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Abstract. We present a new operational semantics for Prolog which
covers all constructs in the corresponding ISO standard (including “non-
logical” concepts like cuts, meta-programming, “all solution” predicates,
dynamic predicates, and exception handling). In contrast to the classical
operational semantics for logic programming, our semantics is linear and
not based on search trees. This has the advantage that it is particularly
suitable for automated program analyses such as termination and com-
plexity analysis. We prove that our new semantics is equivalent to the
ISO Prolog semantics, i.e., it computes the same answer substitutions
and the derivations in both semantics have essentially the same length.

1 Introduction

We introduce a new state-based semantics for Prolog. Any query Q corresponds
to an initial state sQ and we define a set of inference rules which transform a
state s into another state s′ (denoted s s′). The evaluation of Q is modeled by
repeatedly applying inference rules to sQ (i.e., by the derivation sQ  s1  s2  
. . .). Essentially, our states s represent the list of those goals that still have to be
proved. But in contrast to most other semantics for Prolog, our semantics is linear
(or local), since each state contains all information needed for the next evaluation
step. So to extend a derivation s0  . . . si, one only has to consider the last
state si. Thus, even the effect of cuts and other built-in predicates becomes local.

This is in contrast to the standard semantics of Prolog (as specified in the ISO
standard [11, 13]), which is defined using a search tree built by SLD resolution
with a depth-first left-to-right strategy. To construct the next node of the tree,
it is not sufficient to regard the node that was constructed last, but due to
backtracking, one may have to continue with ancestor goals that occurred much
“earlier” in the tree. Advanced features like cuts or exceptions require even
more sophisticated analyses of the current search tree. Even worse, “all solution”
predicates like findall result in several search trees and the coordination of these
trees is highly non-trivial, in particular in the presence of exceptions.

We show that our linear semantics is equivalent to the standard ISO seman-
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tics of Prolog. It does not only yield the same answer substitutions, but we also
obtain the same termination behavior and even the same complexity (i.e., the
length of the derivations in our semantics corresponds to the number of unifi-
cations performed in the standard semantics). Hence, instead of analyzing the
termination or complexity of a Prolog program w.r.t. the standard semantics,
one can also analyze it w.r.t. our semantics.

Compared to the ISO semantics, our semantics is much more suitable for
such (possibly automated) analyses. In particular, our semantics can also be
used for symbolic evaluation of abstract states (where the goals contain abstract
variables representing arbitrary terms). Such abstract states can be generalized
(“widened”) and instantiated, and under certain conditions one may even split
up the lists of goals in states [19, 20]. In this way, one can represent all possi-
ble evaluations of a program by a finite graph, which can then be used as the
basis for e.g. termination analysis. In the standard Prolog semantics, such an ab-
straction of a query in a search tree would be problematic, since the remaining
computation does not only depend on this query, but on the whole search tree.

In [19, 20] we already used a preliminary version of our semantics for termi-
nation analysis of a subset of Prolog containing definite logic programming and
cuts. Most previous approaches for termination (or complexity [9]) analysis were
restricted to definite programs. Our semantics was a key contribution to extend
termination analysis to programs with cuts. The corresponding implementation
in the prover AProVE resulted in the most powerful tool for automated termina-
tion analysis of logic programming so far, as shown at the International Termi-
nation Competition.3 These experimental results are the main motivation for our
work, since they indicate that such a semantics is indeed suitable for automated
termination analysis. However, it was unclear how to extend the semantics of
[19, 20] to full Prolog and how to prove that this semantics is really equivalent
to the ISO semantics. These are the contributions of the current paper.

Hence, this paper forms the basis which will allow the extension of automated
termination techniques to full Prolog. Moreover, many termination techniques
can be adapted to infer upper bounds on the complexity [12, 18, 22]. Thus, the
current paper is also the basis in order to adapt termination techniques such
that they can be used for automated complexity analysis of full Prolog.

There exist several other alternative semantics for Prolog. However, most of
them (e.g., [2, 4–8, 14, 15, 17]) only handle subsets of Prolog and it is not clear
how to extend these semantics in a straightforward way to full Prolog.

Alternative semantics for full Prolog were proposed in [3, 10, 16]. However,
these semantics seem less suitable for automated termination and complexity
analysis than ours: The states used in [3] are considerably more complex than
ours and it is unclear how to abstract the states of [3] for automated termination
analysis as in [19, 20]. Moreover, [3] does not investigate whether their semantics
also yields the same complexity as the ISO standard. The approach in [10] is close
to the ISO standard and thus, it has similar drawbacks as the ISO semantics,
since it also works on search trees. Finally, [16] specifies standard Prolog in

3 See http://www.termination-portal.org/wiki/Termination_Competition.



rewriting logic. Similar to us, [16] uses a list representation for states. However,
their approach cannot be used for complexity analysis, since their derivations
can be substantially longer than the number of unifications needed to evaluate
the query. Since [16] does not use explicit markers for the scope of constructs like
the cut, it is also unclear how to use their approach for automated termination
analysis, where one would have to abstract and to split states.

The full set of all inference rules of our semantics (for all 112 built-in predi-
cates of ISO Prolog) can be found in [21]. Due to lack of space, in the paper we
restrict ourselves to the inference rules for the most representative predicates.
Sect. 2 shows the rules needed for definite logic programs. Sect. 3 extends them
for predicates like the cut, negation-as-failure, and call. In Sect. 4 we handle “all
solution” predicates and Sect. 5 shows how to deal with dynamic predicates like
assertz and retract. Sect. 6 extends our semantics to handle exceptions (using
catch and throw). Finally, Sect. 7 contains our theorems on the equivalence of
our semantics to the ISO semantics. All proofs can be found in [21].

2 Definite Logic Programming

See e.g. [1] for the basics of logic programming. As in ISO Prolog, we do not
distinguish between predicate and function symbols. For a term t = f(t1, . . . , tn),
let root(t) = f . A query is a sequence of terms, where � denotes the empty query.
A clause is a pair h :−B where the head h is a term and the body B is a query.
If B is empty, then one writes just “h” instead of “h :−�”.4 A Prolog program
P is a finite sequence of clauses.5

We often denote the application of a substitution σ by tσ instead of σ(t).
A substitution σ is the most general unifier (mgu) of s and t iff sσ = tσ and,
whenever sγ = tγ for some other unifier γ, there is a δ with Xγ = Xσδ for
all X ∈ V(s) ∪ V(t).6 As usual, “σδ” is the composition of σ and δ, where
Xσδ = (Xσ)δ. If s and t have no mgu σ, we write mgu(s, t) = fail .

A Prolog program without built-in predicates is called a definite logic pro-
gram. Our aim is to define a linear operational semantics where each state
contains all information needed for backtracking steps. In addition, a state also
contains a list of all answer substitutions that were found up to now. So a state
has the form 〈G1 | . . . | Gn ; δ1 | . . . | δm〉 where G1 | . . . | Gn is a sequence of
goals and δ1 | . . . | δm is a sequence of answer substitutions. We do not include
the clauses from P in the state since they remain static during the evaluation.

Essentially, a goal is just a query, i.e., a sequence of terms. However, to
compute answer substitutions, a goal G is labeled by a substitution which collects

4 In ISO Prolog, whenever an empty query � is reached, this is replaced by the built-in
predicate true. However, we also allow empty queries to ease the presentation.

5 More precisely, P are just the program clauses for static predicates. In addition to
P, a Prolog program may also contain clauses for dynamic predicates and directives
to specify which predicates are dynamic. As explained in Sect. 5, these directives
and the clauses for dynamic predicates are treated separately by our semantics.

6 While the ISO standard uses unification with occurs check, our semantics could also
be defined in an analogous way when using unification without occurs check.



�δ | S ; A

S ; A | δ
(Success)

(t, Q)δ | S ; A

(t, Q)c1δ | · · · | (t, Q)caδ | S ; A
(Case)

if definedP(t) and
SliceP(t) =
(c1, . . . , ca)

(t, Q)h :-B
δ | S ; A

(Bσ,Qσ)δσ | S ; A
(Eval)

if
σ =
mgu(t, h)

(t, Q)h :-B
δ | S ; A

S ; A
(Backtrack)

if
mgu(t, h) =
fail .

Fig. 1. Inference Rules for Definite Logic Programs

the effects of the unifiers that were used during the evaluation up to now. So if
(t1, . . . , tk) is a query, then a goal has the form (t1, . . . , tk)δ for a substitution δ.
In addition, a goal can also be labeled by a clause c, where the goal (t1, . . . , tk)cδ
means that the next resolution step has to be performed using the clause c.

The initial state for a query (t1, . . . , tk) is 〈(t1, . . . , tk)∅ ; ε〉, i.e., the query is
labeled by the identity substitution ∅ and the current list of answer substitutions
is ε (i.e., it is empty). This initial state can be transformed by inference rules
repeatedly. The inference rules needed for definite logic programs are given in
Fig. 1. Here, Q is a query, S stands for a sequence of goals, A is a list of answer
substitutions, and we omitted the delimiters “〈” and “〉” for readability.

To illustrate these rules, we use the following program where member(t1, t2)
holds whenever t1 unifies with any member of the list t2. Consider the query
member(U, [1]).7 Then the corresponding initial state is 〈member(U, [1])∅ ; ε〉.

member(X, [X| ]). (1) member(X, [ |XS ]) :− member(X,XS ). (2)

When evaluating a goal (t, Q)δ where root(t) = p, one tries all clauses h :−B
with root(h) = p in the order they are given in the program. Let definedP(t)
indicate that root(t) is a user-defined predicate and let SliceP(t) be the list of
all clauses from P whose head has the same root symbol as t. However, in the
clauses returned by SliceP(t), all occurring variables are renamed to fresh ones.
Thus, if definedP(t) and SliceP(t) = (c1, . . . , ca), then we use a (Case) rule which
replaces the current goal (t, Q)δ by the new list of goals (t, Q)c1δ | . . . | (t, Q)caδ .
As mentioned, the label ci in such a goal means that the next resolution step
has to be performed using the clause ci. So in our example, member(U, [1])∅ is

replaced by the list member(U, [1])
(1)′

∅ | member(U, [1])
(2)′

∅ , where (1)′ and (2)′

are freshly renamed variants of the clauses (1) and (2).

To evaluate a goal (t, Q)h :-B
δ , one has to check whether there is a σ =

mgu(t, h). In this case, the (Eval) rule replaces t by B and σ is applied to the
whole goal. Moreover, σ will contribute to the answer substitution, i.e., we re-
place δ by δσ. Otherwise, if t and h are not unifiable, then the goal (t, Q)h :-B

δ is
removed from the state and the next goal is tried (Backtrack). An empty goal
�δ corresponds to a successful leaf in the SLD tree. Thus, the (Success) rule
removes such an empty goal and adds the substitution δ to the list A of answer
substitutions (we denote this by “A | δ”). Fig. 2 shows the full evaluation of
the initial state 〈member(U, [1])∅ ; ε〉. Here, (1)′ and (1)′′ (resp. (2)′ and (2)′′)

7 As usual, [t1, . . . , tn] abbreviates .(t1, .(. . . , .(tn, [ ]) . . . )) and [t | ts] stands for .(t, ts).



member(U, [1])∅ ; ε

Case member(U, [1])
(1)′

∅ | member(U, [1])
(2)′

∅ ; ε

Eval �{U/1, X′/1} | member(U, [1])
(2)′

∅ ; ε

Success member(U, [1])
(2)′

∅ ; {U/1, X ′/1}
Eval member(U, [ ]){X′/U,XS ′/[ ]} ; {U/1, X ′/1}
Case member(U, [ ])

(1)′′

{X′/U,XS ′/[ ]} | member(U, [ ])
(2)′′

{X′/U,XS ′/[ ]} ; {U/1, X ′/1}

Backtrack member(U, [ ])
(2)′′

{X′/U,XS ′/[ ]} ; {U/1, X ′/1}

Backtrack ε ; {U/1, X ′/1}
Fig. 2. Evaluation for the Query member(U, [1])

are fresh variants of (1) (resp. (2)) that are pairwise variable disjoint. So for
example, X and XS were renamed to X ′ and XS ′ in (2)′.

3 Logic and Control

In Fig. 3, we present inference rules to handle some of the most commonly
used pre-defined predicates of Prolog: the cut (!), negation-as-failure (\+), the
predicates call, true, and fail, and the Boolean connectives Conn for conjunction
(′,′), disjunction (′;′), and implication (′->′).8 As in the ISO standard, we require
that in any clause h :−B, the term h and the terms in B may not contain
variables at predication positions. A position is a predication position iff the only
function symbols that may occur above it are the Boolean connectives from
Conn. So instead of a clause q(X) :−X one would have to use q(X) :− call(X).

The effect of the cut is to remove certain backtracking possibilities. When
a cut in a clause h :−B1, !, B2 with root(h) = p is reached, then one does not
backtrack to the remaining clauses of the predicate p. Moreover, the remaining
backtracking possibilities for the terms inB1 are also disregarded. As an example,
we consider a modified member program.

member(X, [X| ]) :− !. (3) member(X, [ |XS ]) :− member(X,XS ). (4)

In our semantics, the elimination of backtracking steps due to a cut is ac-
complished by removing goals from the state. Thus, we re-define the (Case) rule
in Fig. 3. To evaluate p(. . .), one again considers all program clauses h :−B where
root(h) = p. However, every cut in B is labeled by a fresh natural number m.
For any clause c, let c[!/!m] result from c by replacing all (possibly labeled) cuts
! on predication positions by !m. Moreover, we add a scope delimiter ?m to make
the end of their scope explicit. As the initial query Q might also contain cuts, we
also label them and construct the corresponding initial state 〈(Q [!/!0])∅ | ?0 ; ε〉.

In our example, consider the query member(U, [1, 1]). Its corresponding ini-
tial state is 〈member(U, [1, 1])∅ | ?0 ; ε〉. Now the (Case) rule replaces the goal

8 The inference rules for true and the connectives from Conn are straightforward and
thus, we only present the rule for ′,′ in Fig. 3. See [21] for the set of all rules.



(t, Q)δ | S ; A

(t, Q)
c1[!/!m]
δ | · · · | (t, Q)

ca[!/!m]
δ | ?m | S ; A

(Case) if definedP(t), SliceP(t) =
(c1, . . . , ca), and m is fresh

(!m, Q)δ | S′ | ?m | S ; A

Qδ | ?m | S ; A
(Cut)

(′,′ (t1, t2), Q)δ | S ; A

(t1, t2, Q)δ | S ; A
(Conj)

?m | S ; A

S ; A
(Failure)

(call(t), Q)δ | S ; A

(t[V/call(V), !/!m], Q)δ | ?m | S ; A
(Call)

if t /∈ V
and m is
fresh.

(fail, Q)δ | S ; A

S ; A
(Fail)

(\+(t), Q)δ | S ; A

(call(t), !m, fail)δ | Qδ | ?m | S ; A
(Not) where m is

fresh.

Fig. 3. Inference Rules for Programs with Pre-defined Predicates for Logic and Control

member(U, [1, 1])∅ by member(U, [1, 1])
(3)′[!/!1]
∅ | member(U, [1, 1])

(4)′[!/!1]
∅ | ?1.

Here, (3)′ is a fresh variant of the rule (3) and (3)′[!/!1] results from (3)′ by
labeling all cuts with 1, i.e., (3)′[!/!1] is the rule member(X ′, [X ′| ]) :− !1.

Whenever a cut !m is evaluated in the current goal, the (Cut) rule removes
all backtracking goals up to the delimiter ?m from the state. The delimiter itself
must not be removed, since the current goal might still contain more occurrences

of !m. So after evaluating the goal member(U, [1, 1])
(3)′[!/!1]
∅ to (!1){U/1, X′/1}, the

(Cut) rule removes all remaining goals in the list up to ?1.
When a predicate has been evaluated completely (i.e., when ?m becomes the

current goal), then this delimiter is removed. This corresponds to a failure in
the evaluation, since it only occurs when all solutions have been computed. Fig.
4 shows the full evaluation of the initial state 〈member(U, [1, 1])∅ | ?0 ; ε〉.

The built-in predicate call allows meta-programming. To evaluate a term
call(t) (where t /∈ V, but t may contain connectives from Conn), the (Call)
rule replaces call(t) by t[V/call(V), !/!m]. Here, t[V/call(V), !/!m] results from t
by replacing all variables X on predication positions by call(X) and all (possibly
labeled) cuts on predication positions by !m. Moreover, a delimiter ?m is added
to mark the scope of the cuts in t.

Another simple built-in predicate is fail, whose effect is to remove the current
goal. By the cut, call, and fail, we can now also handle the “negation-as-failure”

member(U, [1, 1])∅ | ?0 ; ε

Case member(U, [1, 1])
(3)′[!/!1]
∅ | member(U, [1, 1])

(4)′[!/!1]
∅ | ?1 | ?0 ; ε

Eval (!1){U/1, X′/1} | member(U, [1, 1])
(4)′[!/!1]
∅ | ?1 | ?0 ; ε

Cut �{U/1, X′/1} | ?1 | ?0 ; ε

Success ?1 | ?0 ; {U/1, X ′/1}
Failure ?0 ; {U/1, X ′/1}
Failure ε ; {U/1, X ′/1}

Fig. 4. Evaluation for the Query member(U, [1, 1])



\+(′,′ (a, !))∅ |?0 ; ε

Not (call(′,′ (a, !)), !1, fail)∅ |?1 |?0 ; ε

Call (′,′ (a, !2), !1, fail)∅ |?2 |?1 |?0 ; ε

Conj (a, !2, !1, fail)∅ |?2 |?1 |?0 ; ε

Case (a, !2, !1, fail)a∅ | (a, !2, !1, fail)a :- a∅ |?2 |?1 |?0 ; ε

Eval (!2, !1, fail)∅ | (a, !2, !1, fail)a :- a∅ |?2 |?1 |?0 ; ε

Cut (!1, fail)∅ |?2 |?1 |?0 ; ε

Cut fail∅ |?1 |?0 ; ε

Fail ?1 |?0 ; ε

Failure ?0 ; ε

Failure ε ; ε

Fig. 5. Evaluation for the Query \+(′,′ (a, !))

operator \+: the (Not)

rule replaces the goal
(\+(t), Q)δ by the list
(call(t), !m, fail)δ | Qδ |
?m. Thus, Qδ is only
executed if call(t) fails.

As an example,
consider a program
with the fact a and
the rule a :− a.
We regard the query
\+(′,′ (a, !)). The eval-
uation in Fig. 5 shows
that the query termi-
nates and fails (since
we do not obtain any
answer substitution).

4 “All Solution” Predicates

We now consider the unification predicate = and the predicates findall, bagof,
and setof, which enumerate all solutions to a query. Fig. 6 gives the inference
rules for = and findall (bagof and setof can be modeled in a similar way, cf. [21]).

We extend our semantics in such a way that the collection process of such
“all solution” predicates is performed just like ordinary evaluation steps of a
program. Moreover, we modify our concept of states as little as possible.

A call of findall(r, t, s) executes the query call(t). If σ1, . . . , σn are the resulting
answer substitutions, then finally the list [rσ1, . . . , rσn] is unified with s.

We model this behavior by replacing a goal (findall(r, t, s), Q)δ with the list

call(t) | %
r,[ ],s
Q,δ . Here, %r,`,s

Q,δ is a findall-suspension which marks the “scope” of
findall-statements, similar to the markers ?m for cuts in Sect. 3. The findall-
suspension fulfills two tasks: it collects all answer terms (r instantiated with an

(findall(r, t, s), Q)δ | S ; A

call(t)∅ | %r,[ ],s
Q,δ | S ; A

(Findall)
%r,`,s
Q,δ | S ; A

(`=s,Q)δ | S ; A
(FoundAll)

�θ | S′ | %r,`,s
Q,δ | S ; A

S′ | %r,`|rθ,s
Q,δ | S ; A

(FindNext) if S′ contains no
findall-suspensions

(t1 = t2, Q)δ | S ; A

(Qσ)δσ | S ; A
(UnifySuccess) if σ = mgu(t1, t2)

(t1 = t2, Q)δ | S ; A

S ; A
(UnifyFail)

if
mgu(t1, t2) =
fail

�δ | S ; A

S ; A | δ
(Success)

if S con-
tains no
findall-
suspensions

Fig. 6. Additional Inference Rules for Prolog Programs with findall



findall(U,member(U, [1]), L)∅ | ?0 ; ε

Findall call(member(U, [1]))∅ | %U,[ ],L
�,∅ | ?0 ; ε

Call member(U, [1])∅ | ?1 | %U,[ ],L
�,∅ | ?0 ; ε

Case member(U, [1])
(3)′[!/!2]
∅ | member(U, [1])

(4)′[!/!2]
∅ | ?2 | ?1 | %U,[ ],L

�,∅ | ?0 ; ε

Eval (!2){U/1, X′/1} | member(U, [1])
(4)′[!/!2]
∅ | ?2 | ?1 | %U,[ ],L

�,∅ | ?0 ; ε

Cut �{U/1, X′/1} | ?2 | ?1 | %U,[ ],L
�,∅ | ?0 ; ε

FindNext ?2 | ?1 | %U,[1],L
�,∅ | ?0 ; ε

Failure ?1 | %U,[1],L
�,∅ | ?0 ; ε

Failure %
U,[1],L
�,∅ | ?0 ; ε

FoundAll ([1]=L)∅ | ?0 ; ε

UnifySuccess �{L/[1]} | ?0 ; ε

Success ?0 ; {L/[1]}
Failure ε ; {L/[1]}

Fig. 7. Evaluation for the Query findall(U,member(U, [1]), L)

answer substitution of t) in its list ` and it contains all information needed to
continue the execution of the program after all solutions have been found.

If a goal is evaluated to �θ, its substitution θ would usually be added to the
list of answer substitutions of the state. However, if the goals contain a findall-
suspension %r,`,s

Q,δ , we instead insert rθ at the end of the list of answers ` using the

(FindNext) rule (denoted by “` | rθ”).9 To avoid overlapping inference rules, we
modify the (Success) rule such that it is only applicable if (FindNext) is not.

When call(t) has been fully evaluated, the first element of the list of goals is a

findall-suspension %r,`,s
Q,δ . Before continuing the evaluation of Q, we unify the list

of collected solutions ` with the expected list s (using the built-in predicate =).
As an example, for the Prolog program defined by the clauses (3) and (4), an

evaluation of the query findall(U,member(U, [1]), L) is given in Fig. 7.

5 Dynamic Predicates

Now we also consider built-in predicates which modify the program clauses for
some predicate p at runtime. This is only possible for “new” predicates which
were not defined in the program and for predicates where the program contains
a dynamic directive before their first clause (e.g., “:− dynamic p/1”). Thus, we
consider a program to consist of two parts: a static part P containing all pro-
gram clauses for static predicates and a dynamic part, which can be modified at
runtime and initially contains all program clauses for dynamic predicates.

Therefore, we extend our states by a list D which stores all clauses of dynamic
predicates, where each of these clauses is labeled by a natural number. We now
denote a state as 〈S ; D ; A〉 where S is a list of goals and A is a list of answer

9 As there may be nested findall calls, we use the first findall-suspension in the list.



(t, Q)δ | S ; D ; A

(t, Q)
c1[!/!m]
δ | · · · | (t, Q)

ca[!/!m]
δ | ?m | S ; D ; A

(Case)

if definedP(t),
Slice(P|D)(t) = (c1, . . . , ca),

D is D without clause labels,
and m is fresh

(asserta(c), Q)δ | S ; D ; A

Qδ | S ; (c,m) | D ; A
(AssA) if m∈ N

is fresh

(assertz(c), Q)δ | S ; D ; A

Qδ | S ; D | (c,m) ; A
(AssZ) if m∈ N

is fresh

(retract(c), Q)δ | S ; D ; A

6:− c,(c1,m1)
Q,δ | · · · | 6:− c,(ca,ma)

Q,δ | S ; D ; A
(Retract) if SliceD(c) =

((c1,m1), . . . , (ca,ma))

6:− c,(c
′,m)

Q,δ | S ; D ; A

(Qσ)δσ | S ; D \ (c′,m) ; A
(RetSuc) if σ =

mgu(c, c′)

6:− c,(c
′,m)

Q,δ | S ; D ; A

S ; D ; A
(RetFail)

if
mgu(c, c′)
= fail

Fig. 8. Additional Inference Rules for Prolog Programs with Dynamic Predicates

substitutions. The inference rules for the built-in predicates asserta, assertz, and
retract in Fig. 8 modify the list D.10 Of course, the (Case) rule also needs to
be adapted to take the clauses from D into account (here, “P | D” stands for
appending the lists P and D). All other previous inference rules do not depend
on the new component D of the states.

For a clause11 c, the effect of asserta(c) resp. assertz(c) is modeled by inserting
(c,m) at the beginning resp. the end of the list D, where m is a fresh number, cf.
the rules (AssA) and (AssZ). The labels in D are needed to uniquely identify
each clause as demonstrated by the following query for a dynamic predicate p.

assertz(p(a)), assertz(p(b)), retract(p(X)), X= a, retract(p(b)), assertz(p(b)), fail︸ ︷︷ ︸
Q

So first the two clauses p(a) and p(b) are asserted, i.e., D contains (p(a), 1)
and (p(b), 2). When retract(p(X)) is executed, one collects all p-clauses from D,
since these are the only clauses which might be removed by this retract-statement.

To this end, we extend the function Slice such that SliceD(c) returns fresh
variants of all labeled clauses c′ from D where root(head(c)) = root(head(c′)).
An execution of (retract(c), Q)δ then creates a new retract marker for every
clause in SliceD(c) = ((c1,m1), . . . , (ca,ma)), cf. the (Retract) inference rule

in Fig. 8. Such a retract marker 6:− c,(ci,mi)
Q,δ denotes that the clause with label mi

should be removed from D if c unifies with ci by some mgu σ. Moreover, then
the computation continues with the goal (Qσ)δσ, cf. (RetSuc). If c does not
unify with ci, then the retract marker is simply dropped by the rule (RetFail).

So in our example, we create the two retract markers 6:− p(X),(p(a),1)
Q,∅ and

6:− p(X),(p(b),2)
Q,∅ , where Q are the last four terms of the query. Since p(X) unifies

10 The inference rules for the related predicate abolish are analogous, cf. [21].
11 For asserta(c), assertz(c), and retract(c), we require that the body of the clause c

may not be empty (i.e., instead of a fact p(X) one would have to use p(X) :− true).
Moreover, c may not have variables on predication positions.



(assertz(p(a)), assertz(p(b)), retract(p(X)), Q)∅ | ?0 ; ε ; ε

AssZ (assertz(p(b)), retract(p(X)), Q)∅ | ?0 ; (p(a), 1) ; ε

AssZ (retract(p(X)), Q)∅ | ?0 ; (p(a), 1) | (p(b), 2) ; ε

Retract 6:− p(X),(p(a),1)
Q,∅ | 6:− p(X),(p(b),2)

Q,∅ | ?0 ; (p(a), 1) | (p(b), 2) ; ε

RetSuc (Q[X/a]){X/a} | 6:− p(X),(p(b),2)
Q,∅ | ?0 ; (p(b), 2) ; ε

...

RetSuc (assertz(p(b)), fail){X/a} | 6:− p(X),(p(b),2)
Q,∅ | ?0 ; ε ; ε

AssZ fail{X/a} | 6:− p(X),(p(b),2)
Q,∅ | ?0 ; (p(b), 3) ; ε

Fail 6:− p(X),(p(b),2)
Q,∅ | ?0 ; (p(b), 3) ; ε

RetSuc (Q[X/b]){X/b} | ?0 ; (p(b), 3) ; ε
...

Failure ε ; (p(b), 3) ; ε

Fig. 9. Evaluation for a Query using assertz and retract

with p(a), the first clause (p(a), 1) is retracted from D. Due to the unifier {X/a},
the term (X=a)[X/a] is satisfied. Hence, retract(p(b)) and assertz(p(b)) are ex-
ecuted, i.e., the clause (p(b), 2) is removed from D and a new clause (p(b), 3) is
added to D. When backtracking due to the term fail at the end of the query, the
execution of retract(p(X)) is again successful, i.e., the retraction described by the

marker 6:− p(X),(p(b),2)
Q,∅ succeeds since p(X) also unifies with the clause (p(b), 2).

However, this retract-statement does not modify D anymore, since (p(b), 2) is no
longer contained in D. Due to the unifier {X/b}, the next term (X= a)[X/b] is
not satisfiable and the whole query fails. However, then D still contains (p(b), 3).
Hence, afterwards a query like p(X) would yield the answer substitution {X/b}.
See Fig. 9 for the evaluation of this example using our inference rules.

6 Exception Handling

Prolog provides an exception handling mechanism by means of two built-in pred-
icates throw and catch. The unary predicate throw is used to “throw” exception
terms and the predicate catch can react on thrown exceptions.

When reaching a term catch(t, c, r), the term t is called. During this call, an
exception term e might be thrown. If e and c unify with the mgu σ, the recover
term r is instantiated by σ and called. Otherwise, the effect of the catch-call is
the same as a call to throw(e). If no exception is thrown during the execution of
call(t), the catch has no other effect than this call.

To model the behavior of catch and throw, we augment each goal in our states
by context information for every catch-term that led to this goal. Such a catch-
context is a 5-tuple (m, c, r,Q, δ), consisting of a natural number m which marks
the scope of the corresponding catch-term, a catcher term c describing which
exception terms to catch, a recover term r which is evaluated in case of a caught



(catch(t, c, r), Q)δ,C | S ; D ; A

call(t)∅, C|(m,c,r,Q,δ) | ?m | S ; D ; A
(Catch) where m is fresh

(throw(e), Q)θ, C|(m,c,r,Q′,δ) | S′ | ?m | S ; D ; A

(call(rσ), Q′σ)δσ, C | S ; D ; A
(ThrowSuccess)

if e /∈ V and σ =
mgu(c, e′) for a
fresh variant e′ of e

(throw(e), Q)θ, C|(m,c,r,Q′,δ) | S′ | ?m | S ; D ; A

(throw(e), Q)θ, C | S ; D ; A
(ThrowNext)

if e /∈ V and
mgu(c, e′) = fail
for a fresh variant
e′ of e

(throw(e), Q)θ,ε |S ; D ; A

ERROR
(ThrowErr) if

e /∈ V
�θ,ε |S ; D ; A

S ; D ; A |θ
(Success)

if S contains
no findall-
suspensions

�θ, C|(m,c,r,Q,δ) | S′ | ?m | S ; D ; A

(Qθ)δθ, C | S′ | ?m | S ; D ; A
(CatchNext) if S′ contains no

findall-suspensions

�θ,C | S′ | %r,`,s
Q′,δ′,C′ | S ; D ; A

S′ | %r,`|rθ,s
Q′,δ′,C′ | S ; D ; A

(FindNext)
if S′ contains no findall-suspensions and

(C is either empty or else its last element

is (m, c, r,Q, δ) and S′ contains no ?m )

Fig. 10. Additional Inference Rules for Prolog Programs with Error Handling

exception, as well as a query Q and a substitution δ describing the remainder of
the goal after the catch-term. In general, we denote a list of catch-contexts by C
and write Qδ,C for a goal with the query Q and the annotations δ and C.

To evaluate (catch(t, c, r), Q)δ,C , we append the catch-context (m, c, r,Q, δ)
(where m is a fresh number) to C (denoted by “C | (m, c, r,Q, δ)”) and replace
the catch-term by call(t), cf. (Catch) in Fig. 10. To identify the part of the list
of goals that is caused by the evaluation of this call, we add a scope marker ?m.

When a goal (throw(e), Q)θ, C|(m,c,r,Q′,δ) is reached, we drop all goals up to the
marker ?m. If c unifies with a fresh variant e′ of e using an mgu σ, we replace
the current goal by the instantiated recover goal (call(rσ), Q′σ)δσ, C using the
rule (ThrowSuccess). Otherwise, in the rule (ThrowNext), we just drop the
last catch-context and continue with the goal (throw(e), Q)θ,C . If an exception
is thrown without a catch-context, then this corresponds to a program error. To
this end, we extend the set of states by an additional element ERROR.

Since we extended goals by a list of catch-contexts, we also need to adapt all
previous inference rules slightly. Except for (Success) and (FindNext), this
is straightforward12 since the previous rules neither use nor modify the catch-
contexts. As catch-contexts can be converted into goals, findall-suspensions %
and retract-markers 6:− have to be annotated with lists of catch-contexts, too.

An interesting aspect is the interplay of nested catch- and findall-calls. When

12 However, several built-in predicates (e.g., call and findall) impose “error conditions”.
If their arguments do not have the required form, an exception is thrown. Thus, the
rules for these predicates must also be extended appropriately, cf. [21].



catch(catch(findall(X, p(X), L), a, fail), b, true)∅,ε | ?0
Catch call(catch(findall(X, p(X), L), a, fail)∅, (1,b,true,�,∅) | ?1 | ?0
Call catch(findall(X, p(X), L), a, fail)∅, (1,b,true,�,∅) | ?2 | ?1 | ?0
Catch call(findall(X, p(X), L))∅,C | ?3 | ?2 | ?1 | ?0
Call findall(X, p(X), L)∅,C | ?4 | ?3 | ?2 | ?1 | ?0

Findall call(p(X))∅,C | %X,[ ],L
�,∅,C | ?4 | ?3 | ?2 | ?1 | ?0

Call p(X)∅,C | %X,[ ],L
�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0

Case p(X)
p(a)
∅,C | p(X)

p(Y ) :- throw(b)
∅,C | ?6 | %X,[ ],L

�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0
Eval �{X/a}, C | p(X)

p(Y ) :- throw(b)
∅,C | ?6 | %X,[ ],L

�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0
FindNext p(X)

p(Y ) :- throw(b)
∅,C | ?6 | %X,[a],L

�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0
Eval throw(b){Y/X}, C | ?6 | %X,[a],L

�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0
ThrowNext throw(b){Y/X}, (1,b,true,�,∅) | ?2 | ?1 | ?0

ThrowSuccess call(true){Y/X}, ε | ?0
...

Fig. 11. Evaluation for a Query of Nested catch- and findall-Calls

reaching a goal �θ, C|(m,c,r,Q,δ) which results from the evaluation of a catch-term,
it is not necessarily correct to continue the evaluation with the goal (Qθ)δθ, C as
in the rule (CatchNext). This is because the evaluation of the catch-term may
have led to a findall-call and the current “success” goal �θ, C|(m,c,r,Q,δ) resulted
from this findall-call. Then one first has to compute the remaining solutions to
this findall-call and one has to keep the catch-context (m, c, r,Q, δ) since these
computations may still lead to exceptions that have to be caught by this context.
Thus, then we only add the computed answer substitution θ to its corresponding
findall-suspension, cf. the modified (FindNext) rule.

For the program with the fact p(a) and the rule p(Y ) :− throw(b), an eval-
uation of a query with catch and findall is given in Fig. 11. Here, the clauses D
for dynamic predicates and the list A of answer substitutions were omitted for
readability. Moreover, C stands for the list (1, b, true,�,∅) | (3, a, fail,�,∅).

7 Equivalence to the ISO Semantics

In this section, we formally define our new semantics for Prolog and show that it
is equivalent to the semantics defined in the ISO standard [11, 13]. All definitions
and theorems refer to the full set of inference rules (handling full Prolog). As
mentioned, all inference rules and all proofs can be found in [21].

Theorem 1 (“Mutual Exclusion” of Inference Rules). For each state,
there is at most one inference rule applicable and the result of applying this rule
is unique up to renaming of variables and of fresh numbers used for markers.

Let s0  s1 denote that the state s0 was transformed to the state s1 by one
of our inference rules. Any finite or infinite sequence s0  s1  s2  . . . is



called a derivation of s0. Thm. 1 implies that any state has a unique maximal
derivation (which may be infinite). Now we can define our semantics for Prolog.

Definition 2 (Linear Semantics for Prolog). Consider a Prolog program
with the clauses P for static predicates and the clauses D for dynamic predicates.
Let D result from D by labeling each clause in D by a fresh natural number. Let
Q be a query and let sQ = 〈SQ;D; ε〉 be the corresponding initial state, where
SQ = (Q[!/!0])∅,ε | ?0.

(a) We say that the execution of Q has length ` ∈ N ∪ {∞} iff the maximal
derivation of sQ has length `. In particular, Q is called terminating iff ` 6=∞.

(b) We say that Q leads to a program error iff the maximal derivation of sQ is
finite and ends with the state ERROR.

(c) We say that Q leads to the (finite or infinite) list of answer substitutions
A iff either the maximal derivation of sQ is finite and ends with a state
〈ε;D′;A〉, or the maximal derivation of sQ is infinite and for every finite
prefix A′ of A, there exists some S and D′ with sQ  ∗ 〈S;D′, A′〉. As usual,
 ∗ denotes the transitive and reflexive closure of  .

In contrast to Def. 2, the ISO standard [11, 13] defines the semantics of Prolog
using search trees. These search trees are constructed by a depth-first search from
left to right, where of course one avoids the construction of parts of the tree that
are not needed (e.g., because of cuts). In the ISO semantics, we have the following
for a Prolog program P and a query Q:13

(a) The execution of Q has length k ∈ N ∪ {∞} iff k unifications are needed to
construct the search tree (where the execution of a built-in predicate also
counts as at least one unification step).14 Of course, here every unification
attempt is counted, no matter whether it succeeds or not. So in the program
with the fact p(a), the execution of the query p(b) has length 1, since there
is one (failing) unification attempt.

(b) Q leads to a program error iff during the construction of the search tree one
reaches a goal (throw(e), Q) and the thrown exception is not caught.

(c) Q leads to the list of answer substitutions A iff Q does not lead to a program
error and A is the list of answer substitutions obtained when traversing the
(possibly infinite) search tree by depth-first search from left to right.

Thm. 3 (a) shows that our semantics and the ISO semantics result in the
same termination behavior. Moreover, the computations according to the ISO
semantics and our maximal derivations have the same length up to a constant
factor. Thus, our semantics can be used for termination and complexity analysis
of Prolog. Thm. 3 (b) states that our semantics and the ISO semantics lead to
the same program errors and in (c), we show that the two semantics compute

13 See [21] for a more formal definition.
14 In other words, even for built-in predicates p, the evaluation of an atom p(t1, . . . , tn)

counts as at least one unification step. For example, this is needed to ensure that
the execution of queries like “repeat, fail” has length ∞.



the same answer substitutions (up to variable renaming).15

Theorem 3 (Equivalence of Our Semantics and the ISO Semantics).
Consider a a Prolog program and a query Q.

(a) Let ` be the length of Q’s execution according to our semantics in Def. 2 and
let k be the length of Q’s execution according to the ISO semantics. Then
we have k ≤ ` ≤ 3 · k + 1. So in particular we also obtain ` = ∞ iff k = ∞
(i.e., the two semantics have the same termination behavior).

(b) Q leads to a program error according to our semantics in Def. 2 iff Q leads
to a program error according to the ISO semantics.

(c) Q leads to a (finite or infinite) list of answer substitutions δ0, δ1, . . . accord-
ing to our semantics in Def. 2 iff Q leads to a list of answer substitutions
θ0, θ1, . . . according to the ISO semantics, where the two lists have the same
length n ∈ N ∪ {∞} and for each i < n, there exists a variable renaming τi
such that for all variables X in the query Q, we have Xθi = Xδi τi.

(p(b))∅ |?0
Case (p(b))

p(a)
∅ |?1 |?0

Backtrack ?1 |?0
Failure ?0

Failure ε

Fig. 12. Evaluation for p(b)

To see why we do not have ` = k in Thm.
3(a), consider again the program with the fact p(a)
and the query p(b). While the ISO semantics only
needs k = 1 unification attempt, our semantics
uses 3 steps to model the failure of this proof.
Moreover, in the end we need one additional step
to remove the marker ?0 constructed in the initial
state. The evaluation is shown in Fig. 12, where
we omitted the catch-contexts and the components for dynamic predicates and
answer substitutions for readability. So in this example, we have ` = 3 ·k+1 = 4.

8 Conclusion

We have presented a new operational semantics for full Prolog (as defined in the
corresponding ISO standard [11, 13]) including the cut, “all solution” predicates
like findall, dynamic predicates, and exception handling. Our semantics is modu-
lar (i.e., easy to adapt to subsets of Prolog) and linear resp. local (i.e., derivations
are lists instead of trees and even the cut and exceptions are local operations
where the next state in a derivation only depends on the previous state).

We have proved that our semantics is equivalent to the semantics based on
search trees defined in the ISO standard w.r.t. both termination behavior and
computed answer substitutions. Furthermore, the number of derivation steps in
our semantics is equal to the number of unifications needed for the ISO semantics
(up to a constant factor). Hence, our semantics is suitable for (possibly auto-
mated) analysis of Prolog programs, for example for static analysis of termination
and complexity using an abstraction of the states in our semantics as in [19, 20].

In [19, 20], we already successfully used a subset of our new semantics for
automated termination analysis of definite logic programs with cuts. In future
work, we will extend termination analysis to deal with all our inference rules in

15 Moreover, the semantics are also equivalent w.r.t. the side effects of a program (like
the changes of the dynamic clauses, input and output, etc.).



order to handle full Prolog as well as to use the new semantics for asymptotic
worst-case complexity analysis. We further plan to investigate uses of our se-
mantics for debugging and tracing applications exploiting linearity and locality.
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