduction pair
processor:

– EMB is the embedding order.
– LPO is the lexicographic path order where we allow different symbols to be

equal in the precedence.
– POLO-filter searches for linear polynomial interpretations with coefficients from

{0, 1}. Here, we do not yet use the results of Section 7.1 that combine the search
for a polynomial order with the search for an argument filtering. Instead, we
first determine an argument filtering and search for a monotonic polynomial
order afterwards. Moreover, we also do not use the improvement of Section 7.2.

11As mentioned, there are classes of TRSs where innermost termination implies full termination.
Thus, here one should prove only innermost termination. However, this observation was not used
in the first table in order to obtain a clearer evaluation of our contributions for full termination.
Similarly, we also did not use additional recent refinements of the dependency pair technique in our
experiments in order to assess only the impact of contributions that come from the present paper.

http://aprove.informatik.rwth-aachen.de/
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Instead, in the reduction pair processor, we try all possibilities in order to make
one dependency pair in the DP problem strictly decreasing.

– POLO-7.1 differs from POLO-filter by using the results of Section 7.1. Now we
no longer search for an argument filtering, but we look for a (not necessarily
monotonic) polynomial order. So in particular, when applying usable rules w.r.t.
an argument filtering in Theorem 26, we proceed as in Theorem 47.

– POLO-7.1+7.2 is like POLO-7.1, but it also uses the refinements of Section 7.2,
which avoid the search for a strictly decreasing dependency pair when applying
the reduction pair processor.

For the first three reduction pairs, the reduction pair processor has to search for
argument filterings. Here, we use the method of Section 6.

Finally, in each of the above settings, we experiment with different variants for the
application of the transformation processors of Definition 28:

– “No” means that we do not use any transformations at all.
– “Older” is the heuristic of Definition 33 for safe transformations. The combi-

nation with the reduction pair processor is done as described at the end of
Section 5. However, we do not use the new forward instantiation transformation,
and instead of Definition 28 we use the previous applicability conditions for the
transformations from [1, 11].

– “Old” is like “older,” but with the new more liberal applicability conditions from
Definition 28 instead.

– “Safe” is the heuristic of Definition 33 with the transformations from Definition
28. So in contrast to “old,” now we also use forward instantiation.

– “(1)+(2)” differs from “safe” by regarding only those transformation steps as
“safe” that satisfy condition (1) or (2) of Definition 33.

– “Lim” uses the transformations of Definition 28 with a different heuristic from
Definition 33. Now at most five transformations are allowed for each dependency
pair. In order to combine the transformations with the reduction pair processor,
the strategy at the end of Section 5 is modified as follows: at most two transfor-
mation steps are allowed before applying the reduction pair processor, while the
remaining transformation steps (up to five in total) are performed afterwards.

For each example we used a time limit of 60 s. This corresponds to the way that
tools were evaluated in the annual competitions for termination tools. The computer
used was an AMD Athlon 64 at 2.2 GHz running Sun’s J2SE 1.5.0 under GNU/Linux
2.6.10, which is similar in speed to the computer used in the 2005 competition. In
the Tables 1 and 2, we give the number of examples where termination could be
proved (“Y”), where AProVE failed within the time limit of 60 s (“F”), and where
it failed because of a time-out (“TO”). In square brackets, we give the average
runtime (in seconds) needed for TRSs where AProVE could prove termination
and where it failed within the time limit. The detailed results of our experiments
(including experimental data for all possible combinations of our settings) can be
found at http://aprove.informatik.rwth-aachen.de/eval/JAR06/. At this URL one can
also download a special version of AProVE with all settings described above. So this
version of AProVE permits the reader to rerun all our experiments.

Comparing the results for Theorem 12 (lines 1–5), Theorem 17 (lines 6–10), and
Theorem 26 (lines 11–15) shows the benefits of our contributions from Section 3 and
4. Irrespective of the underlying reduction pair, Theorem 17 is always more powerful

http://aprove. informatik.rwth-aachen.de/eval/JAR06/
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Table 1 Termination proofs

Line Algorithm Order Tr. Y F TO

1 Theorem 12 EMB no 89 [0.8] 680 [1.6] 4
2 Theorem 12 LPO no 245 [3.0] 399 [3.6] 129
3 Theorem 12 POLO-filter no 234 [1.7] 426 [5.3] 113
4 Theorem 12 POLO-7.1 no 251 [0.9] 512 [1.6] 10
5 Theorem 12 POLO-7.1+7.2 no 251 [0.9] 520 [1.5] 2
6 Theorem 17 EMB no 174 [0.7] 588 [1.4] 11
7 Theorem 17 LPO no 277 [1.5] 387 [2.4] 109
8 Theorem 17 POLO-filter no 331 [1.8] 361 [2.0] 81
9 Theorem 17 POLO-7.1 no 341 [1.0] 425 [1.4] 7
10 Theorem 17 POLO-7.1+7.2 no 341 [1.0] 432 [1.4] 0
11 Theorem 26 EMB no 233 [0.8] 529 [1.6] 11
12 Theorem 26 LPO no 292 [1.6] 374 [2.1] 107
13 Theorem 26 POLO-filter no 361 [1.8] 334 [1.8] 78
14 Theorem 26 POLO-7.1 no 368 [1.1] 388 [1.8] 17
15 Theorem 26 POLO-7.1+7.2 no 369 [1.1] 399 [1.7] 5
16/17 Theorem 26 POLO-7.1+7.2 older/old 390 [1.2] 349 [2.4] 34
18 Theorem 26 POLO-7.1+7.2 (1)+(2) 374 [1.2] 394 [1.8] 5
19 Theorem 26 POLO-7.1+7.2 lim 396 [2.1] 268 [1.9] 109
20 Theorem 26 POLO-7.1+7.2 safe 406 [1.1] 330 [2.5] 37

than Theorem 12 and increases the number of examples where termination can be
proved by up to 95.5%. Theorem 26 improves upon Theorem 17 further and increases
power by up to 33.9% (up to 17.5% for innermost termination).

To measure the impact of our contributions in Section 7, we compare the naive use
of monotonic polynomial orders (POLO-filter, line 13) with the more sophisticated
approaches of Section 7.1 and 7.2 (lines 14–15). As all three methods are equally pow-
erful in principle, the difference is in efficiency. Indeed, the step from POLO-filter to

Table 2 Innermost termination proofs

Line Algorithm Order Tr. Y F TO

1/6 Theorem 12/ 17 EMB no 246 [0.8] 516 [1.8] 11
2/7 Theorem 12/ 17 LPO no 330 [2.1] 350 [3.2] 93
3/8 Theorem 12/ 17 POLO-filter no 378 [2.1] 324 [2.7] 71
4/9 Theorem 12/ 17 POLO-7.1 no 388 [1.0] 379 [1.6] 6
5/10 Theorem 12/ 17 POLO-7.1+7.2 no 388 [1.2] 384 [1.7] 1
11 Theorem 26 EMB no 289 [0.9] 473 [1.6] 11
12 Theorem 26 LPO no 341 [1.6] 341 [2.4] 91
13 Theorem 26 POLO-filter no 402 [1.7] 305 [1.9] 66
14 Theorem 26 POLO-7.1 no 408 [1.2] 350 [1.9] 15
15 Theorem 26 POLO-7.1+7.2 no 408 [1.1] 360 [2.0] 5
16 Theorem 26 POLO-7.1+7.2 older 465 [1.3] 253 [5.6] 55
17 Theorem 26 POLO-7.1+7.2 old 467 [1.3] 250 [5.5] 56
18 Theorem 26 POLO-7.1+7.2 (1)+(2) 441 [1.6] 314 [3.5] 18
19 Theorem 26 POLO-7.1+7.2 lim 386 [3.7] 144 [2.4] 243
20 Theorem 26 POLO-7.1+7.2 safe 480 [1.7] 217 [6.9] 76
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POLO-7.1 and further to POLO-7.1+7.2 reduces the overall runtime dramatically.
The reason is that now a failure can often be detected quickly for examples that led
to a time-out before. Thus, while the number of examples where termination can be
proved within the time limit increases only slightly, the number of time-outs reduces
substantially (by at least 77.2 % when going from POLO-filter to POLO-7.1 and
by at least 66.7 % when going from POLO-7.1 to POLO-7.1+7.2). This fast-failure
behavior of POLO-7.1+7.2 permits the use of further techniques in order to attempt
a termination proof within the time limit.

Examples for such additional techniques are the dependency pair transformations
from Section 5. If one uses the existing “older” transformations with our new
heuristic for their application (line 16), then power is increased by 5.7% (14.0% for
innermost termination). While the use of dependency pair transformations increases
power, it can of course also increase runtimes. This holds especially for innermost
termination proofs, since here the transformations are much more often applicable.
Definition 28 extends the dependency pair transformations in two ways: we pre-
sented more liberal applicability conditions for the transformations in the innermost
case, and we introduced a new forward instantiation transformation. While the new
applicability conditions lead only to a minor improvement of 0.4% in power (cf. the
“old” heuristic, line 17), the forward instantiation technique increases power again
by 4.1% (2.8% for innermost termination; cf. the “safe” heuristic in line 20).

We also evaluate our heuristic from Definition 33, which describes when to apply
dependency pair transformations. We consider two possible choices. The first is a
restriction to those transformations that make the DP problem “smaller,” that is,
correspond to Definition 33 (1) or (2); cf. line 18. Our experiments show that allowing
one additional narrowing, instantiation, and forward instantiation step (as in the
“safe” heuristic, line 20) has considerable advantages because it increases power
by 8.6% (8.8% for innermost termination). As a second choice, we tried a “lim”-
heuristic, which simply applies transformations up to a certain limit. The experiments
demonstrate that our “safe”-heuristic is significantly better: it increases power (in
particular for innermost termination, where the success rate is improved by 24.4%),
and it reduces runtimes dramatically because the “lim”-heuristic leads to extremely
many time-outs.

We also ran the experiment with the automatic mode of the newest AProVE-
version (AProVE 1.2), which features several additional techniques (e.g., semantic
labeling [44] and match-bounds [9]) in addition to the results of this paper. Now
AProVE proved termination of 576 examples while it disproved termination for 94
TRSs. Innermost termination was shown for 617 examples, while it was disproved for
61 TRSs. These results correspond exactly to the results ofAProVE in the termination
competition 2005 [42]. The average runtime for a successful proof was 2.3 s (2.6 s for
innermost termination), and the average time for a successful disproof was 2.7 s (2.9 s
for innermost termination). Finally, AProVE failed on 11 examples within the time
limit (14 for innermost termination), and the average runtime for these failures was
26.7 s for termination and 8.7 s for innermost termination.

To summarize, our experiments indicate that the contributions of the paper are
indeed useful in practice. This fact also holds if our results are combined with other
termination techniques.

While our experiments show that termination analysis of TRSs has reached a
stage where already many realistic examples can be treated automatically, future
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work should be devoted to the question of how these methods can be used in order
to analyze termination for programs from “real” programming languages. These
languages pose several additional challenges such as evaluation strategies, built-in
data types, partial functions, non-termination analysis, and higher-order functions.
We report our first results in this direction in [16, 18, 38].

Acknowledgements We thank the referees for many helpful remarks.
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