
Termination Analysis of Logic Programs based

on Dependency Graphs?

Manh Thang Nguyen1, Jürgen Giesl2, Peter Schneider-Kamp2, and
Danny De Schreye1

1 Department of Computer Science, K. U. Leuven, Belgium
{ManhThang.Nguyen, Danny.DeSchreye}@cs.kuleuven.be

2 LuFG Informatik 2, RWTH Aachen, Germany
{giesl, psk}@informatik.rwth-aachen.de

Abstract. This paper introduces a modular framework for termination
analysis of logic programming. To this end, we adapt the notions of de-
pendency pairs and dependency graphs (which were developed for term
rewriting) to the logic programming domain. The main idea of the ap-
proach is that termination conditions for a program are established based
on the decomposition of its dependency graph into its strongly connected
components. These conditions can then be analysed separately by pos-
sibly different well-founded orders. We propose a constraint-based ap-
proach for automating the framework. Then, for example, termination
techniques based on polynomial interpretations can be plugged in as a
component to generate well-founded orders.

1 Introduction

Termination analysis in logic programming (LP) traditionally aims at proving
that a given logic program terminates w.r.t. a specific set of queries. Termination
proofs are usually done by finding ranking functions that map the states of
the program to a sequence of elements of a well-founded domain such that the
sequence is decreasing w.r.t. the well-founded order of the domain. Practically, it
is sufficient to consider only the states that are involved in loops of the program.

Techniques in termination analysis of LPs can be divided into two groups: the
global versus the local approach [4, 6, 5, 8, 10, 12, 26]. In the global approach, one
wants to find only one ranking function for all loops [8, 10, 26]. In contrast,
techniques in the local approach apply different ranking functions for differ-
ent loops [4, 5, 12]. Some automated techniques in the global approach are based
on a constraint-based framework to search for a suitable ranking function. This
is done by first generating a set of symbolic constraints from all termination con-
ditions. Then, a constraint solver is used to solve the set of constraints, yielding
a suitable ranking function for the proof. In the local approach, most techniques
use a given small set of norms, and try to prove that (a combination of) these
norms can be applied for the termination proof of the program. It is unclear at

? Appeared in Proc. LOPSTR ’07, LNCS 4915, pages 8-22, 2008.

this stage whether a search for arbitrary norms in the local approach could also
be automated using a constraint-based technique like [10].

While the constraint-based global approach is very suitable for automation, it
has some drawbacks. Since it generates the constraints for all termination condi-
tions and solves them at once, it may be very time-consuming, especially for non-
terminating programs. This is because the time for solving a set of constraints
often increases exponentially with its size. Moreover, if a complex well-founded
order is needed for the termination proof (e.g., a lexicographical order), it is
often difficult to find such an order using the constraint-based global approach.

Example 1 (ack). Consider a logic program P computing the Ackermann func-
tion. We used a variant with a predecessor predicate p/2 in order to illustrate
how our technique handles local variables. We want to prove termination of this
program w.r.t. the set of queries S = {ack(t1, t2, t3) | t1 and t2 are ground terms,
t3 is an arbitrary term}.

p(s(X),X).

ack(0, X, s(X)).

ack(X, 0, Z) :− p(X,Y), ack(Y, s(0), Z).

ack(s(X), s(Y), Z) :− ack(s(X), Y, Z ′), ack(X,Z′, Z).

Proving termination of this example based on the local approach involves two
ranking functions: the first one measures the size of the first argument and
the other measures the size of the second argument of the predicate ack/3.
However, with the constraint-based global approach, it is impossible to find a
single ranking function for the termination proof (if one is restricted to ranking
functions based on polynomial interpretations). As a matter of fact, both tools
cTI [25] and Polytool [26, 27] fail to prove termination of this example.

In addition to the local and global approaches which work directly on logic
programs, there are also several transformational approaches which transform
logic programs to term rewrite systems (TRSs). One of the most recent tech-
niques in this line of work is [31]. However, as demonstrated in [31], it turned out
that there remain many LPs whose termination can currently only be proved
by tools working with direct approaches. (An example is the “der”-program
from [9, 26].) On the other hand, there are also many LPs where currently only
transformational tools succeed (e.g., the example “LP/SGST06-shuffle” from
the Termination Problem Data Base (TPDB) [32] that is used in the annual
International Competition of Termination Tools [24]). The present paper tries
to solve this problem by porting TRS-techniques so that they can be applied
to LPs directly. In this way, we intend to combine the advantages of direct and
transformational approaches. Indeed, a first prototypical implementation shows
that the new approach of the present paper can handle both the examples “der”
and “shuffle” above as well as other examples that could not be handled by any
tool up to now (e.g., “LP/SGST06-snake” from the TPDB).

More precisely, in this paper we introduce a modular framework for termi-
nation analysis of LPs. To this end, the dependency pair technique for termi-
nation analysis of TRSs introduced in [1] is adapted to the LP context. With

2

this new technique, termination analysis of programs like Ex. 1 can be done by
decomposing it into several simple sub-problems. Each of them can be solved
independently by using any suitable well-founded order.

We also propose a constraint-based approach for automating the approach
in which termination techniques based on polynomial interpretations can be
plugged in as a component to search for well-founded orders.

The paper is organised as follows. In Sect. 2, we provide some preliminaries.
In Sect. 3, we introduce a modular framework for proving termination of LPs
based on dependency graphs. In Sect. 4, we present a constraint-based approach
to automate the framework. Finally, we end with a conclusion in Sect. 5.

2 Preliminaries

A quasi-order on a set S is a reflexive and transitive binary relation % defined
on elements of S. In this paper, we use quasi-orders comparing atoms with each
other and comparing terms with each other. We define the associated equivalence
relation ≈ as s ≈ t iff s % t and t % s. A well-founded order on S is a transitive
relation � where there is no infinite sequence s0 � s1 � . . . with si ∈ S. A
reduction pair (%,�) consists of a quasi-order % and a well-founded order �
that are compatible (i.e., t1 % t2 � t3 implies t1 � t3).3

We assume familiarity with standard notions of logic programs. In the paper,
P denotes a pure logic program and TermP , AtomP denote the sets of terms
and atoms constructed from P respectively. Given an atom A, rel(A) is the
predicate occurring in A. Given two atoms A and B, we denote by mgu(A,B)
their most general unifier. A query Q is a finite sequence of atoms. We consider
termination of P w.r.t. Q using the left-to-right selection rule that is commonly
used in implementations of logic programming.4

Let S be a set of atomic queries. The call set, Call (P, S), is the set of all
atoms A, such that a variant of A is the selected atom in some derivation for
(P,Q), for some Q ∈ S. In this paper, we use ranking functions and reduction
pairs built from norms and level mappings [3]. A norm is a mapping ‖ · ‖ :
TermP → N. A level mapping is a mapping | · | : AtomP → N. An interargument
relation for a predicate p/n is a relation Rp/n = {p(t1, . . . , tn) | ti ∈ TermP ∧
ϕp(t1, . . . , tn)}, where (1) ϕp(t1, . . . , tn) is a formula of an arbitrary boolean
combination of inequalities, and (2) each inequality in ϕp is either si % sj or
si � sj , where si, sj are constructed from t1, . . . , tn by applying function symbols
of P . Rp/n is valid iff for every p(t1, . . . , tn) ∈ AtomP : P |= p(t1, . . . , tn) implies

3 In contrast to the definition of “reduction pairs” in term rewriting [21], for the theo-
retical results in Sect. 3 we do not require % and � to be closed under substitutions.
But to automate our method, in Sect. 4 we choose relations % and � that result
from polynomial interpretations and that are closed under substitutions.

4 By fixing the selection rule, methods for termination analysis can exploit this and
become much stronger. This is similar to termination analysis of term rewriting (in
particular, when using dependency pairs). Here, termination of innermost rewriting
is easier to show than termination of full rewriting.

3

p(t1, . . . , tn) ∈ Rp/n. A reduction pair (%,�) is rigid on a term or an atom A if
for all substitutions σ, we have A ≈ Aσ. A reduction pair (%,�) is rigid on a
set of terms or atoms if it is rigid on all its elements.

Example 2 (call set, norm, and level mapping for ack). We again regard the
program P and the set of queries S in Ex. 1. Then we have Call (P, S) =
S ∪ { p(t1, t2) | t1 is a ground term, t2 is a variable }. Consider the reduction
pair (%,�) which is induced5 by a norm ‖0‖ = 0, ‖s(t)‖ = 1 + ‖t‖, ‖X‖ = 0
for all variables X , and by an associated level mapping |p(t1, t2)| = 0 and
|ack(t1, t2, t3)| = ‖t1‖. Thus, we have s(0) � 0, ack(s(0), X, Y) � ack(0, X, Y),
and ack(0, X, Y) ≈ ack(0, 0, 0). Note that (%,�) is rigid on Call (P, S). An exam-
ple for a valid interargument relation w.r.t. (%,�) is Rp/2 = {p(t1, t2) | t1 � t2}.

3 Dependency Graphs in Logic Programming

Def. 3 adapts the notion of dependency pairs [1] from TRSs to the LP setting.

Definition 3 (dependency triple). A dependency triple is a tuple of three
elements 〈H, I,B〉 in which H and B are atoms and I is a list of atoms. For a
logic program P, we define the set DT (P) of all dependency triples as DT (P) =
{〈H, I,B〉 | H :− I, B, . . . ∈ P}.
Given a program, the number of its dependency triples is finite.

Example 4 (dependency triples of ack). Reconsider the program from Ex. 1. The
dependency triples DT (P) of the program are:

〈ack(X, 0, Z), [], p(X,Y)〉 (1)

〈ack(X, 0, Z), [p(X,Y)], ack(Y, s(0), Z)〉 (2)

〈ack(s(X), s(Y), Z), [], ack(s(X), Y, Z ′)〉 (3)

〈ack(s(X), s(Y), Z), [ack(s(X), Y, Z ′)], ack(X,Z′, Z)〉 (4)

Now we adapt the notion of the (estimated) dependency graph [1] from TRSs
to LPs.6 While “dependency triples” are related to the “binary clauses” of [5],
our notion of dependency graphs for LPs is similar to the “atom dependency
graph” of [12]. But in contrast to [12], we use dependency graphs to modularize
termination proofs such that several different reduction pairs can be used in the
termination proof of one program.

The nodes of the dependency graph are the dependency triples and there
must be an arc from a dependency triple N to a dependency triple M whenever
an attempt to solve the “proof goal” N could load to the “proof goal” M . To
estimate this, we use the notion of connectivity.

5 So for terms t1, t2 we define t1 (
%

)
t2 iff ‖t1‖ (

≥
)
‖t2‖ and for atoms A1, A2 we define

A1 (
%

)
A2 iff |A1| (≥)

|A2|.
6 Our notion should not be confused with the notion of the “(predicate) dependency

graph” from [2, 12, 28] that simply represents the dependencies between different
predicate symbols.

4

Definition 5 (connectivity). Let 〈H1, I1, B1〉 and 〈H2, I2, B2〉 be two depen-
dency triples. 〈H1, I1, B1〉 is connectable to 〈H2, I2, B2〉 iff B1 unifies with a
renamed apart variant of H2.

Example 6 (connectivity for ack ’s dependency triples). In Ex. 1, dependency
triple (2) is connectable to (3) and (4), and both dependency triples (3) and (4)
are connectable to all dependency triples (1), (2), (3), and (4).

Definition 7 (dependency graph). Let DT be a set of dependency triples.
The dependency graph associated with DT is a directed graph whose vertices
are the dependency triples DT and there is an arc from a vertex N to a vertex
M iff N is connectable to M . Let P be a logic program. The dependency graph
associated with DT (P) is called the dependency graph of P , denoted as DG(P).

Example 8 (dependency graph for ack). Fig. 1 shows the dependency graph for
the ack -program in Ex. 1.

Fig. 1. The dependency graph
for the ack -program.

Now every infinite execution of the pro-
gram corresponds to a cycle in the depen-
dency graph. In our setting, a set C 6= ∅ of
dependency triples is called a cycle if for all
N,M ∈ C there is a non-empty path from N
to M in the graph which only traverses depen-
dency triples of C. A cycle C is a strongly con-
nected component (SCC) if C is not a proper
subset of another cycle.

Note that in standard graph terminology,
a path N0 → N1 → . . . → Nk in a directed
graph forms a cycle if N0 = Nk and k ≥ 1.
In our context we identify cycles with the set
of elements that occur in it, i.e., we call {N0, N1, . . . , Nk−1} a cycle, cf. [15].
Since a set never contains multiple occurrences of an element, this results in
several cycling paths being identified with the same set. Similarly, an SCC is a
graph in standard graph terminology, whereas we identify an SCC with the set
of elements occurring in it. Then indeed, SCCs are the same as maximal cycles.

Example 9 (cycles and SCCs for ack). The dependency graph in Fig. 1 has six
cycles C1 = {(3)}, C2 = {(4)}, C3 = {(2), (3)}, C4 = {(2), (4)}, C5 = {(3), (4)},
C6 = {(2), (3), (4)}, and one strongly connected component C6 = {(2), (3), (4)}.

Note that each vertex in the dependency graph corresponds to a possible
transition from one state to another state in the computational execution of
the program. Each loop of the execution corresponds to a cycle in the graph.
Intuitively, a program is terminating if there is no cycle in the graph which is
traversed infinitely many times.

To use dependency graphs for termination proofs, we proceed as in [1, 16, 19].
The idea is to inspect each SCC of the dependency graph separately and to
find a reduction pair (%,�) such that some dependency triples of the SCC

5

are strictly decreasing (w.r.t. �) and all others are weakly decreasing (w.r.t.
%). The following definition formalizes when a dependency triple is considered
to be “decreasing”. It relies on interargument relations for the predicates of
the program. Sect. 4 explains how to synthesize such interargument relations
and how to find reduction pairs automatically that make dependency triples
“decreasing”.

Definition 10 (decreasing dependency triples). Let P be a program. Let
(%,�) be a reduction pair and R = {Rp1 , . . . , Rpk} be a set of interargument
relations based on (%,�) for the predicates p1, . . . , pk defined in P . Let N =
〈H, [I1, . . . , In], B〉 be a dependency triple in DT (P). N is weakly decreasing
(denoted (%, R) |= N) if Hσ % Bσ holds for any substitution σ where (%,�)
is rigid on Hσ and where I1σ ∈ Rrel(I1), . . . , Inσ ∈ Rrel(In). Analogously, N is
strictly decreasing (denoted (�, R) |= N) if Hσ � Bσ holds for any such σ.

Example 11 (decreasing dependency triples for ack). Consider the reduction pair
(%,�) from Ex. 2. Let R be the set of valid interargument relations where
Rack/3 = {ack(t1, t2, t3) | t1, t2, t3 ∈ TermP} and where Rp/2 is defined as in
Ex. 2. Then we have (�, R) |= (2). The reason is that for any substitution
σ where (%,�) is rigid on ack(X, 0, Z)σ (i.e., where Xσ is a ground term)
and where p(X,Y)σ ∈ Rp/2 (i.e., where Xσ � Y σ), we have ack(X, 0, Z)σ �
ack(Y, s(0), Z)σ. Similarly, we also have (%, R) |= (3) and (�, R) |= (4).

Note that we can restrict ourselves to those SCCs of the dependency graph
that can be invoked by calls from Call (P, S). The reason is that only those SCCs
can be involved in loops of the execution of the program P , when starting with
a query from S. Therefore, we define which SCCs are reachable from Call (P, S).

Definition 12 (reachable SCCs). Let P be a program, S be a set of atomic
queries, and N = 〈H, [I1, . . . , In], B〉 be a dependency triple. N is reachable from
Call (P, S) if there is an A ∈ Call (P, S) such that A unifies with a renamed apart
variant of H. An SCC C in DG(P) is reachable from Call (P, S) if there is an
N ∈ C which is reachable from Call (P, S).

In the ack -example, the only SCC in the dependency graph is reachable from
the set Call (P, S) of Ex. 2. But if the ack -program contained another clause
“q :− q”, then the SCC with the resulting dependency triple 〈q, [], q〉 would not
be reachable from the call set of Ex. 2. Since it suffices to prove absence of infinite
loops only for the reachable SCCs, one could then still prove termination of all
queries from S. But if one had to regard all SCCs, then the termination proof
would fail, since the SCC with the dependency triple 〈q, [], q〉 gives rise to an
infinite loop. The set of reachable SCCs can easily be (over-)approximated auto-
matically as soon as one has an (over-)approximation of Call (P, S), cf. Sect. 4.

To prove termination, we select an arbitrary reachable SCC C of the depen-
dency graph. Then, we try to find a reduction pair (%,�) such that some de-
pendency triples C� ⊆ C are strictly decreasing and all other dependency triples
(from C \ C�) are weakly decreasing. This means that the strictly decreasing

6

dependency triples from C� can never “occur” infinitely often in any execution
of the program. Thus, we remove the vertices C� (and all edges originating or
ending in these vertices) from the dependency graph. Afterwards the procedure
is repeated (with a possibly different reduction pair). If one finally ends up with
a graph without reachable SCCs, then termination of the program is proved.

In this way, our method can use different reduction pairs for different SCCs
of the dependency graph. Moreover, one can also use several different reduction
pairs in the termination analysis of one single SCC, since SCCs are handled in
an incremental way by removing one dependency triple after the other.

However, in our approach we may only use reduction pairs (%,�) that are
rigid on Call (P, S). This prevents an increase of atoms and terms due to further
instantiations in subsequent derivation steps. For details, we refer to [26].

Definition 13 (acceptability). Let P be a program and S be a set of atomic
queries. A subgraph G of the dependency graph DG(P) is called acceptable w.r.t.
S iff either G has no SCC reachable from Call (P, S) or else, G has such an SCC
C and there is a reduction pair (%,�) and a set of valid interargument relations
R = {Rp1 , . . . , Rpk} based on (%,�) for the predicates p1, . . . , pk in P , such that

• (%,�) is rigid on Call (P, S),
• there is a non-empty subset C� ⊆ C such that (�, R) |= N for all N ∈ C�

and (%, R) |= N for all N ∈ C \ C�, and
• the graph resulting from G by removing all vertices in C� is also acceptable.

Example 14 (termination of ack). The dependency graph of the ack -program in
Fig. 1 has only one SCC. First, we select a reduction pair (%,�). We re-use the
reduction pair from Ex. 2 and the valid interargument relations R from Ex. 11.
As shown in Ex. 11, then (2) and (4) are strictly decreasing, whereas (3) is only
weakly decreasing. Thus, we remove (2) and (4) from the dependency graph.

The remaining graph has only one vertex (3) and an edge from (3) to itself.
Thus, now the only SCC is {(3)}. We select another reduction pair (%′,�′) which
is defined by the same norm || · || as in Ex. 2 and by a new level mapping with
|ack(t1, t2, t3)| = ‖t2‖. Now we have (�′, R) |= (3), i.e., (3) can be removed.

The remaining graph is empty and thus, it has no SCC. Hence, termination
of the ack -program is proved.

The following theorem states the soundness of our approach.7

Theorem 15 (soundness). A program P is terminating w.r.t. a set of atomic
queries S if its dependency graph DG(P) is acceptable w.r.t. S.

Proof. If P is not terminating w.r.t. S, then there is an A ∈ Call (P, S), an
infinite sequence of (variable renamed) dependency triples N0, N1, . . . with Ni =
〈Hi, [Ii1, . . . , Iini], Bi〉, and substitutions θ0, θ1, . . . and σ0, σ1, . . . such that

7 Note that the proof of Thm. 15 is similar to the one for the dependency pair method
in [1]. So in contrast to the “local approaches” [4, 5, 12] for logic programs and the
size-change-based methods [23, 29, 33] for other programming paradigms, Thm. 15
does not rely on Ramsey’s theorem [6, 30].

7

• θ0 = mgu(A,H0)

• σi is a computed answer substitution for the query (Ii1, . . . , Iini)θi
• θi+1 = mgu(Biθiσi, Hi+1)

Since there is an edge from Ni to Ni+1 for all i in the dependency graph, the
sequence N0, N1, . . . contains an infinite tail which traverses a cycle of the de-
pendency graph infinitely often.

For any subgraphG of the dependency graph, we show that if this infinite tail
is contained in G, then G cannot be acceptable. We use induction on the number
of vertices in G. The claim is obviously true if G does not contain any SCC
reachable from Call (P, S). Thus, let G contain a reachable SCC C as in Def. 13.
If the infinite tail is still contained in the acceptable subgraph resulting from
removing all vertices from C�, the claim follows from the induction hypothesis.

It remains to regard the case where the infinite tailNi, Ni+1, . . . only traverses
dependency triples from C and where a dependency triple from C� is traversed
infinitely often. Thus, we obtain an infinite sequence

Hiθi ≈ (by rigidity, since Hiθi = Bi−1θi−1σi−1θi
and Bi−1θi−1σi−1 ∈ Call(P, S))

Hiθiσiθi+1 %
Biθiσiθi+1 =
Hi+1θi+1 ≈ (by rigidity, since Hi+1θi+1 = Biθiσiθi+1

and Biθiσi ∈ Call(P, S))
Hi+1θi+1σi+1θi+2 %
Bi+1θi+1σi+1θi+2 =
. . .

where infinitely many %-steps are “strict” (i.e., we can replace infinitely many
%-steps by “�”). This is a contradiction to the well-foundedness of �. ut

Thm. 15 can be considered an extension of Thm. 1 in [9], where a strict
decrease is required for every (mutually) recursive clause of the program, instead
of a decrease on the SCCs as in our theorem above. In particular, Ex. 1 cannot
be solved using Thm. 1 of [9].

The converse direction of Thm. 15 does not hold since “acceptability” requires
the reduction pair to be rigid on Call (P, S). Hence, the program with the two
clauses “p(X) :− q(X,Y), p(Y)” and “q(a, b)” and the set of queries S = {p(X)}
from [9] is a counterexample to the completeness direction of Thm. 15.

4 Toward automation

Now we discuss how to automate our approach. In Sect. 4.1, we present a general
algorithm to mechanize the technique of Def. 13 and Thm. 15. Then, in Sect.
4.2 we show how to plug in existing approaches for the generation of polynomial
interpretations in order to synthesize suitable reduction pairs automatically.

8

4.1 A general framework

Def. 13 and Thm. 15 provide a method to detect termination of a program P
w.r.t. a set of queries S. The method can be automated as follows:

1. Compute the dependency graph DG(P) and remove all vertices which are not
reachable from Call (P, S). Decompose the remaining graph into its SCCs.

2. If the set of SCCs is empty, stop with “success” (the program is terminating).
Otherwise, select one SCC from the set.

3. If the selected SCC cannot be proved to be acceptable, we stop with “fail”
(the program may be non-terminating). If the SCC is acceptable, we delete
the strictly decreasing vertices from it and decompose the remaining graph
into its SCCs. We add this set of SCCs to the remaining set of SCCs and
continue with Step 2.

Step 1 guarantees that all remaining vertices and hence, also all remain-
ing SCCs are reachable from Call (P, S). Therefore, it is obvious that all SCCs
decomposed later in Step 3 are also reachable from Call (P, S).

Fig. 2. Our algorithm to verify
termination of programs.

Fig. 2 shows an algorithm based on Step
1-3. In the figure, reach(G) removes all de-
pendency triples from the dependency graph
G which are not reachable from Call (P, S),
gcc(G) computes the set of SCCs of a graph
G, select(S) returns an element selected
from the set S, minus(S1, S2) returns a set
containing all elements that are in the set
S1 but not in S2, “:=” is the assignment
and “=” is the comparison operator. The
function exist(G,O) checks if there exists a
reduction pair and a set of interargument
relations such that G is acceptable. If yes,
then the reduction pair is assigned to O. The
function induce(G,O) returns a graph which
results from G by removing all vertices N
where (�, R) |= N and their related arcs.
Finally, union(S1, S2) returns a set that is
the union of the sets S1 and S2.

Since Call (P, S) can be infinite in gen-
eral, it is undecidable whether a dependency
triple is reachable from Call (P, S). Heuris-
tically, it can be done by first abstracting
Call (P, S) to a finite set of call patterns and
then checking if there exists a call pattern
which unifies with the vertex [26, 27].

The function exist(G,O) is the core of
the algorithm. Interestingly, it does not force
us to use a fixed type of orders. Therefore,

9

the algorithm can be considered a framework where different termination tech-
niques for finding well-founded orders can be plugged in to support the function
exist(G,O). In Sect. 4.2, we discuss how the termination analysis technique based
on polynomial interpretations from [26, 27] can be applied to the framework.

4.2 Generating well-founded orders

Since arbitrary techniques can be applied to search for reduction pairs required
in the function exist(G,O), an obvious option is to use polynomial interpre-
tations, one of the most powerful techniques in termination analysis of logic
programming and term rewriting systems [7, 14, 20, 22, 26, 27].8 The main idea
of the technique is to map each function and predicate symbol to a polynomial,
under a polynomial interpretation | · |I . The polynomials are considered as func-
tions of type N × . . . × N → N, and the coefficients of the polynomials are also
in N. In this way, terms and atoms are mapped to polynomials as well.

Example 16 (polynomial interpretation for ack). The norm and level mapping
of Ex. 2 correspond to the polynomial interpretation |0|I = 0, |s(X)|I = 1 +
X, |p(X,Y)|I = 0, |ack(X,Y, Z)|I = X . So we have |ack (s(X), s(Y), Z)|I =
|s(X)|I = 1 +X and |ack (X,Z ′, Z)|I = |X |I = X .

For any polynomial interpretation I , we define a quasi-order %I on terms
and atoms: t1 %I t2 iff |t1|I ≥ |t2|I holds for all instantiations of the variables
in the polynomials |t1|I and |t2|I by natural numbers. (It suffices to regard only
natural numbers n where n ≥ |c|I for all (constant) function symbols c/0 of P .)
Similarly, the well-founded order �I is defined as t1 �I t2 iff |t1|I > |t2|I holds
for all instantiations of the variables in the polynomials |t1|I and |t2|I by such
natural numbers. Obviously, (%I ,�I) is always a reduction pair. Moreover, a
term or atom t is rigid w.r.t. (%I ,�I) iff |t|I contains no variables.

Now, all conditions in Def. 13 can be stated as constraints on polynomials.
A reduction pair (%I ,�I) satisfies the conditions in Def. 13 iff the polynomial
interpretation | · |I satisfies the resulting constraints on the polynomials.

Of course, we do not choose a particular polynomial interpretation. Instead,
we want to search for a suitable one automatically. In the philosophy of the
constraint-based approach in [10, 27], we introduce a general symbolic form for
the polynomial associated with each predicate and function symbol, and for
interargument relations. Since there is no finite symbolic representation for all
possible polynomials, we restrict ourselves to fixed types of polynomials. For
example, each function and predicate symbol can be associated with a linear
polynomial and each interargument relation for a predicate can be expressed in
linear form as follows.9 Here, fi, p

L
i , and pRi are “abstract” symbolic coefficients.

8 Other possible options would be recursive path orders [11], matrix orders [13], etc.
9 As already observed for term rewriting, in the vast majority of examples, linear

polynomial interpretations are already sufficient if they are used in connection with
the dependency pair method. But of course, our approach also permits the use of
polynomials with higher degree.

10

In order to complete the termination proof, one has to find suitable instantiations
of these coefficients with natural numbers.

• |f(X1, . . . , Xn)|I = f0 +
∑n

i=1 fiXi,
• Rp/n = { p(t1, . . . , tn) | pL0 +

∑n
i=1 p

L
i |ti|I ≥ pR0 +

∑n
i=1 p

R
i |ti|I }.

Based on the symbolic forms for polynomial interpretations and interargu-
ment relations, all termination conditions expressed in Def. 13 can also be re-
formulated symbolically. Specifically, the conditions for the function exist(G,O)
(which checks whether G is acceptable) are expressed as a set of polynomial
constraints with symbolic coefficients (e.g. fi, p

L
i , p

R
i , . . .). The central question

is how to search for an instantiation of these symbolic coefficients such that the
set of constraints is satisfied. In [27], we introduced a transformational approach
to transform all constraints into a sufficient set of Diophantine constraints on
natural numbers where all unknown symbolic coefficients become variables (cf.
also [20]). A solution for the Diophantine constraints gives a suitable reduction
pair (%I ,�I) and a set of valid interargument relations based on the reduction
pair. Finding such a solution can be done by using any available Diophantine
constraint solver, e.g. [7, 14]. Finally, the rigidity condition can be symbolised
based on the rigid type graph. For more details, we refer to [26, 27].

Example 17 (symbolic termination conditions for ack). Reconsider Ex. 1. We
define an “abstract” symbolic polynomial interpretation as |0|I = c, |s(X)|I =
s0 +s1X , |p(X,Y)|I = p0 +p1X+p2Y , |ack(X,Y, Z)|I = a0 +a1X+a2Y +a3Z,
and a set of interargument relations R = {Rp/2, Rack/3} with

Rp/2 = {p(t1, t2) | pL0 + pL1 |t1|I + pL2 |t2|I ≥
pR0 + pR1 |t1|I + pR2 |t2|I }

Rack/3 = {ack (t1, t2, t3) | aL0 + aL1 |t1|I + aL2 |t2|I + aL3 |t3|I ≥
aR0 + aR1 |t1|I + aR2 |t2|I + aR3 |t3|I }.

The conditions for acceptability of the dependency graph can be reformulated
as follows:

1. For any dependency triple N ∈ {(2), (3), (4)}, we require (%I , R) |= N :

∀X,Y, Z [pL0 + pL1X + pL2 Y ≥ pR0 + pR1 X + pR2 Y
⇒ a0 + a1X + a2c+ a3Z ≥ a0 + a1Y + a2(s0 + s1c) + a3Z] ∧

∀X,Y, Z, Z′ [a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z ≥
a0 + a1(s0 + s1X) + a2Y + a3Z

′] ∧

∀X,Y, Z, Z′ [aL0 + aL1 (s0 + s1X) + aL2 Y + aL3 Z
′ ≥

aR0 + aR1 (s0 + s1X) + aR2 Y + aR3 Z
′

⇒ a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z ≥
a0 + a1X + a2Z

′ + a3Z]

2. There exists some dependency triple N ∈ {(2), (3), (4)} with (�I , R) |= N :

11

∀X,Y, Z [pL0 + pL1X + pL2 Y ≥ pR0 + pR1 X + pR2 Y
⇒ a0 + a1X + a2c+ a3Z > a0 + a1Y + a2(s0 + s1c) + a3Z] ∨

∀X,Y, Z, Z′ [a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z >
a0 + a1(s0 + s1X) + a2Y + a3Z

′] ∨
∀X,Y, Z, Z′ [aL0 + aL1 (s0 + s1X) + aL2 Y + aL3 Z

′ ≥
aR0 + aR1 (s0 + s1X) + aR2 Y + aR3 Z

′

⇒ a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z >
a0 + a1X + a2Z

′ + a3Z]

3. The valid interargument condition for p/2:

∀X [pL0 + pL1 (s0 + s1X) + pL2X ≥ pR0 + pR1 (s0 + s1X) + pR2 X]

4. The valid interargument condition for ack/3:

∀X [aL0 + aL1 c + aL2X + aL3 (s0 + s1X) ≥ aR0 + aR1 c+ aR2 X + aR3 (s0 + s1X)] ∧
∀X,Y, Z [pL0 + pL1X + pL2 Y ≥ pR0 + pR1 X + pR2 Y

∧ aL0 + aL1 Y + aL2 (s0 + s1c) + aL3 Z ≥
aR0 + aR1 Y + aR2 (s0 + s1c) + aR3 Z

⇒ aL0 + aL1X + aL2 c+ aL3 Z ≥ aR0 + aR1 X + aR2 c+ aR3 Z] ∧
∀X,Y, Z, Z′ [aL0 + aL1 (s0 + s1X) + aL2 Y + aL3 Z

′ ≥
aR0 + aR1 (s0 + s1X) + aR2 Y + aR3 Z

′

∧ aL0 + aL1X + aL2 Z
′ + aL3 Z ≥

aR0 + aR1 X + aR2 Z
′ + aR3 Z

⇒ aL0 + aL1 (s0 + s1X) + aL2 (s0 + s1Y) + aL3 Z ≥
aR0 + aR1 (s0 + s1X) + aR2 (s0 + s1Y) + aR3 Z]

5. The rigidity property for Call (P, S) = {ack(t1, t2, t3) | t1 and t2 are ground
terms, t3 is an arbitrary term }∪{p(t1, t2) | t1 is a ground term, t2 is a variable }:

p2 = 0 ∧ a3 = 0

All the constraints above are satisfied by the following instantiation of the sym-
bolic variables: c = 0, s0 = s1 = 1, p0 = p1 = p2 = 0, a0 = 0, a1 = 1,
a2 = a3 = 0, pL0 = 0, pL1 = 1, pL2 = 0, pR0 = pR1 = 1, pR2 = 0 and aLi = aRi = 0
for all i ∈ {0, 1, 2, 3}. This instantiation turns the abstract polynomial inter-
pretation of Ex. 17 into the concrete polynomial interpretation of Ex. 16 (i.e.,
now it corresponds to the norm and level mapping of Ex. 2). Similarly, the
“abstract” interargument relations of of Ex. 17 are turned into the concrete in-
terargument relations of Ex. 2 and Ex. 11 (i.e., Rp/2 = {p(t1, t2) | t1 �I t2} and
Rack/3 = {ack(t1, t2, t3) | t1, t2, t3 ∈ TermP}).

So instead of fixing a polynomial interpretation and interargument relations
before performing the termination proof, now we only fix the degree of the poly-
nomials used in the polynomial interpretation (e.g., linear or quadratic ones).
Then we can automatically generate symbolic constraints and try to solve them
afterwards. In this way, suitable polynomial interpretations and interargument
relations can be synthesized fully automatically.

12

5 Conclusion

We have introduced a new framework for termination analysis of LPs based
on dependency triples and dependency graphs. Although the notion of depen-
dency pairs and dependency graphs is very popular in the domain of termination
analysis of TRS [1, 15, 16, 18, 19], this is the first time that it is applied for LP
termination analysis directly. Our contribution is twofold: (1) it results in a
weaker condition for verifying termination of LPs, where the decrease condition
is established for the strongly connected components of the dependency graph,
instead of at the clause level as it has been done before; (2) it introduces a mod-
ular approach in which termination conditions can be separated into different
groups, each of which can be treated independently by automatically searching
for different suitable well-founded orderings.

A difference between the dependency pair approach for TRSs and our ap-
proach is that instead of separating between defined symbols and constructors
as for TRSs, we separate between predicate and function symbols of the LP.
Another main difference is that in the dependency pair method for TRSs, one
requires a weak decrease for the rules of the TRS in order to take the effect of
“nested” functions in recursive arguments into account. In the LP-context, these
nested functions correspond to body atoms preceding recursive calls. We store
these atoms in an additional component of the dependency pair (yielding depen-
dency triples) and take their effect into account by considering interargument
relations.

The authors of this paper were involved in the implementation of two of the
most powerful automated termination analysers for LPs (Polytool which follows
the approach of [26, 27] and AProVE [17] which transforms LPs to TRSs and
then tries to prove termination of the resulting TRS [31].) AProVE was the most
successful termination prover for logic programs, functional programs, and term
rewrite systems in all annual International Competitions of Termination Tools
2004 - 2007 [24], where Polytool obtained a close second place for logic programs
in the 2007 competition. As mentioned in [31], there exist many LPs where
termination can currently only be proved by transformational tools like AProVE
and there are also many examples where the termination proof only succeeds
with direct tools like Polytool, cf. Sect. 1. Our current work intends to combine
the advantages of both approaches by adapting TRS-techniques like dependency
pairs to direct termination approaches for LPs. While the present paper only
adapted basic concepts of the dependency pair method to the LP setting, in the
future we will also try to adapt further more sophisticated “dependency pair
processors” [16, 18] as well.

Currently, we are working on an implementation of the results of this pa-
per within Polytool. Here, we try to re-use algorithms from the dependency pair
implementation of AProVE. As mentioned in Sect. 1, a first prototypical im-
plementation already shows that in this way one can handle (a) examples that
could up to now only be solved with direct tools such as [26, “der”], (b) ex-
amples that could up to now only be solved with transformational tools based
on dependency pairs such as [32, “LP/SGST06-shuffle”], as well as (c) exam-

13

ples like [32, “LP/SGST06-snake”] that could not be solved by any tool up to
now. Note that the Diophantine constraints resulting from our new approach
according to Sect. 4 are usually smaller and simpler than the ones generated by
the previous version of Polytool [26, 27]. But already in the previous version of
Polytool, solving these constraints automatically was no problem in practice. (To
this end, the SAT-based constraint solver of AProVE was used [14].) Thus, this
solver will also be used for the automatic generation of the required polynomial
interpretations and interargument relations in our new approach.

6 Acknowledgement

We are grateful to the referees for many helpful suggestions. Manh Thang Nguyen
is supported by FWO/2006/09: Termination analysis: Crossing paradigm bor-
ders. Peter Schneider-Kamp and Jürgen Giesl are supported by the Deutsche
Forschungsgemeinschaft (DFG), grant GI 274/5-1.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236(1-2):133–178, 2000.

2. R. N. Bol, K. R. Apt, and J. W. Klop. An analysis of loop checking mechanisms
for logic programs. Theoretical Computer Science, 86(1):35–79, 1991.

3. A. Bossi, N. Cocco, and M. Fabris. Norms on terms and their use in proving univer-
sal termination of a logic program. Theoretical Computer Science, 124(2):297–328,
1994.

4. M. Bruynooghe, M. Codish, J. P. Gallagher, S. Genaim, and W. Vanhoof. Termi-
nation analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems, 29(2), 2007.

5. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

6. M. Codish and S. Genaim. Proving termination one loop at a time. In Proc.
WLPE ’03, 2003.

7. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving
termination using polynomial interpretations. Journal of Automated Reasoning,
34(4):325–363, 2005.

8. D. De Schreye, K. Verschaetse, and M. Bruynooghe. A framework for analyzing
the termination of definite logic programs with respect to call patterns. In Proc.
FGCS ’92, pages 481–488, 1992.

9. D. De Schreye and A. Serebrenik. Acceptability with general orderings. In Compu-
tational Logic: Logic Programming and Beyond, LNCS 2407, pages 187–210. 2002.

10. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint-based automatic
termination analysis of logic programs. ACM Transactions on Programming Lan-
guages and Systems, 21(6):1137–1195, 1999.

11. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1-
2):69–116, 1987.

12. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general frame-
work for automatic termination analysis of logic programs. Applicable Algebra in
Engineering, Communication and Computing, 12(1,2):117–156, 2001.

14

13. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. In Proc. IJCAR ’06, LNAI 4130, pages 574–588,
2006.

14. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proc.
SAT ’07, LNCS 4501, pages 340–354, 2007.

15. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

16. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR ’04, LNAI
3452, pages 301–331, 2005.

17. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. IJCAR ’06, LNAI 4130,
pages 281–286, 2006.

18. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

19. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1-2):172–199, 2005.

20. H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated
Reasoning, 21(1):23–38, 1998.

21. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.
In Proc. PPDP ’99, pages 48–62, 1999. LNCS 1702.

22. D. S. Lankford. On proving term rewriting systems are Noetherian. Technical
Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

23. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. In Proc. POPL ’01, pages 81–92, 2001.

24. C. Marché and H. Zantema. The termination competition. In Proc. RTA ’07, LNCS
4533, pages 303–313, 2007. See also the website http://www.lri.fr/~marche/

termination-competition.
25. F. Mesnard and R. Bagnara. cTI: A constraint-based termination inference tool

for ISO-Prolog. Theory and Practice of Logic Programming, 5(1, 2):243–257, 2005.
26. M. T. Nguyen and D. De Schreye. Polynomial interpretations as a basis for termi-

nation analysis of logic programs. In Proc. ICLP ’05, LNCS 3668, pages 311–325,
2005.

27. M. T. Nguyen and D. De Schreye. Polytool: Proving termination automatically
based on polynomial interpretations. In Proc. LOPSTR ’06, LNCS 4407, pages
210–218, 2007. Extended version appeared as Technical report, Department of
Computer Science, K. U. Leuven, Belgium.

28. L. Plümer. Termination Proofs for Logic Programs. Springer-Verlag, 1990.
29. A. Podelski and A. Rybalchenko. Transition invariants. In Proc. LICS ’04, pages

32–41, 2004.
30. F. P. Ramsey. On a problem of formal logic. Proc. London Math. Society, 30:264–

286, 1930.
31. P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated termi-

nation analysis for logic programs by term rewriting. In Proc. LOPSTR ’06, LNCS
4407, pages 177–193, 2007.

32. The termination problem data base. http://www.lri.fr/~marche/tpdb.
33. R. Thiemann and J. Giesl. The size-change principle and dependency pairs for

termination of term rewriting. Applicable Algebra in Engineering, Communication
and Computing, 16(4):229–270, 2005.

15

