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Abstract. In very recent work, we introduced a non-termination pre-
serving transformation from logic programs with cut to definite logic
programs. While that approach allows us to prove termination of a large
class of logic programs with cut automatically, in several cases the trans-
formation results in a non-terminating definite logic program.

In this paper we extend the transformation such that logic programs
with cut are no longer transformed into definite logic programs, but into
dependency triple problems. By the implementation of our new method
and extensive experiments, we empirically evaluate the practical benefit
of our contributions.

1 Introduction

Automated termination analysis for logic programs has been widely studied, see,
e.g., ([3–5, 13, 15, 16, 19]). Still, virtually all existing techniques only prove uni-
versal termination of definite logic programs, which do not use the cut “!”.3

But most realistic Prolog programs make use of the cut or related operators
such as negation as failure (“\+”) or if then else (“−> ... ; ...”), which can be
expressed using cuts. In [18] we introduced a non-termination preserving auto-
mated transformation from logic programs with cut to definite logic programs.
The transformation consists of two stages. The first stage is based on construct-
ing a so-called termination graph from a given logic program with cut. The
second stage is the generation of a definite logic program from this termination
graph. In this paper, we improve the second stage of the transformation. In-
stead of generating a definite logic program from the termination graph, we now

? Supported by the DFG grant GI 274/5-3, the DFG Research Training Group 1298
(AlgoSyn), and the Danish Natural Science Research Council.

3 An exception is [12], which presents a transformation of “safely-typed” logic pro-
grams to term rewrite systems. However, the resulting rewrite systems are quite
complex and since there is no implementation of [12], it is unclear whether they can
indeed be handled by existing termination tools from term rewriting. Moreover, [12]
does not allow programs with arbitrary cuts (e.g., it does not operate on programs
like the one in Ex. 1).



generate a dependency triple problem. The goal is to improve the power of the
approach, i.e., to succeed also in many cases where the transformation of [18]
yields a non-terminating definite logic program.

Dependency triples were introduced in [14] and improved further to the so-
called dependency triple framework in [17]. The idea was to adapt the successful
dependency pair framework [2, 8–10] from term rewriting to (definite) logic pro-
gramming. This resulted in a completely modular method for termination anal-
ysis of logic programs which even allowed to combine “direct” and “transforma-
tional” methods within the proof of one and the same program. The experiments
in [17] showed that this leads to the most powerful approach for automated ter-
mination analysis of definite logic programs so far. Our aim is to benefit from
this work by providing an immediate translation from logic programs with cut
(resp. from their termination graphs) to dependency triple problems.

This paper is structured as follows. After a short section on preliminaries, we
recapitulate the construction of termination graphs in Sect. 3 and we demon-
strate their transformation into definite logic programs in Sect. 4. Then, in Sect. 5
we illustrate the idea of dependency triples and introduce a novel transforma-
tion of termination graphs into dependency triple problems. We show that this
new transformation has significant practical advantages in Sect. 6 and, finally,
conclude in Sect. 7.

2 Preliminaries

See e.g. [1] for the basics of logic programming. We distinguish between individ-
ual cuts to make their scope explicit. Thus, we use a signature Σ containing all
predicate and function symbols as well as all labeled versions of the cut operator
{!m/0 | m ∈ N}. For simplicity we just consider terms T (Σ,V) and no atoms,
i.e., we do not distinguish between predicate and function symbols.4 A query
is a sequence of terms from T (Σ,V). Let Goal(Σ,V) be the set of all queries,
where � is the empty query. A clause is a pair H ← B where the head H is
from T (Σ,V) and the body B is a query. A logic program P (possibly with cut)
is a finite sequence of clauses. Slice(P, t) are all clauses for t’s predicate, i.e.,
Slice(P, p(t1, ..., tn)) = {c | c = “p(s1, ..., sn)← B” ∈ P}.

A substitution σ is a function V → T (Σ,V) and we often denote its appli-
cation to a term t by tσ instead of σ(t). As usual, Dom(σ) = {X | Xσ 6= X}
and Range(σ) = {Xσ | X ∈ Dom(σ)}. The restriction of σ to V ′ ⊆ V is
σ|V′(X) = σ(X) if X ∈ V ′, and σ|V′(X) = X otherwise. A substitution σ is the
most general unifier (mgu) of s and t iff sσ = tσ and, whenever sγ = tγ for some
other unifier γ, there exists a δ such that Xγ = Xσδ for all X ∈ V(s) ∪ V(t). If
s and t have no mgu, we write s 6∼ t.

Let Q be a query A1, . . . , Am, let c be a clause H ← B1, . . . , Bk. Then Q′ is
a resolvent of Q and c using θ (denoted Q `c,θ Q′) if θ is the mgu of A1 and H,
and Q′ = (B1, . . . , Bk, A2, . . . , Am)θ.
4 To ease the presentation, in the paper we exclude terms with cuts !m as proper

subterms.



A derivation of a program P and Q is a possibly infinite sequence Q0, Q1, . . .
of queries with Q0 = Q where for all i, we have Qi `ci+1,θi+1 Qi+1 for some
substitution θi+1 and some fresh variant ci+1 of a clause from P. For a derivation
Q0, . . . , Qn as above, we also write Q0 `nP,θ1...θn

Qn or Q0 `nP Qn, and we also
write Qi `P Qi+1 for Qi `ci+1,θi+1 Qi+1. The query Q terminates for P if all
derivations of P and Q are finite, i.e., if `P is terminating for Q. Answer(P, Q)
is the set of all substitutions δ such that Q `nP,δ � for some n ∈ N.

Finally, to denote the term resulting from replacing all occurrences of a func-
tion symbol f in a term t by another function symbol g, we write t[f/g].

3 Termination Graphs

To illustrate the concepts and the contributions of this paper, we use the fol-
lowing leading example. While this example has been designed for this purpose,
as demonstrated in Sect. 6, our contributions also have a considerable effect for
termination analysis of “general” logic programs with cut.

Example 1. The following clauses define a (simplified) variant of the logic pro-
gram Stroeder09/giesl97.pl from the Termination Problem Data Base [23]
that is used in the annual international Termination Competition [22]. This ex-
ample formulates a functional program from [7, 24] with nested recursion as a
logic program. Here, the predicate p is used to compute the predecessor of a
natural number while eq is used to unify two terms.

f(0, Y )← !, eq(Y, 0). (1)
f(X,Y )← p(X,P ), f(P,U), f(U, Y ). (2)
p(0, 0). (3)

p(s(X), X). (4)
eq(X,X). (5)

Note that when ignoring cuts, this logic program is not terminating for the set
of queries {f(t1, t2) | t1 is ground}. To see this, consider the following derivation:
f(0, A) ` p(0, P ), f(P,U), f(U,A) `{P/0} f(0, U), f(U,A) ` eq(U, 0), f(U,A) `{U/0}
f(0, A). Clearly, this leads to an infinite (looping) derivation.

Fig. 1 recapitulates the formulation of the operational semantics of logic
programming with cut that we introduced in [18]. A formal proof on the cor-
respondence of our inference rules to the semantics of the Prolog ISO standard
[6] can be found in [20]. The formulation with our inference rules is particularly
suitable for an extension to classes of queries in Fig. 2, and for synthesizing
cut-free programs in Sect. 4 or dependency triples in Sect. 5. Our semantics is
given by seven inference rules. They operate on states that do not just represent
the current goal, but also the backtrack information that is needed to describe
the effect of cuts. The backtrack information is given by a sequence of goals
(separated by “|”) which are optionally labeled by the program clause i that has
to be applied to the goal next and by a number m that determines how cuts will
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Fig. 1. Operational Semantics by Concrete Inference Rules

be labeled when evaluating this goal later on. Moreover, our states also contain
explicit marks ?m to mark the end of the scope of a cut !m.

For the query f(0, A) in Ex. 1, we obtain the following derivation with the
rules of Fig. 1: f(0, A) `Case f(0, A)11 | f(0, A)21 | ?1 `Eval !1, eq(A, 0) | f(0, A)21 |
?1 `Cut eq(A, 0) | ?1 `Case eq(A, 0)52 | ?2 | ?1 `Eval � | ?2 | ?1 `Suc ?2 |
?1 `Fail ?1 `Fail ε. Thus, when considering cuts, our logic program terminates
for the query f(0, A), and, indeed, it terminates for all queries from the set
{f(t1, t2) | t1 is ground}. For further details on the intuition behind the inference
rules, we refer to [18].

To show termination for infinite sets of queries (e.g., {f(t1, t2) | t1 is ground}),
we need to represent classes of queries by abstract states. To this end, in [18] we
introduced abstract terms and a set A of abstract variables, where each T ∈ A
represents a fixed but arbitrary term. N consists of all “ordinary” variables in
logic programming. Then, as abstract terms we consider all terms from the set
T (Σ,V) where V = N ]A. Concrete terms are terms from T (Σ,N ), i.e., terms
containing no abstract variables. For any set V ′ ⊆ V, let V ′(t) be the variables
from V ′ occurring in the term t. To determine by which terms an abstract variable
may be instantiated, we add a knowledge base KB = (G,U) to each state, where
G ⊆ A and U ⊆ T (Σ,V)× T (Σ,V). Instantiations γ that respect KB may only
instantiate the variables in G by ground terms. And (s, s′) ∈ U means that we
are restricted to instantiations γ where sγ 6∼ s′γ, i.e., s and s′ may not become
unifiable when instantiating them with γ. We call a substitution γ that respects
the information in KB a concretization w.r.t. KB .

Fig. 2 shows the abstract inference rules introduced in [18]. They work on
classes of queries represented by abstract terms with a knowledge base. Except
for Backtrack and Eval, the adaption of the concrete inference rules to cor-
responding abstract inference rules is straightforward.

For Backtrack and Eval we must consider that the set of queries repre-
sented by an abstract state may contain both queries where the concrete Eval
rule and where the concrete Backtrack rule is applicable. Thus, the abstract
Eval rule has two successors corresponding to these two cases. As abstract
variables not known to represent ground terms may share variables, we have
to replace all variables by fresh abstract variables in Eval’s left successor state
which corresponds to the application of the concrete Eval rule. For the backtrack
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[11]. Then we have ApproxGnd(p(t1, . . . , tn), µ) = {A(tjµ) | j ∈ GroundP(p, {i | V(ti) ⊆ G})}.

Fig. 2. Abstract Inference Rules

possibilities and the knowledge base, however, we may only use an answer substi-
tution σ|G restricted to abstract variables known to represent ground terms. The
reason is that, due to backtracking, any substitutions of non-abstract variables
may become canceled. For the abstract variables T ∈ G, their instantiation with
the answer substitution of the abstract Eval rule corresponds to a case analysis
over the shape of the ground terms that T is representing. Thus, in case of a
successful unification we know that these terms must have a certain shape and
we can keep this information also after backtracking. Fig. 3 shows how the rules
of Fig. 2 can be applied to the initial state f(T1, T2) with the knowledge base
({T1},∅), which represents the set of queries {f(t1, t2) | t1 is ground}. In Fig. 3
we applied the Eval rule to Node b, for example. Its left successor corresponds
to the case where T1 represents the ground term 0 and, thus, the goal f(T1, T2)
unifies with the head of the first clause of the program. Here we can replace
all occurrences of T1 by 0, as (due to T1 ∈ G) 0 is the term represented by T1.
In contrast, as T2 /∈ G, the replacement of T2 with the fresh variable T3 is not
performed in the second backtracking goal f(0, T2)21. The right successor of Node
b corresponds to all cases where the unification with the head of Clause (1) fails.
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Fig. 3. Termination Graph for Ex. 1.

While the abstract Eval rule is already sufficient for a sound simulation of all
concrete derivations, the abstract Backtrack rule is virtually always needed for
a successful termination analysis, since otherwise, the application of the abstract
inference rules would almost always yield an infinite tree. To apply the abstract
Backtrack rule to an abstract state, we have to ensure that this state does
not represent any queries where the concrete Eval rule would be applicable. In
Fig. 3 we applied the Backtrack rule to Node c, for example. This is crucial
for the success of the termination proof. As we know from the application of the
Eval rule to Node b, we are in the case where the first argument T4 does not
unify with 0. Hence, Clause (3) is not applicable to the first goal p(T4, P ) and



thus, we can safely apply the Backtrack rule to c.

With the first seven rules, we would obtain infinite trees for non-terminating
programs. Even for terminating programs we may obtain infinite trees as there
is no bound on the size of the terms represented by abstract variables. For a
finite analysis we have to refer back to already existing states. This is done by
the Instance rule. The intuition for this rule is that we can refer back to a state
representing a superset of queries compared to the current state. This can be
ensured by finding a matcher µ which matches the more general state to the more
specific state. This rule can also be used to generalize states instead of referring
back to existing states. This is needed in case of “repeatedly growing” terms
which would otherwise never lead to a state where we can find an already existing
instance. Considering our example graph in Fig. 3, we applied the Instance rule
to refer Node f back to Node a with the matching substitution {T1/T6, T2/U}.

Still, this is not enough to always obtain a finite termination graph. On the
one hand, the evaluation of a program may yield growing backtracking sequences
which never lead to a state with an already existing instance. On the other hand,
the number of terms in a query may also grow and cause the same problem. For
the first situation we need the Parallel rule which can separate the backtrack-
ing sequence into two states. The second problem is solved by the Split rule
which splits off the first term of a single query. Both rules may lose precision,
but are often needed for a finite analysis. To reduce the loss of precision, we
approximate the answer substitutions of evaluations for the first successors of
Split nodes using a groundness analysis. This analysis determines whether some
variables will be instantiated by ground terms in every successful derivation of
Split’s left child. Then in the right child, these variables can be added to G and
all other variables are replaced by fresh abstract variables (this is necessary due
to sharing). In Fig. 3 we applied the Parallel rule to Node g. In this way, we
created its child h which is an instance of the earlier Node a. The Split rule
is used to separate the goal f(T6, U) from the remainder of the state in Node
e. The resulting child f is again an instance of a. For e’s second child g, the
groundness analysis found out that the variable U in the goal f(U, T5) must be
instantiated with a ground term T7 during the evaluation of node f. Therefore,
T7 is added to the set G in Node g. This groundness information is important for
the success of the termination proof. Otherwise, the state g would also represent
non-terminating queries and hence, the termination proof would fail.

Using these rules, for Ex. 1 we obtain the termination graph depicted in
Fig. 3. A termination graph is a finite graph where no rule is applicable to its
leaves and where there is no cycle which only uses the Instance rule. Note that
by applying an adequate strategy, we can obtain a termination graph for any
logic program automatically [18, Thm. 2]. To ease presentation, in the graph of
Fig. 3, we always removed those abstract variables from the knowledge base that
do not occur in any goal of the respective state. A termination graph without
leaves that start with variables is called proper. (Our termination proof fails if
the graph contains leaves starting with abstract variables, since they stand for
any possible query.) Again, we refer to [18] for further details and explanations.



4 Transformation into Definite Logic Programs

We now explain the second stage of the transformation from [18], i.e., the trans-
formation of termination graphs into definite logic programs. For more details
and formal definitions see [18].

Termination graphs have the property that each derivation of the original
program corresponds to a path through the termination graph. Thus, infinite
derivations of the original program correspond to an infinite traversal of cy-
cles in the graph. The basic idea of the transformation is to generate (cut-free)
clauses for each cycle in the graph. Then termination of the (definite) logic pro-
gram consisting of these clauses implies termination of the original program. To
simulate the traversal of cycles, we generate clauses for paths starting at the child
of an Instance or Split node or at the root node and ending in a Suc or In-
stance node or in a left child of an Instance or Split node while not traversing
other Instance nodes or left children of Instance or Split nodes. The formal
definition of paths for which we generate clauses is given below. Here, for a
termination graph G, let Instance(G) denote all nodes of G to which the rule
Instance has been applied (i.e., f and h). The sets Split(G) and Suc(G) are
defined analogously. For any node n, let Succ(i, n) denote the i-th child of n.

Definition 2 (Clause Path [18]). A path π = n1 . . . nk in G is a clause path
iff k > 1 and

– n1 ∈ Succ(1, Instance(G) ∪ Split(G)) or n1 is the root of G,
– nk ∈ Suc(G) ∪ Instance(G) ∪ Succ(1, Instance(G) ∪ Split(G)),
– for all 1 ≤ j < k, we have nj 6∈ Instance(G),5 and
– for all 1 < j < k, we have nj 6∈ Succ(1, Instance(G) ∪ Split(G)).

In the graph of Fig. 3 we find two clause paths ending in Instance nodes.
One path is from the root node a to the Instance node f and one from the
root node a to the Instance node h. We introduce a fresh predicate symbol pn
for each node n, where these predicates have all distinct variables occurring in
the node n as arguments.

For an Instance node, however, we use the same predicate as for its child
while applying the matching substitution used for the instantiation. Hence,
for the nodes a, f, h in Fig. 3, we obtain the terms pa(T1, T2), pa(T6, U),
and pa(T7, T8). To generate clauses for every clause path, we have to consider
the substitutions along the paths and successively apply them to the heads of
the new clauses. Thus, for the clause path from a to f, we obtain the clause
pa(s(T6), T5)← pa(T6, U).

However, for cycles traversing right children of Split nodes, the newly gen-
erated clause should contain an additional intermediate body atom. This is due
to the fact that the derivation along such a path is only possible if the goal cor-
responding to the left child of the respective Split node is successfully evaluated

5 Note that nk ∈ Succ(1, Instance(G)) is possible although nk−1 /∈ Instance(G),
since nk may have more than one parent node in G.



first. Hence, we obtain the clause pa(s(T6), T8) ← pa(T6, T7), pa(T7, T8) for the
path from a to h. To capture the evaluation of left children of Split nodes,
we also generate clauses corresponding to evaluations of left Split children, i.e.,
paths in the graph from such nodes to Suc nodes, possibly traversing cycles
first. Thus, the path from a to the only Suc node d is also a clause path. To
transform it into a new clause, we have to apply the substitutions between the
respective Split node and the end of the path. For Suc nodes, we do not intro-
duce new predicates. Hence, we obtain the fact pa(0, 0) for the path from a to d.
Thus, the resulting definite logic program for the termination graph from Fig. 3
is the following. Note that here, T5, T6, T7, T8 are considered as normal variables.

pa(0, 0). (6)
pa(s(T6), T5)← pa(T6, U). (7)
pa(s(T6), T8)← pa(T6, T7), pa(T7, T8). (8)

Below we give the formal definition for the clauses and queries generated for
clause paths. To ease the presentation, we assume that for any path π, we do not
traverse a Backtrack, Fail, or Suc node or the right successor of an Eval
node after traversing the left successor of an Eval node. The more general case
can be found in [18] and also in the extended definitions and proofs in [21].

Definition 3 (Logic Programs from Termination Graph [18]). Let G be a
termination graph whose root n is (f(T1, . . . , Tm), ({Ti1 , . . . , Tik},∅)). We define
PG =

⋃
π clause path in G Clause(π) and QG = {pn(t1, . . . , tm) | ti1 , . . . , tik are

ground}. For a path π = n1 . . . nk, let Clause(π) = Ren(n1)σπ ← Iπ, Ren(nk).
For n ∈ Suc(G), Ren(n) is � and for n ∈ Instance(G), it is Ren(Succ(1, n))µ
where µ is the substitution associated with the Instance node n. Otherwise,
Ren(n) is pn(V(n)) where V(S; KB) = V(S).

Finally, σπ and Iπ are defined as follows. Here for a path π = n1 . . . nj, the
substitutions µ and σ are the labels on the outgoing edge of nj−1 ∈ Split(G)
and nj−1 ∈ Eval(G), respectively.

σn1...nj =

8>>><>>>:
id if j = 1

σn1...nj−1 µ if nj−1 ∈ Split(G), nj = Succ(2, nj−1)

σn1...nj−1 σ if nj−1 ∈ Eval(G), nj = Succ(1, nj−1)

σn1...nj−1 otherwise

Inj ...nk =

8><>:
� if j = k

Ren(Succ(1, nj))σnj ...nk , Inj+1...nk if nj ∈ Split(G), nj+1 = Succ(2, nj)

Inj+1...nk otherwise

Unfortunately, in our example, the generated program (6)-(8) is not (universally)
terminating for all queries of the form pa(t1, t2) where t1 is a ground term. To
see this, consider the query pa(s(s(0)), Z). We obtain the following derivation.

pa(s(s(0)), Z) `(8) pa(s(0), T7), pa(T7, Z) `(7) pa(0, U), pa(T7, Z) `(6) pa(T7, Z)



The last goal has infinitely many successful derivations. The reason why the
transformation fails is that in the generated logic program, we cannot distin-
guish between the evaluation of intermediate goals and the traversal of cycles
of the termination graph, since we only have one evaluation mechanism. We of-
ten encounter such problems when the original program has clauses whose body
contains at least two atoms q1(. . .), q2(. . .), where both predicates q1 and q2 have
recursive clauses and where the call of q2 depends on the result of q1. This is a
very natural situation occurring in many practical programs (cf. our experiments
in Sect. 6). It is also the case in our example for the second clause (2) (here we
have the special case where both q1 and q2 are equal).

5 Transformation into Dependency Triple Problems

To solve the problem illustrated in the last section, we modify the second stage
of the transformation to construct dependency triple problems [17] instead of
definite logic programs. The advantage of dependency triple problems is that
they support two different kinds of evaluation which suit our needs to handle
the evaluation of intermediate goals and the traversal of cycles differently.

The basic structure in the dependency triple framework is very similar to
a clause in logic programming. Indeed, a dependency triple (DT) [14] is just
a clause H ← I,B where H and B are atoms and I is a sequence of atoms.
Intuitively, such a DT states that a call that is an instance of H can be followed
by a call that is an instance of B if the corresponding instance of I can be proven.

Here, a “derivation” is defined in terms of a chain. Let D be a set of DTs,
P be the program under consideration, and Q be the class of queries to be
analyzed.6 A (possibly infinite) sequence (H0 ← I0, B0), (H1 ← I1, B1), . . . of
variants from D is a (D,Q,P)-chain iff there are substitutions θi, σi and an
A ∈ Q such that θ0 = mgu(A,H0) and for all i, we have σi ∈ Answer(P, Iiθi)
and θi+1 = mgu(Biθiσi, Hi+1). Such a tuple (D,Q,P) is called a dependency
triple problem and it is terminating iff there is no infinite (D,Q,P)-chain.

As an example, consider the DT problem (D,Q,P) with D = {d1} where
d1 = p(s(X), Y ) ← eq(X,Z), p(Z, Y ), Q = {p(t1, t2) | t1 is ground}, and P =
{eq(X,X)}. Now, “d1 d1” is a (D,Q,P) chain. To see this, assume that A =
p(s(s(0)), 0). Then θ0 = {X/s(0), Y/0}, σ0 = {Z/s(0)}, and θ1 = {X/0, Y/0}.

In this section we show how to synthesize a DT problem from a termination
graph built for a logic program with cut such that termination of the DT problem
implies termination of the original program w.r.t. the set of queries for which the
termination graph was constructed. This approach is far more powerful than first
constructing the cut-free logic program as in Sect. 4 and then transforming it into
a DT problem. Indeed, the latter approach would fail for our leading example (as
the cut-free program (6)-(8) is not terminating), whereas the termination proof
succeeds when generating DT problems directly from the termination graph.

Like in the transformation into definite logic programs from [18], we have to
prove that there is no derivation of the original program which corresponds to a
6 For simplicity, we use a set of initial queries instead of a general call set as in [17].



path traversing the cycles in the termination graph infinitely often.
To this end, we build a set D of DTs for paths in the graph corresponding to

cycles and a set P of program clauses for paths corresponding to the evaluation
of intermediate goals. For the component Q of the resulting DT problem, we use
a set of queries based on the root node.

We now illustrate how to use this idea to prove termination of Ex. 1 by
building a DT problem for the termination graph from Fig. 3. We again represent
each node by a fresh predicate symbol with the different variables occurring in
the node as arguments. However, as before, for an Instance node we take the
predicate symbol of its child instead where we apply the matching substitution
used for the respective instantiation and we do not introduce any predicates for
Suc nodes. But in contrast to Sect. 4 and [18], we use different predicates for
DTs and program clauses. In this way, we can distinguish between atoms used
to represent the traversal of cycles and atoms used as intermediate goals.

To this end, instead of clause paths we now define triple paths (that are used
to build the component D of the resulting DT problem) and program paths (that
are used for the component P of the DT problem). Triple paths lead from the
root node or the successor of an Instance node to the beginning of a cycle, i.e.,
to an Instance node or the successor of an Instance node where we do not
traverse other Instance nodes or their children. Compared to the clause paths
of Def. 2, triple paths do not start or stop in left successors of Split nodes, but
in contrast they may traverse them. Since finite computations are irrelevant for
building infinite chains, triple paths do not stop in Suc nodes either.

Thus, we have two triple paths from the root node a to the Instance nodes
f and h. We also have to consider intermediate goals, but this time we use a
predicate symbol pa for the intermediate goal and a different predicate symbol
qa for the DTs. Hence, we obtain qa(s(T6), T5)← qa(T6, U) and qa(s(T6), T8)←
pa(T6, T7), qa(T7, T8).

Concerning the evaluation for left successors of Split nodes, we build pro-
gram clauses for the component P of the DT problem. The clauses result from
program paths in the termination graph. These are paths starting in a left suc-
cessor of a Split node and ending in a Suc node. However, in addition to the
condition that we do not traverse Instance nodes or their successors, such a
path may also not traverse another left successor of a Split node as we are
only interested in completely successful evaluations. Thus, the right successor of
a Split node must be reached. As the evaluation for left successors of Split
nodes may also traverse cycles before it reaches a fact, we also have to consider
paths starting in the left successor of a Split node or the successor of an In-
stance node and ending in an Instance node, a successor of an Instance
node, or a Suc node. Compared to the clause paths of Def. 2, the only dif-
ference is that program paths do not stop in left successors of Split nodes.
Hence, we have two program paths from the root node a to the only Suc node
d and to the Instance node h. We also have to consider intermediate goals
for the constructed clauses. Thus, we result in the fact pa(0, 0) and the clause
pa(s(T6), T8)← pa(T6, T7), pa(T7, T8).



So we obtain the DT problem (DG,QG,PG) for the termination graph G
from Fig. 3 where DG contains the DTs

qa(s(T6), T5)← qa(T6, U).
qa(s(T6), T8)← pa(T6, T7), qa(T7, T8).

and PG consists of the following clauses.

pa(0, 0).
pa(s(T6), T8)← pa(T6, T7), pa(T7, T8).

Hence, there are three differences compared to the program (6)-(8) we obtain
following Def. 3: (i) we do not obtain the fact qa(0, 0) for the dependency triples;
(ii) we do not obtain the clause pa(s(T6), T5) ← pa(T6, U); and (iii) we use pa

instead of qa in the intermediate goal of the second dependency triple. The latter
two differences are essential for success on this example as a ground “input” for
pa on the first argument guarantees a ground “output” on the second argument.
Note that this is not the case for the program according to Def. 3.

In our example, QG contains all queries qa(t1, t2) where t1 is ground. Then
this DT problem is easily shown to be terminating by our automated termination
prover AProVE (or virtually any other tool for termination analysis of definite
logic programs by proving termination of DG ∪ PG for the set of queries QG).

Now we formally define how to obtain a DT problem from a termination
graph. To this end, we first need the notions of triple and program paths to
characterize those paths in the termination graph from which we generate the
DTs and clauses for the DT problem.

Definition 4 (Triple Path, Program Path). A path π = n1 . . . nk in G is a
triple path iff k > 1 and the following conditions are satisfied:

– n1 ∈ Succ(1, Instance(G)) or n1 is the root of G,
– nk ∈ Instance(G) ∪ Succ(1, Instance(G)),
– for all 1 ≤ j < k, we have nj /∈ Instance(G), and
– for all 1 < j < k, we have nj /∈ Succ(1, Instance(G)).

A path π = n1 . . . nk in G is a program path iff k > 1 and the following condi-
tions are satisfied:

– n1 ∈ Succ(1, Instance(G) ∪ Split(G)),
– nk ∈ Suc(G) ∪ Instance(G) ∪ Succ(1, Instance(G)),
– for all 1 ≤ j < k, we have nj /∈ Instance(G),
– for all 1 < j < k, we have nj /∈ Succ(1, Instance(G)), and
– for all 1 < j ≤ k, we have nj /∈ Succ(1,Split(G)).

Now, we define the DT problem (DG,QG,PG) for a termination graph G. The
set DG contains clauses for all triple paths, the queries QG contain all instances
represented by the root node, and PG contains clauses for all program paths.

Definition 5 (DT Problem from Termination Graph). Let G be a termi-
nation graph whose root is (f(T1, . . . , Tm), ({Ti1 , . . . , Tik},∅)). The DT problem



(DG,QG,PG) is defined by DG =
⋃
π triple path in G Triple(π), QG = {qn(t1, . . . ,

tm) | ti1 , . . . , tik are ground} where qn is the fresh predicate chosen for the root
node by Rent, and PG =

⋃
π program path in G Clause(π).

For a path π = n1 . . . nk, we define Clause(π) = Ren(n1)σπ ← Iπ,Ren(nk)
and Triple(π) = Rent(n1)σπ ← Iπ,Rent(nk). Here, Ren and Rent are defined
as in Def. 3 but Rent uses qn instead of pn for any node n.

We now state the central theorem of this paper where we prove that ter-
mination of the resulting DT problem implies termination of the original logic
program with cut for the set of queries represented by the root state of the
termination graph. For the proof we refer to [21].

Theorem 6 (Correctness). If G is a proper termination graph for a logic
program P such that (DG,QG,PG) is terminating, then all concrete states rep-
resented by G’s root node have only finite derivations w.r.t. the inference rules
of Fig. 1.

6 Implementation and Experiments

We implemented the new transformation in our fully automated termination
prover AProVE and tested it on all 402 examples for logic programs from the
Termination Problem Data Base (TPDB) [23] used for the annual international
Termination Competition [22]. We compared the implementation of the new
transformation (AProVE DT) with the implementation of the previous transfor-
mation into definite logic programs from [18] (AProVE Cut), and with a direct
transformation into term rewrite systems ignoring cuts (AProVE Direct) from
[16]. We ran the different versions of AProVE on a 2.67 GHz Intel Core i7 and,
as in the international Termination Competition, we used a timeout of 60 seconds
for each example. For all versions we give the number of examples which could be
proved terminating (denoted “Successes”), the number of examples where ter-
mination could not be shown (“Failures”), the number of examples for which the
timeout of 60 seconds was reached (“Timeouts”), and the total runtime (“Total”)
in seconds. For those examples where termination could be proved, we indicate
how many of them contain cuts. For the details of this empirical evaluation and
to run the three versions of AProVE on arbitrary examples via a web interface,
we refer to http://aprove.informatik.rwth-aachen.de/eval/cutTriples/.

AProVE Direct AProVE Cut AProVE DT

Successes 243 259 315
– with cut 10 78 82
– without cut 233 181 233

Failures 144 129 77

Timeouts 15 14 10

Total 2485.7 3288.0 2311.6

Table 1. Experimental results on the Termination Problem Data Base



As shown in Table 1, the new transformation significantly increases the num-
ber of examples that can be proved terminating. In particular, we obtain 56 ad-
ditional proofs of termination compared to the technique of [18]. And indeed, for
all examples where AProVE Cut succeeds, AProVE DT succeeds, too. Note that
while [18] is very successful on examples with cut, its performance is significantly
worse than that of AProVE Direct on the other examples of the TPDB.

While we conjecture that our new improved transformation is always more
powerful than the transformation from [18], a formal proof of this conjecture is
not straightforward. The reason is that the clause paths of [18] differ from the
triple and program paths in our new transformation. Hence we cannot compare
the transformed problems directly.

In addition to being more powerful, the new version using dependency triples
is also more efficient than any of the two other versions, resulting in fewer time-
outs and a total runtime that is less than the one of the direct version and
only 70% of the version corresponding to [18]. However, AProVE DT sometimes
spends more time on failing examples, as the new transformation may result in
DT problems where the termination proof fails later than for the logic programs
resulting from [18].

7 Conclusion

We have shown that the termination graphs introduced by [18] can be used
to obtain a transformation from logic programs with cut to dependency triple
problems. Our experiments show that this new approach is both considerably
more powerful and more efficient than a translation to definite logic programs
as in [18]. As the dependency triple framework allows a modular and flexible
combination of arbitrary termination techniques from logic programming and
even term rewriting, the new transformation to dependency triples can be used
as a frontend to any termination tool for logic programs (by taking the union of
DG and PG in the resulting DT problem (DG,QG,PG)) or term rewriting (by
using the transformation of [17]).
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