
Symbolic Evaluation Graphs and Term Rewriting —
A General Methodology for Analyzing Logic Programs ∗

Jürgen Giesl
LuFG Informatik 2, RWTH Aachen

University, Germany
giesl@informatik.rwth-aachen.de

Thomas Ströder
LuFG Informatik 2, RWTH Aachen

University, Germany
stroeder@informatik.rwth-aachen.de

Peter Schneider-Kamp
Dept. of Mathematics and Computer

Science, University of Southern Denmark
petersk@imada.sdu.dk

Fabian Emmes
LuFG Informatik 2, RWTH Aachen University,

Germany
emmes@informatik.rwth-aachen.de

Carsten Fuhs
Dept. of Computer Science, University College London,

United Kingdom
c.fuhs@cs.ucl.ac.uk

Abstract
There exist many powerful techniques to analyze termination and
complexity of term rewrite systems (TRSs). Our goal is to use
these techniques for the analysis of other programming languages
as well. For instance, approaches to prove termination of definite
logic programs by a transformation to TRSs have been studied for
decades. However, a challenge is to handle languages with more
complex evaluation strategies (such as Prolog, where predicates
like the cut influence the control flow). In this paper, we present
a general methodology for the analysis of such programs. Here,
the logic program is first transformed into a symbolic evaluation
graph which represents all possible evaluations in a finite way.
Afterwards, different analyses can be performed on these graphs.
In particular, one can generate TRSs from such graphs and apply
existing tools for termination or complexity analysis of TRSs to
infer information on the termination or complexity of the original
logic program.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic Programming; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs—
Mechanical Verification; I.2.2 [Artificial Intelligence]: Automatic
Programming—Automatic Analysis of Algorithms

General Terms Languages, Theory, Verification

Keywords Logic Programs, Prolog, Term Rewriting, Termina-
tion, Complexity, Determinacy

∗ Supported by the DFG under grant GI 274/5-3, the DFG Research Train-
ing Group 1298 (AlgoSyn), and the Danish Council for Independent Re-
search, Natural Sciences.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’12, September 19–21, 2012, Leuven, Belgium.
Copyright c© 2012 ACM 978-1-4503-1522-7/12/09. . . $10.00

1. Introduction
We are concerned with analyzing “semantical” properties of logic
programs, like termination, complexity, and determinacy (i.e., the
question whether all queries in a specific class succeed at most
once). While there are techniques and tools that analyze logic pro-
grams directly, we present a general transformational methodology
for such analyses. In this way, one can re-use existing powerful
techniques and tools that have been developed for term rewriting.

For well-moded definite logic programs, there are several trans-
formations to TRSs such that termination of the TRS implies termi-
nation of the original logic program [33]. We extended these trans-
formations to arbitrary definite programs in [35].

However, Prolog programs typically use the cut predicate. To
handle the non-trivial control flow induced by cuts, in [37] we
introduced a pre-processing method where a Prolog program is
first transformed into a symbolic evaluation graph. (These graphs
were inspired by related approaches to program optimization [38]
and were called “termination graphs” in [37].) Symbolic evaluation
graphs also represent those aspects of the program that cannot eas-
ily be expressed in term rewriting. We also developed similar ap-
proaches for other programming languages like Java and Haskell
[7–9, 17]. For Prolog, the transformation from the program to the
symbolic evaluation graph relies on a new “linear” operational se-
mantics which we presented in [41]. From the symbolic evalua-
tion graph, one can then generate a simpler program (without cuts)
whose termination implies termination of the original Prolog pro-
gram. In [37] we generated definite logic programs from the graph
(whose termination could then be analyzed by transforming them
further to TRSs, for example). In [40], we presented a more power-
ful approach which generates so-called dependency triples [31, 36]
from the graph.

In the current paper, we show that the symbolic evaluation graph
cannot only be used for termination analysis, but it is also very
suitable as the basis for several other analyses, such as complexity
or determinacy analysis. So symbolic evaluation graphs and term
rewriting can be seen as a general methodology for the analysis of
programming languages like Prolog.1

1 This methodology can also be used to analyze programs in other lan-
guages. For example, in [8] we used similar graphs not just for ter-
mination proofs, but also for disproving termination and for detecting
NullPointerExceptions in Java programs.

After recapitulating the underlying operational semantics in
Sect. 2, we introduce the symbolic evaluation graph in Sect. 3. To
use this graph for different forms of program analysis, we present
several new theorems which express the connection between the
“abstract evaluations” represented in the graph and the “concrete
evaluations” of actual queries.

In Sect. 4, we present a new improved approach for termina-
tion analysis of logic programs, where one directly generates term
rewrite systems from the symbolic evaluation graph. This results
in a substantially more powerful approach than [37]. Compared to
[40], our new approach is considerably simpler and it allows us to
apply any tool for termination of TRSs when analyzing the termi-
nation of logic programs. So one does not need tools that handle
the (non-standard) notion of “dependency triples” anymore.

In Sect. 5 we show that symbolic evaluation graphs and the
TRSs generated from the graphs can also be used in order to an-
alyze the complexity of logic programs. Here, we rely on recent re-
sults which show how to adapt techniques for termination analysis
of TRSs in order to prove asymptotic upper bounds for the runtime
complexity of TRSs automatically.

Finally, Sect. 6 demonstrates that the symbolic evaluation graph
can also be used to analyze whether a class of queries is deter-
ministic. Besides being interesting on its own, such a determinacy
analysis is also needed in our new approach for complexity analysis
of logic programs in Sect. 5.

We implemented all our contributions in our automated termi-
nation tool AProVE [15] and performed extensive experiments to
compare our approaches with existing analysis techniques which
work directly on logic programs. It turned out that our approaches
for termination and complexity clearly outperform related exist-
ing techniques. For determinacy analysis, our approach can han-
dle many examples where existing methods fail, but there are also
many examples where the existing techniques are superior. Thus,
here it would be promising to couple our approach with existing
ones. All proofs can be found in [18].

2. Preliminaries and Operational Semantics of
Prolog

See, e.g., [2] for the basics of logic programming. We label indi-
vidual cuts to make their scope explicit. Thus, we use a signature
Σ containing {!m/0 | m ∈ N} and all predicate and function sym-
bols. As in the ISO standard for Prolog [23], we do not distinguish
between predicate and function symbols and just consider terms
T (Σ,V) and no atoms.

A query is a sequence of terms. Let Query(Σ,V) denote the set
of all queries, where � is the empty query. A clause is a pair h :-B
where the head h is a term and the bodyB is a query. IfB is empty,
then we write just “h” instead of “h :-�”. A logic program P is a
finite sequence of clauses.

We now briefly recapitulate our operational semantics from
[41], which is equivalent to the ISO semantics in [23]. As shown in
[41], both semantics yield the same answer substitutions, the same
termination behavior, and the same complexity. The advantage of
our semantics is that it is particularly suitable for an extension
to classes of queries, i.e., for the symbolic evaluation of abstract
states, cf. Sect. 3. This makes our semantics particularly well suited
for analyzing logic programs.

Our semantics is given by a set of inference rules that operate
on states. A state has the form (G1 | . . . | Gn) where each Gi
is a goal. Here, G1 represents the current query and (G2 | . . . |
Gn) represents the queries that have to be considered next. This
backtrack information is contained in the state in order to describe
the effect of cuts. Since each state contains all backtracking goals,

our semantics is linear (i.e., an evaluation with these rules is just a
sequence of states and not a search tree as in the ISO semantics).

Essentially, a goal is just a query, i.e., a sequence of terms. But
to compute answer substitutions, a goal is labeled by a substitution
which collects the unifiers used up to now. So if (t1, . . . , tk) is
a query, then a goal has the form (t1, . . . , tk)θ for a substitution
θ. In addition, a goal can also be labeled by a clause c, where
(t1, . . . , tk)cθ means that the next resolution has to be performed
with clause c. Moreover, a goal can also be a scope marker ?m for
m ∈ N. This marker denotes the end of the scope of cuts !m labeled
with m. Whenever a cut !m is reached, all goals preceding ?m are
discarded.

Def. 1 shows the inference rules for the part of Prolog defining
definite logic programming and the cut. See [41] for the inference
rules for full Prolog. Here, S and S′ are states and the query Q
may also be � (then “(t, Q)” is t).

DEFINITION 1 (Operational Semantics).

�θ | S
S

(SUC)
(t, Q)h :-B

θ | S
(Bσ,Qσ)θσ | S

(EVAL) if mgu(t, h)=σ

?m | S
S

(FAIL)
(t, Q)h :-B

θ | S
S

(BACKTRACK) if t 6∼ h

(t, Q)θ | S

(t, Q)
c1[!/!m]
θ | . . . | (t, Q)

ca[!/!m]
θ | ?m | S

(CASE)

where t is no cut or variable, m is fresh, and SliceP (t) = (c1, . . . , ca)

(!m, Q)θ | S | ?m | S′

Qθ | ?m | S′
(CUT)

where
S con-
tains no
?m

(!m, Q)θ | S
Qθ

(CUT)
where
S con-
tains no
?m

The SUC rule is applicable if the first goal of our sequence could
be proved. Then we backtrack to the next goal in the sequence.
FAIL means that for the current m-th case analysis, there are no
further backtracking possibilities. But the whole evaluation does
not have to fail, since the state S may still contain further alternative
goals which have to be examined.

To make the backtracking possibilities explicit, the resolution of
a program clause with the first atom t of the current goal is split into
two operations. The CASE rule determines which clauses could be
applied to t by slicing the program according to t’s root symbol.
Here, SliceP(p(t1, . . . , tn)) is the sequence of all program clauses
“h :-B” from P where root(h) = p/n. The variables in program
clauses are renamed when this is necessary to ensure variable-
disjointness with the states. Thus, CASE replaces the current goal
(t, Q)θ by a goal labeled with the first such clause and adds copies
of (t, Q)θ labeled by the other potentially applicable clauses as
backtracking possibilities. Here, the top-down clause selection rule
is taken into account. The cuts in these clauses are labeled by a
fresh mark m ∈ N (i.e., c[!/!m] is the clause c where all cuts ! are
replaced by !m), and ?m is added at the end of the new backtracking
goals to denote their scope.

EXAMPLE 2. Consider the following logic program.

star(XS , []) :- !. (1)
star([],ZS) :- !, eq(ZS , []). (2)

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS).(3)
app([],YS ,YS). (4)

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS). (5)
eq(X,X). (6)

Here, star(t1, t2) holds iff t2 results from repeated concatenation of
t1. So we have star([1, 2], []), star([1, 2], [1, 2]), star([1, 2], [1, 2,

1, 2]), etc. The cut in rule (2) is needed for termination of queries of
the form star([], t). For the query star([1, 2], []), we obtain the fol-
lowing evaluation, where we omitted the labeling by substitutions
for readability.

star([1, 2], []) `CASE

star([1, 2], [])(1
′) | star([1, 2], [])(2

′) | star([1, 2], [])(3) | ?1 `EVAL

!1 | star([1, 2], [])(2
′) | star([1, 2], [])(3) | ?1 `CUT

� | ?1 `SUC

?1 `FAIL ε

So the CASE rule results in a state which represents a case analysis
where we first try to apply the star-clause (1). The state also
contains the next backtracking goals, since when backtracking later
on, we would use clauses (2) and (3). Here, (1′) denotes (1)[!/!1]
and (2′) denotes (2)[!/!1].

For a goal (t,Q)h :-B
θ , if t unifies2 with the head h of the program

clause, we apply EVAL. This rule replaces t by the body B of the
clause and applies the mgu σ to the result. Moreover, σ contributes
to the answer substitution, i.e., we replace the label θ by θσ.

If t does not unify with h (denoted “t 6∼ h”), we apply the
BACKTRACK rule. Then, h :-B cannot be used and we backtrack
to the next goal in our backtracking sequence.

Finally, there are two CUT rules. The first rule removes all back-
tracking information on the level m where the cut was introduced.
Since its scope is explicitly represented by !m and ?m, we have
turned the cut into a local operation depending only on the current
state. Note that ?m must not be deleted as the current goalQθ could
still lead to another cut !m. The second CUT rule is used if ?m is
missing (e.g., if a cut !m is already in the initial query). We treat
such states as if ?m were added at the end of the state.

For each query Q, its corresponding initial state consists of just
(Q[!/!1])id (i.e., all cuts in Q are labeled by a fresh number like 1
and the goal is labeled by the identity substitution id). The query
Q is terminating if all evaluations starting in its corresponding
initial state are finite. Our inference rules can also be used to define
answer substitutions.

DEFINITION 3 (Answer Substitution). Let S be a state with a sin-
gle goal Qσ (which may additionally be labeled by a clause c). We
say that θ is an answer substitution for S if there is an evaluation
from S to a state (�σθ | Ssuffix) for a (possibly empty) state Ssuffix

(i.e., (�σθ | Ssuffix) is obtained by repeatedly applying rules from
Def. 1 to S). Similarly, θ is an answer substitution for a query if it
is an answer substitution for the query’s initial state.

3. From Prolog to Symbolic Evaluation Graphs
We now explain the construction of symbolic evaluation graphs
which represent all evaluations of a logic program for a certain
class of queries. While we already presented such graphs in [37],
here we introduce a new formulation of the corresponding abstract
inference rules which is suitable for generating TRSs afterwards.
Moreover, we present new theorems (Thm. 5, 8, and 10) which ex-
press the exact connection between abstract and concrete evalua-
tions. These theorems will be used to prove the soundness of our
analyses later on.

We consider classes of atomic queries described by a p/n ∈ Σ
and a moding function m : Σ× N→ {in, out}. So m determines
which arguments of a symbol are “inputs”. The corresponding class
of queries is Qp

m = {p(t1, . . . , tn) | V(ti) = ∅ for all i with

2 In this paper, we consider unification with occurs check. Our method could
be extended to unification without occurs check, but we left this as future
work since most programs do not rely on the absence or presence of the
occurs check.

m(p, i) = in }. Here, “V(ti)” denotes the set of all variables
occurring in ti. So for the program of Ex. 2, we might regard the
class of queries Qstar

m where m(star, 1) = m(star, 2) = in . Thus,
Qstar
m ={star(t1, t2) | t1, t2 are ground}.
To represent classes of queries, we regard abstract states that

stand for sets of concrete states. Instead of “ordinary” variablesN ,
abstract states use abstract variables A = {T1, T2, . . .} represent-
ing fixed, but arbitrary terms (i.e., V = N]A).

To obtain concrete states from an abstract one, we use con-
cretizations. A concretization is a substitution γ which replaces
all abstract variables by concrete terms, i.e., Dom(γ) = A and
V(Range(γ)) ⊆ N . To determine by which terms an abstract vari-
able may be instantiated, we add a knowledge base KB = (G,U)
to each state, where G ⊆ A and U ⊆ T (Σ,V) × T (Σ,V).
The variables in G may only be instantiated by ground terms, i.e.,
V(Range(γ|G)) = ∅. Here, “γ|G” denotes the restriction of γ to G,
i.e., γ|G(X) = γ(X) forX ∈ G and γ|G(X) = X forX ∈ V \G.
A pair (t, t′) ∈ U means that we are restricted to concretizations
γ where tγ 6∼ t′γ, i.e., t and t′ must not be unifiable after γ is
applied. Then we say that γ is a concretization w.r.t. KB .

Thus, an abstract state has the form (S;KB). Here, S has the
form (G1 | . . . | Gn) where the Gi are goals over the signature
Σ and the abstract variables A (i.e., they do not contain variables
fromN). In contrast to [37], we again label all goals (except scope
markers) by substitutions θ : V → T (Σ,A) in order to store which
substitutions were applied during an evaluation. These substitution
labels will be necessary for the synthesis of TRSs in Sect. 4.

The notion of concretization can also be used for states. A (con-
crete) state S′ is a concretization of (S;KB) if there exists a con-
cretization γ w.r.t. KB such that S′ results from Sγ by replacing
the substitution labels of its goals by arbitrary (possibly different)
substitutions θ : N → T (Σ,N). To ease readability, we often
write “Sγ” to denote an arbitrary concretization of (S;KB). Let
CON (S;KB) denote the set of all concretizations of an abstract
state (S;KB).

For a class Qp
m with p/n, now the initial state is (p(T1, . . . ,

Tn)id , (G,∅)), where G contains all Ti with m(p, i) = in .
We now adapt the inference rules of Def. 1 to abstract states.

The rules SUC, FAIL, CUT, and CASE do not change the knowledge
base and are straightforward to adapt. In Def. 1, we determined
which of the rules EVAL and BACKTRACK to apply by trying
to unify the first term t with the head h of the corresponding
clause. But in the abstract case we might need to apply EVAL
for some concretizations and BACKTRACK for others. The abstract
BACKTRACK rule in Def. 4 can be used if tγ does not unify with
h for any concretization γ. Otherwise, tγ unifies with h for some
concretizations γ, but possibly not for others. Thus, the abstract
EVAL rule has two successor states to combine both the concrete
EVAL and the concrete BACKTRACK rule. Consequently, we now
obtain symbolic evaluation trees instead of sequences.

DEFINITION 4 (Abstract Inference Rules).

(�θ |S);KB

S;KB
(SUC)

((!m, Q)θ |S | ?m |S′);KB

(Qθ | ?m | S′);KB
(CUT)

where S
contains
no ?m

(?m | S);KB

S;KB
(FAIL)

((!m, Q)θ | S);KB

Qθ;KB
(CUT)

where S
contains
no ?m

((t, Q)θ | S);KB

((t, Q)
c1[!/!m]
θ | . . . | (t, Q)

ca[!/!m]
θ | ?m | S);KB

(CASE)

where t is no cut or variable, m is fresh, SliceP (t) = (c1, . . . , ca)

((t, Q)h :-B
θ | S);KB

S;KB
(BACKTRACK)

if there is no concretiza-
tion γ w.r.t. KB such that
tγ ∼ h.

((t, Q)h :-B
θ | S); (G,U)

((Bσ,Qσ)θσ | S′); (G′,Uσ|G) S; (G,U ∪ {(t, h)})
(EVAL)

if mgu(t, h) = σ. W.l.o.g., V(Range(σ)) only contains fresh abstract
variables and Dom(σ) contains all previously occurring variables. More-
over, G′ = A(Range(σ|G)) and S′ results from S by applying the substi-
tution σ|G to its goals and by composing σ|G with the substitution labels of
its goals.

To handle “sharing” effects correctly [37], w.l.o.g. we assume
that mgu(t, h) = σ renames all occurring variables to fresh ab-
stract variables in EVAL. The knowledge base is updated differently
for the successors corresponding to the concrete EVAL and BACK-
TRACK rule. For all concretizations corresponding to the second
successor of EVAL, the concretization of t does not unify with h.
Hence, here we add (t, h) to U .

Now consider concretizations γ where tγ and h unify, i.e.,
these concretizations γ correspond to the first successor of the
EVAL rule. Then for any T ∈ G, Tγ is a ground instance of Tσ.
Hence, we replace all T ∈ G by Tσ, i.e., we apply σ|G to S. The
new set G′ of variables that may only be instantiated by ground
terms are the abstract variables occurring in Range(σ|G) (denoted
“A(Range(σ|G))”). As before, t is replaced by the instantiated
clause body B and the previous substitution label θ is composed
with the mgu σ (yielding θσ).

Thm. 5 states that any concrete evaluation with Def. 1 can also
be simulated with the abstract rules of Def. 4.

THEOREM 5 (Soundness of Abstract Rules). Let (S;KB) be an
abstract state with a concretization Sγ ∈ CON (S;KB), and
let Snext be the successor of Sγ according to the operational se-
mantics in Def. 1. Then the abstract state (S;KB) has a succes-
sor (S′;KB ′) according to an inference rule from Def. 4 such that
Snext ∈ CON (S′;KB ′).

As an example, consider the program from Ex. 2 and the class
of queries Qstar

m . The corresponding initial state is (star(T1, T2)id ;
({T1, T2},∅)). A symbolic evaluation starting with this state A is
depicted in Fig. 6. The nodes of such a symbolic evaluation graph
are states and each step from a node to its children is done by an
inference rule. To save space, we omitted the knowledge base from
the states (S; (G,U)). Instead, we overlined all variables contained
in G and labeled those edges where new information is added to U .

The child of A is B with (star(T1, T2)
(1′)
id | star(T1, T2)

(2′)
id |

star(T1, T2)
(3)
id | ?1). In Fig. 6 we simplified the states by removing

markers ?m that occur at the end of a state. This is possible, since
applying the first CUT rule to a state ending in ?m corresponds
to applying the second CUT rule to the same state without ?m.
Moreover, (1′) and (2′) again abbreviate (1)[!/!1] and (2)[!/!1].

In B, (1′) is used for the next evaluation. EVAL yields two suc-
cessors: In C, σ1 = mgu(star(T1, T2), star(XS , [])) = {T1/T3,

XS/T3, T2/[]} leads to ((!1)σ1 | star(T3, [])
(2′)
σ2 | star(T3, [])

(3)
σ2).

Here, σ2 = σ1|{T1,T2}. In the second successor D of B, we add the
information star(T1, T2) 6∼ star(XS , []) to U (thus, we labeled
the edge from B to D accordingly).

Unfortunately, even for terminating queries, in general the rules
of Def. 4 yield an infinite tree. The reason is that there is no bound
on the size of terms represented by the abstract variables and hence,
the abstract EVAL rule can be applied infinitely often. To represent
all possible evaluations in a finite way, we need additional inference
rules to obtain finite symbolic evaluation graphs instead of infinite
trees.

star(T1, T2)idA

star(T1, T2)
(1′)
id

| star(T1, T2)
(2′)
id

| star(T1, T2)
(3)
id

B

CASE

(!1)σ1
| star(T3, [])

(2′)
σ2

| star(T3, [])
(3)
σ2

C

EVAL

star(T1, T2)
(2′)
id

| star(T1, T2)
(3)
id

D

EVAL
star(T1, T2) � star(XS, [])

�σ1E

CUT

(!1, eq(T4, []))σ3 | star([], T4)
(3)
σ4

EVAL

star(T1, T2)
(3)
id

EVAL
star(T1, T2) �
star([], ZS)

ε

SUC

eq(T4, [])σ3

CUT

(app(T5, T7, T6), star(T5, T7))σ5F

EVAL

ε

EVAL

. . .

CASE

app(T5, T7, T6)idG

SPLIT

star(T5, T8)δH

SPLIT

INST

T1/T5, T2/T8

app(T5, T7, T6)
(4)
id
| app(T5, T7, T6)

(5)
id

CASE

app(T5, T7, T6)
(5)
id

BACKTRACK

app(T10, T11, T12)σ6I

EVAL

ε

EVAL

app(T5, T7, T6) �
app([X | XS],YS, [X | ZS])

app(T10, T11, T12)
(4)
σ6
| app(T10, T11, T12)

(5)
σ6

CASE

�σ6σ7 | app([], T11, T13)
(5)
σ6σ8

J

EVAL

app(T10, T11, T12)
(5)
σ6

EVAL
app(T10, T11, T12)
� app([],XS,XS)

app([], T11, T13)
(5)
σ6σ8

SUC

app(T15, T16, T17)σ6σ9K

EVAL

INST

T10/T15,
T11/T16,

T12/T17

ε

EVAL

app(T10, T11, T12) �
app([X | XS],YS, [X | ZS])

ε

BACKTRACK

Figure 6. Symbolic Evaluation Graph for Ex. 2

To this end, we use an additional INST rule which allows us to
connect the current state (S;KB) with a previous state (S′;KB ′),
provided that the current state is an instance of the previous state.
In other words, every concretization of (S;KB) must be a con-
cretization of (S′;KB ′). More precisely, there must be a matching
substitution µ such that S′µ = S up to the substitutions used for
labeling goals in S′ and S. These substitution labels do not have
to be taken into account here, since we will not generate rewrite
rules from paths that traverse INST edges in Sect. 4. Moreover, for
KB ′ = (G′,U ′) and KB = (G,U), G′ and G must be the same
(modulo µ) and all constraints fromU ′ must occur inU (modulo µ).
Then we say that µ is associated to (S;KB) and label the resulting
INST edge with µ. For example, in Fig. 6, µ = {T1/T5, T2/T8} is
associated to H and the edge from H to A is labeled with µ. We only
define the INST rule for states containing a single goal. As indicated
by our experiments, this is no severe restriction in practice.3

3 In [37] and in our implementation, we use an additional inference rule to
split up sequences of goals, but we omitted it here for readability. Adding
this rule allows us to construct a symbolic evaluation graph for each pro-
gram and query.

DEFINITION 7 (Abstract Rules: INST).

S; (G,U)

S′; (G′,U ′)
(INST)

if S = Qθ and S′ = Q′θ′ or S =
Qcθ and S′ = Q′cθ′ for some non-empty
queriesQ andQ′, such that there is a µ
with Dom(µ) ⊆ A, V(Range(µ)) ⊆
A, Q = Q′µ, G =

⋃
T∈G′ V(Tµ), and

U ′µ ⊆ U .

Thm. 8 states that every concrete state represented by an INST
node is also represented by its successor.

THEOREM 8 (Soundness of INST). Let (S;KB) be an abstract
state, let (S′;KB ′) be its successor according to the INST rule,
and let µ be associated to (S;KB). If Sγ ∈ CON (S;KB), then
for γ′=µγ we have S′γ′∈CON (S′;KB ′).

Moreover, we also need a SPLIT inference rule to split a state
((t, Q)θ;KB) into (tid ;KB) and ((Qδ)δ;KB ′), where δ approx-
imates the answer substitutions for t. Such a SPLIT is often needed
to make the INST rule applicable. We say that δ is associated to
((t, Q)θ;KB). The previous substitution label θ does not have to
be taken into account here, since we will not generate rewrite rules
from paths that traverse SPLIT nodes in Sect. 4. Thus, we can re-
set the substitution label θ to id in the first successor of the SPLIT
node and store the associated substitution δ in the substitution label
of the second successor. Similar to the INST rule, we only define
the SPLIT rule for states containing a single goal.

DEFINITION 9 (Abstract Rules: SPLIT).

(t, Q)θ; (G,U)

tid ; (G,U) (Qδ)δ; (G′,Uδ)
(SPLIT)

where δ replaces all pre-
viously occurring variables
fromA\G by fresh abstract
variables and G′ = G ∪
NextG(t,G)δ.

Here, NextG is defined as follows. We assume that we have a
groundness analysis function GroundP : Σ × 2N → 2N, see,
e.g., [22]. If p/n ∈ Σ and {i1, . . . , im} ⊆ {1, . . . , n}, then
GroundP(p, {i1, . . . , im}) = {j1, . . . , jk} means that any que-
ry p(t1, . . . , tn) ∈ T (Σ,N) where ti1 , . . . , tim are ground on-
ly has answer substitutions θ where tj1θ, . . . , tjkθ are ground.
So GroundP approximates which positions of p will become
ground if the “input” positions i1, . . . , im are ground. Now if t =
p(t1, . . . , tn) ∈ T (Σ,A) is an abstract term where ti1 , . . . , tim
become ground in every concretization (i.e., all their variables are
from G), then NextG(t,G) returns all variables in t that will be
made ground by every answer substitution for any concretization
of t. Thus, NextG(t,G) contains the variables of tj1 , . . . , tjk . So
formally

NextG(p(t1, . . . , tn),G) =
⋃

j∈GroundP (p, {i|V(ti)⊆G})
V(tj).

Hence, in the second successor of the SPLIT rule, the variables in
NextG(t,G) can be added to the groundness set G. Since these
variables were renamed by δ, we extend G by NextG(t,G)δ.

For instance, in Fig. 6, we split the query app(T5, T7, T6),
star(T5, T7) in state F. Thus, the first successor of F is app(T5, T7,
T6) in state G. By groundness analysis, we infer that every success-
ful evaluation of app(T5, T7, T6) instantiates T7 by ground terms,
i.e., GroundP(app, {1, 3}) = {1, 2, 3}. Thus, for G = {T5, T6},
we have NextG(app(T5, T7, T6),G) = V(T5)∪V(T7)∪V(T6) =
{T5, T7, T6}. So in the second successor H of F, we use the sub-
stitution δ(T7) = T8 and extend the groundness set G of F by
NextG(app(T5, T7, T6),G)δ = {T5, T8, T6}. Thus, T8 is also
overlined in Fig. 6.

Thm. 10 shows the soundness of SPLIT. Suppose that we ap-
ply the SPLIT rule to ((t, Q)θ;KB), which yields (tid ;KB) and

((Qδ)δ;KB ′). Any evaluation of a concrete state (tγ,Qγ) ∈
CON ((t, Q)θ;KB) consists of parts where one evaluates tγ
(yielding some answer substitution θ′) and of parts where one
evaluates Qγθ′. Clearly, those parts which correspond to evalu-
ations of tγ can be simulated by the left successor of the SPLIT
node (since tγ ∈ CON (tid ;KB)). Thm. 10 states that the parts
of the overall evaluation which correspond to evaluations of Qγθ′

can be simulated by the right successor of the SPLIT node (i.e.,
Qγθ′∈CON ((Qδ)δ;KB ′)).

THEOREM 10 (Soundness of SPLIT). Let ((t,Q)θ;KB) be an ab-
stract state and let (tid ;KB) and ((Qδ)δ;KB ′) be its successors
according to the SPLIT rule. Let (tγ,Qγ) ∈ CON ((t, Q)θ;KB)
and let θ′ be an answer substitution of (tγ)id . Then we have
Qγθ′ ∈ CON ((Qδ)δ;KB ′).

We define symbolic evaluation graphs as a subclass of the
graphs obtained by the rules of Def. 4, 7, and 9. They must not
have any cycles consisting only of INST edges, as this would lead
to trivially non-terminating TRSs. Moreover, their only leaves may
be nodes where no inference rule is applicable anymore (i.e., the
graphs must be “fully expanded”). The graph in Fig. 6 is indeed a
symbolic evaluation graph.

DEFINITION 11 (Symbolic Evaluation Graph). A finite graph built
from an initial state using Def. 4, 7, and 9 is a symbolic evaluation
graph (or “evaluation graph” for short) iff there is no cycle con-
sisting only of INST edges and all leaves are of the form (ε;KB).4

4. From Symbolic Evaluation Graphs to TRSs –
Termination Analysis

Now our goal is to show termination of all concrete states repre-
sented by the graph’s initial state. To this end, we synthesize a TRS
from the symbolic evaluation graph. This TRS has the following
property: if there is an evaluation from a concretization of one state
to a concretization of another state which may be crucial for ter-
mination, then there is a corresponding rewrite sequence w.r.t. the
TRS. Then automated tools for termination analysis of TRSs can be
used to show termination of the synthesized TRS and this implies
termination of the original logic program. See, e.g., [13, 16, 43] for
an overview of techniques for automatically proving termination of
TRSs.

For the basics of term rewriting, we refer to [6]. A term rewrite
system R is a finite set of rules ` → r where ` /∈ V and V(r) ⊆
V(`). The rewrite relation t →R t′ for two terms t and t′ holds iff
there is an ` → r ∈ R, a position pos , and a substitution σ such
that `σ = t|pos and t′ = t[rσ]pos . Here, t|pos is the subterm of t at
position pos and t[rσ]pos results from replacing the subterm t|pos

at position pos in t by the term rσ. The rewrite step is innermost
(denoted t i→R t′) iff no proper subterm of `σ can be rewritten.

To obtain a TRS from an evaluation graph Gr , we encode
the states as terms. For each state s = (S; (G,U)), we use two
fresh function symbols f in

s and fout
s . The arguments of f in

s are
the variables in G (which represent ground terms). The arguments
of fout

s are those remaining abstract variables which will be made
ground by every answer substitution for any concretization of s.
They are again determined by groundness analysis [22]. Formally,
the encoding of states is done by two functions encin and encout .

For instance, for the state F in Fig. 6, we obtain encin(F) =
f in

F (T5, T6) (as G = {T5, T6} in F) and encout(F) = fout
F (T7).

The reason is that if γ instantiates T5 and T6 by ground terms, then

4 The application of inference rules to abstract states is not deterministic. In
our prover AProVE, we implemented a heuristic [39] to generate symbolic
evaluation graphs automatically which turned out to be very suitable for
subsequent analyses in our empirical evaluations.

every answer substitution of (app(T5, T7, T6)γ, star(T5, T7)γ) in-
stantiates T7γ to a ground term as well.

For an INST node like H with associated substitution µ we do
not introduce fresh function symbols, but use the function symbol
of its (more general) successor instead. So we take the terms re-
sulting from its successor A and apply µ to them. In other words,
encin(H) = encin(A)µ = f in

A (T1, T2)µ = f in
A (T5, T8) and

encout(H) = encout(A)µ = fout
A µ = fout

A .
In the following, for an evaluation graph Gr and an inference

rule RULE, Rule(Gr) denotes all nodes of Gr to which RULE
was applied. Let Succi(s) denote the i-th child of node s and
Succi(Rule(Gr)) denotes the set of i-th children of all nodes from
Rule(Gr).

DEFINITION 12 (Encoding States as Terms). Let s be an abstract
state with a single goal (i.e., s = ((t1, . . . , tk)θ; (G,U))), and let
V(s) = V(t1) ∪ . . . ∪ V(tk). We define

encin(s) =

{
encin(Succ1(s))µ, if s ∈ Inst(Gr) where µ is asso-

ciated to s
f in
s (Gin(s)), otherwise, where Gin (s) = G ∩ V(s)

encout(s)=

encout(Succ1(s))µ, if s ∈ Inst(Gr) where µ is

associated to s
fout
s (Gout(s)), otherwise, where Gout (s) =

NextG((t1, ..., tk),G) \ G

Here, we extended NextG to work also on queries:

NextG((t1, . . . , tk),G) = NextG(t1,G) ∪
NextG((t2, . . . , tk), NextG(t1,G)).

So to compute NextG((t1, . . . , tk),G) for a query (t1, . . . , tk),
in the beginning we only know that the variables in G represent
ground terms. Then we compute the variables NextG(t1,G) which
are made ground by all answer substitutions for concretizations of
t1. Next, we compute NextG(t2, NextG(t1,G)) which are made
ground by all answer substitutions for concretizations of t2, etc.

Now we encode the paths of Gr as rewrite rules. However, we
only consider connection paths of Gr , which suffice to analyze ter-
mination. Connection paths are non-empty paths that start in the
root node of the graph or in a successor of an INST or SPLIT node,
provided that these states are not INST or SPLIT nodes themselves.
So the start states in our example are A, G, and I. Moreover, connec-
tion paths end in an INST, SPLIT, or SUC node or in the successor
of an INST node, while not traversing INST or SPLIT nodes or suc-
cessors of INST nodes in between. So in our example, the end states
are A, E, F, H, I, J, K, but apart from E and J, connection paths may
not traverse any of these end nodes in between.

Thus, we have connection paths from A to E, A to F, G to I, I to
J, and I to K. These paths cover all ways through the graph except
for INST edges (which are covered by the encoding of states to
terms), for SPLIT edges (which we consider later in Def. 15), and
for graph parts without cycles or SUC nodes (which cannot cause
non-termination).

DEFINITION 13 (Connection Path). A path π=s1 . . . sk is a con-
nection path of an evaluation graph Gr iff k > 1 and

• s1 ∈ {root(Gr)} ∪ Succ1(Inst(Gr) ∪ Split(Gr)) ∪
Succ2(Split(Gr))

• sk ∈ Inst(Gr) ∪ Split(Gr) ∪ Suc(Gr) ∪ Succ1(Inst(Gr))
• for all 1 ≤ j < k, sj /∈ Inst(Gr) ∪ Split(Gr)
• for all 1 < j < k, sj /∈ Succ1(Inst(Gr))

For a connection path π, let σπ represent the unifiers that were
applied along the path. These unifiers can be determined by “com-
paring” the substitution labels of the first and the last state of the
path (i.e., the goal in π’s first state has a substitution label θ and

the first goal of π’s last state is labeled by θσπ). So for the con-
nection path π from A to F we have σπ = σ5, where σ5(T1) =
T5 and σ5(T2) = T6. For this path, we generate rewrite rules
which evaluate the instantiated input term encin(A)σπ for the start
node A to its output term encout(A)σπ if the input term encin(F)
for the end node can be evaluated to its output term encout(F).
So we get encin(A)σπ → uA,F(enc

in(F),V(encin(A)σπ)) and
uA,F(enc

out(F), V(encin(A)σπ)) → encout(A)σπ for a fresh
function symbol uA,F. In our example, this yields

f in
A (T5, T6)→ uA,F(f

in
F (T5, T6), T5, T6) (7)

uA,F(f
out
F (T7), T5, T6)→ fout

A (8)

However, for connection paths π′ like the one from A to E which
end in a SUC node, the resulting rewrite rule directly evaluates
the instantiated input term encin(A)σπ′ for the start node A to its
output term encout(A)σπ′ . So we obtain

f in
A (T3, [])→ fout

A (9)

DEFINITION 14 (Rules for Connection Paths). Let π be a connec-
tion path s1 . . . sk in a symbolic evaluation graph. Let the (only)
goal in s1 be labeled by the substitution θ and let the first goal in
sk be labeled by the substitution θ σπ . If sk ∈ Suc(Gr), then we
define ConnectionRules(π)={encin(s1)σπ → encout(s1)σπ}.
Otherwise, ConnectionRules(π) =

{ encin(s1)σπ → us1,sk (encin(sk), V(encin(s1)σπ)),
us1,sk (encout(sk), V(encin(s1)σπ)) → encout(s1)σπ },

where us1,sk is a fresh function symbol.

In addition to the rules for connection paths, we also need
rewrite rules to simulate the evaluation of SPLIT nodes like F.
Let δ be the substitution associated to F (i.e., δ represents the
answer substitution of F’s first successor G). Then the SPLIT node F
succeeds (i.e., encin(F) δ can be evaluated to encout(F) δ) if both
successors G and H succeed (i.e., encin(G) δ can be evaluated to
encout(G) δ and encin(H) can be evaluated to encout(H)). Note
that encin(F) and encin(G) only contain “input” arguments (i.e.,
abstract variables from G) and thus, δ does not modify them. Hence,
encin(F) δ = encin(F) and encin(G) δ = encin(G). So we obtain

f in
F (T5, T6)→ uF,G(f in

G (T5, T6), T5, T6) (10)

uF,G(fout
G (T8), T5, T6)→ uG,H(f in

A (T5, T8), T5, T6, T8) (11)

uG,H(fout
A , T5, T6, T8)→ fout

F (T8) (12)

DEFINITION 15 (Rules for Split,R(Gr)). Let s ∈ Split(Gr),
s1 = Succ1(s), and s2 = Succ2(s). Moreover, let δ be the substi-
tution associated to s. Then SplitRules(s) =

{ encin (s) → us,s1 (encin (s1), V(encin (s))),
us,s1 (encout (s1) δ, V(encin (s))) →

us1,s2 (encin (s2), V(encin (s)) ∪ V(encout (s1)δ)),
us1,s2 (encout (s2),V(encin (s))∪V(encout (s1) δ))→ encout (s)δ}

R(Gr) consists of ConnectionRules(π) for all connection paths
π and of SplitRules(s) for all SPLIT nodes s of Gr .

For the graph Gr of Fig. 6, the resulting TRS R(Gr) consists
of (7) – (12) and the connection rules (13), (14) for the path from
G to I (where σ6(T5) = [T9 | T10], σ6(T7) = T11, σ6(T6) =
[T9 | T12]), the rules (15), (16) for I to K (where σ9(T10) = [T14 |
T15], σ9(T11) = T16, σ9(T12) = [T14 | T17]), and (17) for I to J
(where σ8 = σ7|{T10,T12} with σ8(T10) = [], σ8(T12) = T13).

f
in
G ([T9 | T10], [T9 | T12])→ uG,I(f

in
I (T10, T12), T9, T10, T12) (13)

uG,I(f
out
I (T11), T9, T10, T12)→ f

out
G (T11) (14)

f
in
I ([T14 | T15], [T14 | T17])→ uI,K(f

in
I (T15, T17), T14, T15, T17) (15)

uI,K(f
out
I (T16), T14, T15, T17)→ f

out
I (T16) (16)

f
in
I ([], T13)→ f

out
I (T13) (17)

Thm. 16 states that the resulting TRS can simulate all successful
evaluations represented in the graph, i.e., it simulates all computa-
tions of the logic program.

THEOREM 16 (TRS Simulates Semantics). Let s = (S;KB) be a
start node of a connection path or a SPLIT node in a graph Gr ,
Sγ ∈ CON (s), and let θ be an answer substitution for Sγ. Then
encin(s)γ i→+

R(Gr) enc
out(s)γθ.

Virtually all modern TRS termination tools can prove that
R(Gr) is terminating in our example. Thm. 17 shows that this
implies termination of all queries corresponding to the root of Gr .
Hence, by our approach, one can prove termination of non-definite
logic programs like Ex. 2 automatically.

THEOREM 17 (Soundness of Termination Analysis). Let P be a
logic program, p ∈ Σ, m a moding function, and let Gr be a
symbolic evaluation graph for P whose root is the initial state
corresponding toQp

m. If the TRSR(Gr) is innermost terminating,
then there is no infinite evaluation starting with any query from
Qp
m. Thus, all these queries are terminating w.r.t. the program P .

We implemented our approach for termination analysis in the
tool AProVE [15]. In addition to the cut, our implementation
handles many further features of Prolog. For our experiments,
AProVE ran on all 477 Prolog programs of the Termination Prob-
lem Database (TPDB, version 8.0.6), which is the collection of ex-
amples used in the annual International Termination Competition.5

300 of them are definite logic programs, whereas the remaining
177 programs contain advanced features like cuts. 37 of the 477
examples are known to be non-terminating. The experiments were
run on 2.2 GHz Quad-Opteron 848 Linux machines with a timeout

Yes RT
AProVE-[35] 265 7.1
AProVE-[37] 287 7.6
AProVE-[40] 340 5.7
AProVE-New 342 6.5

of 60 seconds per program. In the
table, “Yes” indicates the num-
ber of examples where termina-
tion could be proved and “RT” is
the average runtime (in seconds)
per example.

All termination tools for logic
programs except AProVE ignore cuts, i.e., they try to prove ter-
mination of the program that results from removing the cuts. This
is sensible, since cuts are not always needed for termination. In-
deed, the variant AProVE-[35] implements our technique from [35]
which ignores cuts and directly translates logic programs to TRSs.
Still, it proves termination of 31 of the 177 non-definite programs.
Other existing termination tools would not yield better results, as
AProVE-[35] is already the most powerful tool for definite logic
programs (as shown by the experiments in [35]) and as most of the
remaining non-definite examples do not terminate anymore if one
removes cuts. AProVE-[37] implements our approach from [37]
which introduced evaluation graphs, but transforms them to defi-
nite logic programs instead of TRSs. This approach is much more
powerful than [35] on examples with cut, but it fails on many def-
inite logic programs where [35] was successful. The approach of

5 In these competitions, AProVE was the most powerful tool for termina-
tion of logic programs, see http://termination-portal.org/wiki/
Termination_Competition/.

the current paper (implemented in AProVE-New)6 considers other
paths in the graph than [37]. Thus, it simulates the evaluations of
the original logic program more concisely and results in a more
powerful approach (both for definite and non-definite programs).

[40] improved upon [37] by generating “dependency triples”
from evaluation graphs. Indeed, AProVE-New and AProVE-[40]
have almost the same power. But while the back-end of [40] re-
quired a tool that can handle the (non-standard) notion of depen-
dency triples, our new approach works with any tool for termina-
tion of TRSs. Moreover, the approach of the current paper has the
advantage that the TRSs generated for termination analysis can also
be used for analyzing other properties like complexity, as shown in
Sect. 5.

5. From Symbolic Evaluation Graphs to TRSs –
Complexity Analysis

We briefly recapitulate the required notions for complexity of
TRSs. The defined symbols of a TRS R are Σd = {root(`) |
` → r ∈ R}, i.e., these are the function symbols that can
be “evaluated”. So for R(Gr) from Sect. 4, we have Σd =
{f in

A , uA,F, f
in
F , uF,G, uG,H, f

in
G , uG,I, f

in
I , uI,K}. Different notions of

complexity have been proposed for TRSs. In this paper, we fo-
cus on innermost runtime complexity [21], which corresponds to
the notion of complexity used for programming languages. Here,
one only considers rewrite sequences starting with basic terms
f(t1, . . . , tn), where f ∈ Σd and t1, . . . , tn do not contain symbols
from Σd. The innermost runtime complexity function ircR maps
any n ∈ N to the length of the longest sequence of i→R-steps start-
ing with a basic term t where |t| ≤ n. Here, |t| is the number of
variables and function symbols occurring in t. To measure the com-
plexity of a TRS R, we determine the asymptotic growth of ircR,
i.e., we say that R has linear complexity iff ircR(n) ∈ O(n),
quadratic complexity iff ircR(n) ∈ O(n2), etc. Tools for auto-
mated complexity analysis of TRSs can automatically determine
ircR(Gr)(n) ∈ O(n) forR(Gr) = {(7)− (17)} from Sect. 4.7

Moreover, we also have to define the notion of “complexity” for
logic programs. For a logic program P and a query Q, we consider
the length of the longest evaluation starting in the initial state forQ.
As shown in [41], this length is equal to the number of unification
attempts when traversing the whole SLD tree according to the ISO
semantics [23], up to a constant factor.8 For a moding function m,
and any term p(t1, . . . , tn), its moded size is |p(t1, . . . , tn)|m =
1 + Σi∈{i | 1≤i≤n,m(p,i)=in} |ti|. Thus, for a class of queries Qp

m,
the Prolog runtime complexity function prcP,Qp

m
maps any n ∈ N

to the length of the longest evaluation starting with the initial state
for some query Q ∈ Qp

m with |Q|m ≤ n.
To analyze prcP,Qp

m
(n), we generate an evaluation graph Gr

for Qp
m as in Sect. 3 and obtain the TRS R(Gr) as in Sect. 4.

At first sight, one might expect that asymptotically, ircR(Gr)(n) is
indeed an upper bound of prcP,Qp

m
(n). This would allow us to use

6 To benefit from the full power of rewriting-based termination analysis, in
our implementation we generate TRSs together with an argument filtering,
as in [35]. In this way, one can also handle examples where ground infor-
mation on the arguments of predicates is not sufficient.
7 For example, this can be determined by the tool TCT [3]. While AProVE
was the most powerful tool for innermost runtime complexity analysis in
the recent termination competitions, here it only obtains ircR(Gr)(n) ∈
O(n2).
8 In contrast, other approaches like [10–12, 30] use the number of resolu-
tion steps to measure complexity. As long as one does not consider dynamic
built-in predicates like assert/1, these measures are asymptotically equiva-
lent, as the number of unification attempts at each resolution step is bounded
by a constant (i.e., by the number of program clauses).

sublist(T1, T2)idA

sublist(T1, T2)
(18)
id

CASE

(app(T5, T6, T4), app(T7, T3, T5))σ1B

EVAL

ε

EVAL

app(T11, T8, T9)δD

SPLIT

app(T5, T6, T4)id C

SPLIT

INST

T11/T5, T8/T6, T9/T4

app(T11, T8, T9)
(4)
δ
| app(T11, T8, T9)

(5)
δ

CASE

�δσ2
| app(T11, T8, T12)

(5)
δσ3

E

EVAL

app(T11, T8, T12)
(5)
δσ3

G

SUC

app(T11, T8, T9)
(5)
δ

F

EVAL

INST

T12/T9

app(T16, T13, T15)δσ3σ4H

EVAL

INST

T11/T16 ,
T8/T13 ,
T9/T15

εEVAL

Figure 19. Symbolic Evaluation Graph for Ex. 18

existing methods for complexity analysis of TRSs in order to derive
upper bounds on the runtime of logic programs.

In fact for Ex. 2, both ircR(Gr)(n) and prcP,Qstar
m

(n) are in
O(n), i.e., the complexity of the logic program forQstar

m is also lin-
ear. But in general, ircR(Gr)(n) is not necessarily an upper bound
of prcP,Qp

m
(n). This can happen if Gr contains a SPLIT node

whose first successor is not deterministic. A query Q is determin-
istic iff it generates at most one answer substitution at most once
[25]. Similarly, we call an abstract state s deterministic iff each of
its concretizations has at most one evaluation to a state of the form
(�θ | S).

EXAMPLE 18. To see the problems with SPLIT nodes whose first
successor is not deterministic, consider the following program from
the TPDB which consists of the clauses (4) and (5) for app and the
following rule:

sublist(X,Y) :- app(P,U, Y), app(V,X, P). (18)

We regard the class of queries Qsublist
m , where m(sublist, 1) = out

and m(sublist, 2) = in . The program computes (by backtracking)
all sublists of a given list. Its complexity is quadratic since the
first app-call results in a linear evaluation with a linear number
of solutions. The second app-call again needs linear time, but due
to backtracking, it is called linearly often.

We obtain the evaluation graph Gr in Fig. 19. For readability,
we omitted labels t � t′ on EVAL-edges. We have σ1(T1) =
T3, σ1(T2) = T4; σ2(T8) = T12, σ2(T9) = T12, σ2(T11) = [];
σ3(T9) = T12; σ4(T8) = T13, σ4(T12) = [T14 |T15], σ4(T11) =
[T14 | T16]; and δ(T3) = T8, δ(T5) = T9, δ(T6) = T10, δ(T7) =
T11.

This symbolic evaluation graph has connection paths from A to
B, D to E, D to G, D to F, and G to H. It gives rise to the following
TRSR(Gr).

f in
A (T4)→ uA,B(f in

B (T4), T4) (19)

uA,B(fout
B (T5, T6, T7, T3), T4)→ fout

A (T3) (20)

f in
B (T4)→ uB,C(f in

D (T4), T4) (21)

uB,C(fout
D (T9, T10), T4)→ uC,D(f in

D (T9), T4, T9, T10) (22)

uC,D(fout
D (T11, T8), T4, T9, T10)→ fout

B (T9, T10, T11, T8) (23)

f in
D (T12)→ fout

D ([], T12) (24)

f in
D (T12)→ uD,G(f in

G (T12), T12) (25)

uD,G(fout
G (T11, T8), T12)→ fout

D (T11, T8) (26)

f in
D (T9)→ uD,F(f in

G (T9), T9) (27)

uD,F(fout
G (T11, T8), T9)→ fout

D (T11, T8) (28)

f in
G ([T14 |T15])→ uG,H(f in

D (T15), T14, T15) (29)

uG,H(fout
D (T16, T13), T14, T15)→ fout

G ([T14 |T16], T13) (30)

Its termination is easy to prove by tools like AProVE, which im-
plies termination of the logic program by Thm. 17. However, this
TRS cannot be used for complexity analysis, as ircR(Gr) is linear
whereas the runtime complexity of the original logic program is
quadratic. For an analogous reason, complexity analysis of such
examples is also not possible by transformations from logic pro-
grams to TRSs like [33, 35].

For complexity analysis, we need a more sophisticated treat-
ment of SPLIT nodes than for termination analysis. For termina-
tion, we only have to approximate the form of the answer substi-
tutions that are computed for the first successor of a SPLIT node.
This suffices to analyze termination of the evaluations starting in
the second successor. However for complexity analysis, we also
need to know how many answer substitutions are computed for the
first successor of a SPLIT node, since the evaluation of the second
successor is repeated for each such answer substitution. If the first
successor of a SPLIT node (i.e., a node like C) has k answer sub-
stitutions, then the evaluation of the second successor (i.e., of D)
is repeated k times. This is not simulated by the TRS, which re-
places backtracking by non-deterministic choice. So after applying
rule (21), one has to perform a “first f in

D -reduction” to evaluate the
f in

D -term in the right-hand side to a fout
D -term. There exist several

possibilities for this reduction (e.g., by using (24), (25), or (27)). So
one chooses one such reduction non-deterministically. Afterwards,
the remaining rewrite sequence continues with rule (22). However,
the TRS does not reflect that in the logic program, one would back-
track afterwards and repeat this remaining rewrite sequence with
rule (22), for every possible “first f in

D -reduction” from f in
D (. . .) to

fout
D (. . .).

However, for the star-example of Ex. 2, the first successor G
of the only SPLIT node F in the graph of Fig. 6 is deterministic.
The reason is that there is at most one answer substitution for any
query app(t5, t7, t6), where t5 and t6 are ground terms. In Sect.
6, we will show how to use evaluation graphs in order to analyze
determinacy automatically.

Nevertheless, even if all first successors of SPLIT nodes are
deterministic, ircR(Gr) is not necessarily an upper bound of
prcP,Qp

m
. This can happen if (i) a SPLIT node s can reach itself via

a non-empty path, (ii) its first successor s′ reaches a SUC node s′′,
and (iii) s′′ reaches a cycle in the graph.

EXAMPLE 21. Consider the following program P and the set of
queriesQa

m where m(a, 1) = in .

a(X) :- b(X), q(X).
b(X).
b(X) :- p(X).

p(s(X)) :- p(X).
q(s(X)) :- a(X).

In the corresponding symbolic evaluation graph in Fig. 20,
dotted arrows abbreviate paths of several edges. We have σ1(T1) =
T2, σ2(T2) = T3, σ3(T3) = T4, σ4(T4) = s(T5), and σ5(T2) =

a(T1)idA

(b(T2), q(T2))σ1B

b(T2)idC

SPLIT

q(T2)idD

SPLIT

� | (b(T3))
b(X) :- p(X)
σ2

E a(T6)σ5H

INST

T1/T6

p(T4)σ2σ3 F

p(T5)σ2σ3σ4 G

INST
T4/T5

Figure 20. Symbolic Evaluation Graph for Ex. 21

s(T6). Here, (i) the SPLIT node B reaches itself via a non-empty
path, (ii) its first successor C reaches a SUC node E, and (iii) E
reaches another cycle (from F to G). The graph has connection
paths from A to B, C to E, C to F, F to G, and D to H. It results
in the following TRS.

f in
A (T2) → uA,B(f in

B (T2), T2) (31)

uA,B(fout
B , T2) → fout

A (32)

f in
B (T2) → uB,C(f in

C (T2), T2) (33)

uB,C(fout
C , T2) → uC,D(f in

D (T2), T2) (34)

uC,D(fout
D , T2) → fout

B (35)

f in
C (T3) → fout

C (36)

f in
C (T4) → uC,F(f

in
F (T4), T4) (37)

uC,F(f
out
F , T4) → fout

C (38)

f in
F (s(T5)) → uF,G(f in

F (T5), T5) (39)

uF,G(fout
F , T5) → fout

F (40)

f in
D (s(T6)) → uD,H(f in

A (T6), T6) (41)

uD,H(fout
A , T6) → fout

D (42)

For the complexity prcP,Qa
m

of this program, each call to b
yields both a success (from C to E in constant time) and a failing
further computation (by the cycle from F to G which takes linear
time). Since b is called linearly often (by the cycle from A to H), we
obtain a quadratic runtime in total.

However, the resulting TRS only has linear complexity. Here, the
backtracking after the SUC node E is modeled by non-deterministic
choice. So to evaluate an f in

C -term, one either uses rule (36) which
corresponds to the path from C to E or the rules (37), (38) which
correspond to the path from C to F, but not both. The traversal of
the cycle from A to H can only continue if one evaluates f in

C by rule
(36), which works in constant time. Only then can the right-hand
side of (33) evaluate to the left-hand side of (34).

Def. 22 captures when ircR(Gr) is no upper bound of prcP,Qp
m

.

DEFINITION 22 (Multiplicative SPLIT Nodes). A SPLIT node s in
a symbolic evaluation graph Gr is called multiplicative iff its first
successor is not deterministic or if s satisfies the three conditions (i)
– (iii) above. Let mults(Gr) be the set of all multiplicative SPLIT
nodes of Gr .

The only SPLIT node F in the graph of Fig. 6 is indeed non-
multiplicative. Its first successor G is deterministic and while F can
reach itself via a non-empty path, the only SUC node reachable

from its first successor G is J, but J cannot reach a cycle in Gr (i.e.,
(iii) does not hold).

Thm. 23 shows that if the symbolic evaluation graph only con-
tains non-multiplicative SPLIT nodes, our approach can also be
used for complexity analysis of logic programs. So the linear com-
plexity ofR(Gr) in our example indeed implies linear complexity
of the original program from Ex. 2.

THEOREM 23 (Soundness of Complexity Analysis I). Let P be a
logic program, p ∈ Σ, m a moding function, and let Gr be a
symbolic evaluation graph for P whose root is the initial state
corresponding to Qp

m. If Gr has no multiplicative SPLIT nodes,
then prcP,Qp

m
(n) ∈ O(ircR(Gr)(n)).

We now extend our approach to also handle examples like
Ex. 18 where the evaluation graph Gr contains multiplicative
SPLIT nodes (i.e., here we have mults(Gr) = {B}).

To this end, we generate two separate TRSs R(Gr C) and
R(Gr D) for the subgraphs starting in the two successors C and
D of a multiplicative SPLIT node like B in Ex. 18, and multiply
their complexity functions ircR(Gr C),R(Gr) and ircR(Gr D),R(Gr).
Here, ircR(Gr C),R(Gr) differs from the ordinary complexity func-
tion ircR(Gr) by only counting those rewrite steps that are done
with the sub-TRS R(Gr C) ⊆ R(Gr).

In general, for any R′ ⊆ R, the function ircR′,R maps any
n ∈ N to the maximal number of i→R′ -steps that occur in any
sequence of i→R-steps starting with a basic term t where |t| ≤ n.
Related notions of “relative” complexity for TRSs were used in,
e.g., [4, 21, 32, 42]. Most existing automated complexity provers
can also approximate ircR′,R asymptotically.

The function ircR(Gr C),R(Gr) indeed also yields an upper
bound on the number of answer substitutions for C, because the
number of answer substitutions cannot be larger than the num-
ber of evaluation steps. In our example, both the runtime and
the number of answer substitutions for the call app(T5, T6, T4)
in node C is linear in the size of T4’s concretization. Thus, the
call app(T11, T8, T9) in node D, which has linear runtime itself,
needs to be repeated a linear number of times. Hence, by mul-
tiplying the linear runtime complexities of ircR(Gr C),R(Gr) and
ircR(Gr D),R(Gr), we obtain the correct result that the runtime of
the original logic program is (at most) quadratic.

Gr A

MULTIPLICATIVE SPLIT

Gr B Gr C

MULTIPLICATIVE SPLIT

Gr D Gr E

So we use the multiplica-
tive SPLIT nodes of a symbolic
evaluation graph Gr to decom-
pose Gr into subgraphs, such
that multiplicative SPLIT nodes
only occur as the leaves of sub-
graphs. As an example, the sym-
bolic evaluation graph on the
side is decomposed into the sub-
graphs Gr A, . . . ,Gr E (the sub-
graphs Gr A and Gr C include the
respective multiplicative SPLIT
node as a leaf). We now de-
termine the runtime complexi-
ties ircR(Gr A),R(Gr), . . . , ircR(Gr E),R(Gr) separately and combine
them to obtain an upper bound for the runtime of the whole logic
program. As discussed above, the runtime complexity functions re-
sulting from subgraphs of a multiplicative SPLIT node have to be
multiplied. In contrast, the runtimes for subgraphs above a mul-
tiplicative SPLIT node have to be added. So for the graph on
the side, we obtain ircR(Gr A),R(Gr)(n) + ircR(Gr B),R(Gr)(n) ·
(ircR(Gr C),R(Gr)(n) + ircR(Gr D),R(Gr)(n) · ircR(Gr E),R(Gr)(n))
as an approximation for the complexity of the logic program.

To ensure that the symbolic evaluation graph can indeed be
decomposed into subgraphs as desired, we have to require that no
multiplicative SPLIT node can reach itself again.

DEFINITION 24 (Decomposable Graphs). A symbolic evaluation
graph Gr is called decomposable iff there is no non-empty path
from a node s ∈ mults(Gr) to itself.

The graph in Ex. 18 is decomposable. However, decomposabil-
ity is a restriction and there are programs in the TPDB whose com-
plexity we cannot analyze, because our graph construction yields
a non-decomposable evaluation graph.9 For instance, the graph in
Ex. 21 is not decomposable.

For any node s, the subgraph at node s starts in s and stops
when reaching multiplicative SPLIT nodes.

DEFINITION 25 (Subgraphs). Let Gr be a decomposable evalua-
tion graph with nodes V and edges E (i.e., Gr = (V,E)) and let
s ∈ V . We define the subgraph of Gr at node s as the minimal
graph Grs = (Vs, Es) with s ∈ Vs that satisfies the following
property: whenever s1 ∈ Vs \mults(Gr) and (s1, s2) ∈ E, then
s2 ∈ Vs and (s1, s2) ∈ Es.

Now we decompose the symbolic evaluation graph into the
subgraph at the root node and into the subgraphs at all successors of
multiplicative SPLIT nodes. So the graph in Ex. 18 is decomposed
into Gr A, Gr C, and Gr D, where Gr A contains the 4 nodes from A
to B and to ε, Gr C contains all other nodes, and Gr D contains all
nodes of Gr C except C.
R(Gr A) = {(19) − (23)} consists of ConnectionRules(π)

for the connection path π from A to B and of SplitRules(B). For
both Gr C and Gr D, we get the same TRS, because C is an instance
of D, i.e.,R(Gr C) = R(Gr D) = {(24)− (30)}.

For the complexity of the original logic program, we com-
bine the complexities of the sub-TRSs as discussed before. So
we multiply the complexities resulting from subgraphs of multi-
plicative SPLIT nodes, and add all other complexities. The func-
tion cplx s(n) approximates the runtime of the logic program rep-
resented by the subgraph of Gr at node s.

DEFINITION 26 (Complexity for Subgraphs). Let Gr = (V,E)
be decomposable. For any s ∈ V and n ∈ N, let

cplxs(n) =

cplxSucc1(s)

(n) · cplxSucc2(s)
(n), if s ∈ mults(Gr)

ircR(Grs),R(Gr)(n) +

Σs′ ∈mults(Gr)∩Grs cplxs′ (n), otherwise

So in Ex. 18, we obtain cplx A(n) =

ircR(Gr A),R(Gr)(n) + cplx B(n) =
ircR(Gr A),R(Gr)(n) + cplx C(n) · cplx D(n) =
ircR(Gr A),R(Gr)(n) + ircR(Gr C),R(Gr)(n) · ircR(Gr D),R(Gr)(n)

Thm. 27 states that combining the complexities of the TRSs as
in Def. 26 indeed yields an upper bound for the complexity of the
original logic program.

THEOREM 27 (Soundness of Complexity Analysis II). Let P be
a logic program, p ∈ Σ, m a moding function, and let Gr
be a symbolic evaluation graph for P whose root is the initial
state corresponding to Qp

m. If Gr is decomposable, then we have
prcP,Qp

m
(n) ∈ O(cplx root(Gr)(n)).

9 An extension of our method to examples with non-decomposable evalua-
tion graphs would be an interesting topic for further work. However, even
with the restriction to decomposable graphs, our approach is substantially
more powerful than all previous techniques for automated complexity anal-
ysis of logic programs, cf. the end of this section. In our experiments, there
were only 3 examples where other tools could prove an (exponential) upper
bound while we failed because of non-decomposability.

For Ex. 18, tools for complexity analysis of TRSs like TCT
and AProVE automatically prove ircR(Gr A),R(Gr)(n) ∈ O(n),10

ircR(Gr C),R(Gr)(n) ∈ O(n), ircR(Gr D),R(Gr)(n) ∈ O(n). This
implies cplx A(n) = ircR(Gr A),R(Gr)(n) + ircR(Gr C),R(Gr)(n) ·
ircR(Gr D),R(Gr)(n)∈O(n2). Thus, also prcP,Qsublist

m
(n)∈O(n2).

Note that Thm. 27 subsumes Thm. 23. Every evaluation graph
Gr without multiplicative SPLIT nodes is decomposable and here
we have cplx root(Gr)(n) = ircR(Gr)(n).

We also implemented our approach for complexity analysis in
our tool AProVE [15]. Existing approaches for direct complexity
analysis of logic programs (e.g., [10–12, 24, 30])11 are restricted to
well-moded logic programs. In contrast, our approach is applicable
to a much wider class of logic programs (including non-well-
moded and non-definite programs).12 To compare their power, we
evaluated AProVE against the Complexity Analysis System for
LOGic (CASLOG) [11] and the Ciao Preprocessor (CiaoPP)
[19, 20], which implements the approach of [30]. We ran the three
tools on all 477 Prolog programs from the TPDB, again using
2.2 GHz Quad-Opteron 848 Linux machines with a timeout of
60 seconds per program. For CiaoPP we used both the original
cost analysis (CiaoPP-o) and CiaoPP’s new resource framework
which allows to measure different forms of costs (CiaoPP-r). Here,
we chose the cost measure “res steps” which approximates the
number of resolution steps needed in evaluations. Moreover, we
also used CiaoPP to infer the mode and measure information
required by CASLOG.

O(1) O(n) O(n2) O(n · 2n) bounds RT

CASLOG 1 21 4 3 29 14.8
CiaoPP-o 3 19 4 3 29 11.7
CiaoPP-r 3 18 4 3 28 12.5
AProVE 54 117 37 0 208 10.6

In the above table, we used one row for each tool. The first four
columns give the number of programs that could be shown to have
a constant bound (O(1)), a linear or quadratic polynomial bound
(O(n) orO(n2)), or an exponential bound (O(n·2n)).13 In column
5 and 6 we give the total number of upper bounds that could be
found by the tool and its average runtime on each example. We
highlight the best tool for each column using bold font.

The table shows that AProVE can find upper bounds for a much
larger subset (42.8%) of the programs than any of the other tools
(6.1%). Nevertheless, there are 6 examples where CASLOG or
CiaoPP can prove constant (1), linear (1), quadratic (1), or expo-
nential bounds (3), whereas AProVE fails. In summary, the exper-
iments clearly demonstrate that our transformational approach for
determining upper bounds advances the state of the art in automated
complexity analysis of logic programs significantly.

10 We even have ircR(Gr A),R(Gr)(n) ∈ O(1), i.e., as in Footnote 7, the
bounds found by the tools are not always tight.
11 Some approaches also deduce lower complexity bounds for logic pro-
grams [12, 24], while we only infer upper bounds.
12 However, our implementation currently does not treat built-in integer
arithmetic, while [10–12, 30] handle linear arithmetic constraints. But our
approach could be extended by generating TRSs with built-in integers [14]
from the evaluation graphs. This was also done in our approaches for
termination analysis of Java via term rewriting [7, 9].
13 The back-end of AProVE for complexity analysis of TRSs currently only
implements techniques for detecting polynomial bounds. When extending
the TRS back-end by other techniques like [5], we could also infer expo-
nential bounds.

6. Symbolic Evaluation Graphs for Determinacy
Analysis

Finally, after having shown how symbolic evaluation graphs can be
used for termination and complexity analysis, we consider a third
kind of analysis, viz. determinacy analysis (cf. the definition of
“determinacy” before Ex. 18). Several approaches for determinacy
analysis have been developed (e.g., [25–29, 34]). Moreover, deter-
minacy analysis is also needed for complexity analysis to detect
non-deterministic SPLIT nodes in Thm. 23 and 27.

Every successful evaluation corresponds to a path to a SUC
node in the evaluation graph. Therefore, this graph is very well
suited as a basis for determinacy analysis. A sufficient criterion for
determinacy of a state s in the graph is if there is no path starting
in s which traverses more than one SUC node. In other words, if
s reaches a SUC node s′, then there may be no further non-empty
path from s′ to a SUC node.

THEOREM 28 (Soundness of Determinacy Criterion). Let P be a
logic program and let Gr be a symbolic evaluation graph for P .
Let s be a node in Gr such that for all SUC nodes s′ reachable
from s, there is no non-empty path from s′ to a SUC node. Then s
is deterministic. Thus, if s is the initial state corresponding to Qp

m

for a p ∈ Σ and a moding function m, then all queries in Qp
m are

also deterministic.

For example, all nodes in the evaluation graph of Fig. 6 satisfy
the above determinacy criterion, since there are no non-empty paths
from the two SUC nodes E or J to a SUC node again. So the first
successor G of the SPLIT node F is deterministic and thus, F is not
multiplicative.

In contrast, the node C of the graph in Ex. 18 does not satisfy
the determinacy criterion, since it reaches E which has a non-empty
cycle to itself. Indeed, C is not deterministic and the corresponding
SPLIT node B is multiplicative.

Finally, the nodes in the evaluation graph of Ex. 21 are again
deterministic, since the only SUC node E has no non-empty path to
itself. But since the SPLIT node B satisfies the conditions (i) – (iii),
it is nevertheless multiplicative.

Our experiments in Sect. 5 indicate that the criterion of Thm. 28
is strong enough to detect non-multiplicative SPLIT nodes for com-
plexity analysis. But in general, this criterion only represents a
first step towards determinacy analysis based on symbolic evalua-
tion graphs and several additional sufficient criteria for determinacy
would be possible.

This is also indicated by our experiments when comparing the
implementation of our determinacy analysis in AProVE with the
determinacy analysis implemented in CiaoPP [28].14 We again
tested both tools on all 477 logic programs from the TPDB. On def-
inite programs, CiaoPP was clearly more powerful (it proved de-
terminacy for 132 out of 300 programs, whereas AProVE only suc-
ceeded for 19 programs). But on non-definite programs, AProVE’s
determinacy analysis is stronger (here, AProVE showed determi-
nacy of 75 out of 177 examples, whereas CiaoPP only succeeded
for 61 programs). Altogether, our new determinacy criterion based
on evaluation graphs is a substantial addition to existing determi-
nacy analyses, since AProVE succeeded on 58 examples where
CiaoPP failed. In other words, by coupling our new technique with
existing ones, the power of determinacy analysis can be increased
significantly.

14 We did not compare with the determinacy analyzer spdet implemented
in SICStus Prolog 4.2.1, since it reports both false positives and false
negatives.

7. Conclusion
We presented the symbolic evaluation graph and the use of term
rewriting as a general methodology for the analysis of logic pro-
grams. These graphs represent all evaluations of a (possibly non-
definite) logic program in a finite way. Therefore, they can be used
as the basis for many different kinds of analyses. In particular, one
can translate their paths to rewrite rules and use existing techniques
from term rewriting to analyze the termination and complexity of
the original logic program. Moreover, one can also perform analy-
ses directly on the evaluation graph (e.g., to examine determinacy).

The current paper does not only give an overview on our pre-
vious work on this topic, but it introduces numerous new results.
In Sect. 3, we presented a new formulation of the abstract infer-
ence rules which is suitable for the subsequent generation of TRSs.
Moreover, the theorems of this section (on the connection between
concrete and abstract evaluation rules) are new contributions. The
approach for termination analysis in Sect. 4 is also substantially
different from our earlier approaches, because it directly generates
TRSs from evaluation graphs. In particular, this allows us to use the
same approach for both termination and complexity analysis. The
contributions in Sect. 5 and Sect. 6 (on complexity and determinacy
analysis) are completely new.

We implemented all our results in the tool AProVE. Our ex-
periments show that our approaches to termination and complex-
ity analysis are more powerful than previous ones and that our ap-
proach to determinacy analysis is a substantial addition to exist-
ing ones. See [1] for further details on the experiments and to run
AProVE via a web interface.15

Acknowledgments
We thank M. Hermenegildo and P. López-Garcı́a for their sup-
port. Without it, the experimental comparisons with CASLOG and
CiaoPP would not have been possible. We also thank N.-W. Lin for
agreeing to make the updated version of CASLOG (running under
SICStus 4 or Ciao) available on [1].

References
[1] http://aprove.informatik.rwth-aachen.de/eval/

LPGraphs/.
[2] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
[3] M. Avanzini, G. Moser, and A. Schnabl. Automated implicit

computational complexity analysis. In Proc. IJCAR ’08, LNAI 5195,
pages 132–138, 2008.

[4] M. Avanzini and G. Moser. Dependency pairs and polynomial path
orders. In Proc. RTA ’09, LNCS 5595, pages 48–62, 2009.

[5] M. Avanzini, N. Eguchi, and G. Moser. A path order for rewrite
systems that compute exponential time functions. In Proc. RTA ’11,
LIPIcs 10, pages 123–138, 2011.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[7] M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs
of recursive Java Bytecode programs by term rewriting. In Proc.
RTA ’11, LIPIcs 10, pages 155–170, 2011.

[8] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated
detection of non-termination and NullPointerExceptions for Java
Bytecode. In Proc. FoVeOOS ’11, LNCS 7421, pages 123–141, 2012.

[9] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated
termination proofs for Java programs with cyclic data. In Proc.
CAV ’12, LNCS 7358, pages 105–122, 2012.

[10] S. K. Debray, N.-W. Lin, and M. V. Hermenegildo. Task granularity
analysis in logic programs. In Proc. PLDI ’90, pages 174–188. ACM
Press, 1990.

15 [1] also contains a version of the paper with all proofs [18].

[11] S. K. Debray and N.-W. Lin. Cost analysis of logic programs. ACM
Transactions on Programming Languages and Systems, 15:826–875,
1993.

[12] S. K. Debray, P. López-Garcı́a, M. V. Hermenegildo, and N.-W. Lin.
Lower bound cost estimation for logic programs. In Proc. ILPS ’97,
pages 291–305. MIT Press, 1997.

[13] N. Dershowitz. Termination of rewriting. Journal of Symbolic
Computation, 3(1–2), pages 69–116, 1987.

[14] C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke.
Proving termination of integer term rewriting. In Proc. RTA ’09,
LNCS 5595, pages 32–47, 2009.

[15] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2:
Automatic termination proofs in the dependency pair framework.
In Proc. IJCAR ’06, LNAI 4130, pages 281–286, 2006.

[16] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing
and improving dependency pairs. Journal of Automated Reasoning,
37(3), pages 155–203, 2006.

[17] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and
R. Thiemann. Automated termination proofs for Haskell by term
rewriting. ACM Transactions on Programming Languages and
Systems, 33(2), 2011.

[18] J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs.
Symbolic evaluation graphs and term rewriting – a general
methodology for analyzing logic programs. Technical Report
AIB 2012-12, RWTH Aachen University, 2012. Available from
http://aib.informatik.rwth-aachen.de and [1].

[19] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garcı́a.
Integrated program debugging, verification, and optimization using
abstract interpretation (and the Ciao system preprocessor). Science of
Computer Programming, 58(1-2):115–140, 2005.

[20] M. V. Hermenegildo, F. Bueno, M. Carro, P. López-Garcı́a, E. Mera,
J. F. Morales, and G. Puebla. An overview of Ciao and its design
philosophy. Theory and Practice of Logic Programming, 12:219–252,
2012.

[21] N. Hirokawa and G. Moser. Automated complexity analysis based on
the dependency pair method. In Proc. IJCAR ’08, LNAI 5195, pages
364–379, 2008.

[22] J. M. Howe and A. King. Efficient groundness analysis in Prolog.
Theory and Practice of Logic Programming, 3(1):95–124, 2003.

[23] ISO/IEC 13211-1. Information technology - Programming languages
- Prolog. 1995.

[24] A. King, K. Shen, and F. Benoy. Lower-bound time-complexity
analysis of logic programs. In Proc. ILPS ’97, pages 261–285. MIT
Press, 1997.

[25] A. King, L. Lu, and S. Genaim. Detecting determinacy in Prolog
programs. In Proc. ICLP ’06, LNCS 4079, pages 132–147, 2006.

[26] J. Kriener and A. King. RedAlert: Determinacy inference for Prolog.
In Proc. ICLP ’11, Theory and Practice of Logic Programming,
11(4-5):537–553, 2011.

[27] J. Kriener and A. King. Mutual exclusion by interpolation. In Proc.
FLOPS ’12, LNCS 7294, pages 182–196, 2012.

[28] P. López-Garcı́a, F. Bueno, and M. V. Hermenegildo. Automatic
inference of determinacy and mutual exclusion for logic programs
using mode and type analyses. New Generation Computing,
28(2):177–206, 2010.

[29] T. Mogensen. A semantics-based determinacy analysis for Prolog
with cut. In Proc. Ershov Memorial Conference ’96, LNCS 1181,
pages 374–385, 1996.

[30] J. A. Navas, E. Mera, P. López-Garcı́a, and M. V. Hermenegildo.
User-definable resource bounds analysis for logic programs. In Proc.
ICLP ’07, LNCS 4670, pages 348–363, 2007.

[31] M. T. Nguyen, J. Giesl, and P. Schneider-Kamp. Termination analysis
of logic programs based on dependency graphs. In Proc. LOPSTR ’07,
LNCS 4915, pages 8–22, 2008.

[32] L. Noschinski, F. Emmes, and J. Giesl. The dependency pair
framework for automated complexity analysis of term rewrite systems.
In Proc. CADE ’11, LNAI 6803, pages 422–438, 2011.

[33] E. Ohlebusch. Termination of logic programs: Transformational meth-
ods revisited. Applicable Algebra in Engineering, Communication and
Computing, 12(1-2):73–116, 2001.

[34] D. Sahlin. Determinacy analysis for full Prolog. In Proc. PEPM ’91,
pages 23–30. ACM Press, 1991.

[35] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann.
Automated termination proofs for logic programs by term rewriting.
ACM Transactions on Computational Logic, 11(1), 2009.

[36] P. Schneider-Kamp, J. Giesl, and M. T. Nguyen. The dependency triple
framework for termination of logic programs. In Proc. LOPSTR ’09,
LNCS 6037, pages 37–51, 2010.

[37] P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, and R. Thie-
mann. Automated termination analysis for logic programs with cut.
In Proc. ICLP ’10, Theory and Practice of Logic Programming,
10(4-6):365–381, 2010.

[38] M. H. Sørensen and R. Glück. An algorithm of generalization in
positive supercompilation. In Proc. ILPS ’95, pages 465–479. MIT
Press, 1995.

[39] T. Ströder. Towards termination analysis of real Prolog programs.
Diploma Thesis, RWTH Aachen University, 2010. Available from [1].

[40] T. Ströder, P. Schneider-Kamp, and J. Giesl. Dependency triples for
improving termination analysis of logic programs with cut. In Proc.
LOPSTR ’10, LNCS 6564, pages 184–199, 2011.

[41] T. Ströder, F. Emmes, P. Schneider-Kamp, J. Giesl, and C. Fuhs. A
linear operational semantics for termination and complexity analysis
of ISO Prolog. In Proc. LOPSTR ’11, LNCS, 2012. To appear.
Available from [1].

[42] H. Zankl and M. Korp. Modular complexity analysis via relative
complexity. In Proc. RTA ’10, LIPIcs 6, pages 385–400, 2010.

[43] H. Zantema. Termination. In Terese, editor, Term Rewriting Systems,
pages 181–259. Cambridge University Press, 2003.

