
Optimal Base Encodings for
Pseudo-Boolean Constraints?

Michael Codish1, Yoav Fekete1, Carsten Fuhs2, and Peter Schneider-Kamp3

1 Department of Computer Science, Ben Gurion University of the Negev, Israel
2 LuFG Informatik 2, RWTH Aachen University, Germany

3 IMADA, University of Southern Denmark, Denmark

Abstract. This paper formalizes the optimal base problem, presents
an algorithm to solve it, and describes its application to the encod-
ing of Pseudo-Boolean constraints to SAT. We demonstrate the im-
pact of integrating our algorithm within the Pseudo-Boolean constraint
solver MiniSat+. Experimentation indicates that our algorithm scales
to bases involving numbers up to 1,000,000, improving on the restriction
in MiniSat+ to prime numbers up to 17. We show that, while for many
examples primes up to 17 do suffice, encoding with respect to optimal
bases reduces the CNF sizes and improves the subsequent SAT solving
time for many examples.

1 Introduction

The optimal base problem is all about finding an efficient representation for a
given collection of positive integers. One measure for the efficiency of such a
representation is the sum of the digits of the numbers. Consider for example
the decimal numbers S = {16, 30, 54, 60}. The sum of their digits is 25. Taking
binary representation we have S(2) = {10000, 11110, 110110, 111100} and the
sum of digits is 13, which is smaller. Taking ternary representation gives S(3) =
{121, 1010, 2000, 2020} with an even smaller sum of digits, 12. Considering the
mixed radix base B = 〈3, 5, 2, 2〉, the numbers are represented as S(B) = {101,
1000, 1130, 10000} and the sum of the digits is 9. The optimal base problem is to
find a (possibly mixed radix) base for a given sequence of numbers to minimize
the size of the representation of the numbers. When measuring size as “sum
of digits”, the base B is indeed optimal for the numbers of S. In this paper we
present the optimal base problem and illustrate why it is relevant to the encoding
of Pseudo-Boolean constraints to SAT. We also present an algorithm and show
that our implementation is superior to current implementations.

Pseudo-Boolean constraints take the form a1x1+a2x2+· · ·+anxn ≥ k, where
a1, . . . , an are integer coefficients, x1, . . . , xn are Boolean literals (i.e., Boolean
variables or their negation), and k is an integer. We assume that constraints are
in Pseudo-Boolean normal form [3], that is, the coefficients ai and k are always
positive and Boolean variables occur at most once in a1x1 + a2x2 + · · ·+ anxn.

? Supported by GIF grant 966-116.6 and the Danish Natural Science Research Council.

Pseudo-Boolean constraints are well studied and arise in many different contexts,
for example in verification [6] and in operations research [5]. Typically we are
interested in the satisfiability of a conjunction of Pseudo-Boolean constraints.
Since 2005 there is a series of Pseudo-Boolean Evaluations [11] which aim to
assess the state of the art in the field of Pseudo-Boolean solvers. We adopt these
competition problems as a benchmark for the techniques proposed in this paper.

Pseudo-Boolean constraint satisfaction problems are often reduced to SAT.
Many works describe techniques to encode these constraints to propositional for-
mulas [1, 2, 9]. The Pseudo-Boolean solver MiniSat+ ([9], cf. http://minisat.
se) chooses between three techniques to generate SAT encodings for Pseudo-
Boolean constraints. These convert the constraint to: (a) a BDD structure, (b) a
network of sorters, and (c) a network of (binary) adders. The network of adders
is the most concise encoding, but it has the weakest propagation properties and
often leads to higher SAT solving times than the BDD based encoding, which, on
the other hand, generates the largest encoding. The encoding based on sorting
networks is often the one applied and is the one we consider in this paper.

x5 y8
x5 y7
x5 y6
x4 y5
x4 y4 = 1
x3 y3 = 1
x2 y2 = 1
x1 y1 = 1

To demonstrate how sorters can be used to
translate Pseudo-Boolean constraints, consider the
constraint ψ = x1 +x2 +x3 + 2x4 + 3x5 ≥ 4 where
the sum of the coefficients is 8. On the right, we
illustrate an 8× 8 sorter where x1, x2, x3 are each
fed into a single input, x4 into two of the inputs,
and x5 into three of the inputs. The outputs are
y1, . . . , y8. First, we represent the sorting network as a Boolean formula, ϕ, which
in general, for n inputs, will be of size O(n log2 n) [4]. Then, to assert ψ we take
the conjunction of ϕ with the formula y1 ∧ y2 ∧ y3 ∧ y4.

But what happens if the coefficients in a constraint are larger than in this
example? How should we encode 16x1 + 30x2 + 54x3 + 30x4 + 60x5 ≥ 87? How
should we handle very large coefficients (larger than 1,000,000)? To this end, the
authors in [9] generalize the above idea and propose to decompose the constraint
into a number of interconnected sorting networks. Each sorter represents a digit
in a mixed radix base. This construction is governed by the choice of a suitable
mixed radix base and the objective is to find a base which minimizes the size of
the sorting networks. Here the optimal base problem comes in, as the size of the
networks is directly related to the size of the representation of the coefficients.
We consider the sum of the digits (of coefficients) and other measures for the size
of the representations and study their influence on the quality of the encoding.

In MiniSat+ the search for an optimal base is performed using a brute force
algorithm and the resulting base is constructed from prime numbers up to 17.
The starting point for this paper is the following remark from [9] (Footnote 8):

This is an ad-hoc solution that should be improved in the future. Finding
the optimal base is a challenging optimization problem in its own right.

In this paper we take the challenge and present an algorithm which scales to find
an optimal base consisting of elements with values up to 1,000,000. We illustrate
that in many cases finding a better base leads also to better SAT solving time.

2

Section 2 provides preliminary definitions and formalizes the optimal base
problem. Section 3 describes how MiniSat+decomposes a Pseudo-Boolean con-
straint with respect to a given mixed radix base to generate a corresponding
propositional encoding, so that the constraint has a solution precisely when
the encoding has a model. Section 4 is about (three) alternative measures with
respect to which an optimal base can be found. Sections 5–7 introduce our algo-
rithm based on classic AI search methods (such as cost underapproximation) in
three steps: Heuristic pruning, best-first branch and bound, and base abstrac-
tion. Sections 8 and 9 present an experimental evaluation and some related work.
Section 10 concludes. Proofs are given in [8].

2 Optimal Base Problems

In the classic base r radix system, positive integers are represented as finite
sequences of digits d = 〈d0, . . . , dk〉 where for each digit 0 ≤ di < r, and for
the most significant digit, dk > 0. The integer value associated with d is v =
d0 + d1r + d2r

2 + · · ·+ dkr
k. A mixed radix system is a generalization where a

base is an infinite radix sequence B = 〈r0, r1, r2, . . .〉 of integers where for each
radix, ri > 1 and for each digit, 0 ≤ di < ri. The integer value associated with d
is v = d0w0 +d1w1 +d2w2 + · · ·+dkwk where w0 = 1 and for i ≥ 0, wi+1 = wiri.
The sequence weights(B) = 〈w0, w1, w2, . . .〉 specifies the weighted contribution
of each digit position and is called the weight sequence of B. A finite mixed radix
base is a finite sequence B = 〈r0, r1, . . . , rk−1〉 with the same restrictions as for
the infinite case except that numbers always have k + 1 digits (possibly padded
with zeroes) and there is no bound on the value of the most significant digit, dk.

In this paper we focus on the representation of finite multisets of natural
numbers in finite mixed radix bases. Let Base denote the set of finite mixed
radix bases and ms(N) the set of finite non-empty multisets of natural numbers.
We often view multisets as ordered (and hence refer to their first element, second
element, etc.). For a finite sequence or multiset S of natural numbers, we denote
its length by |S|, its maximal element by max(S), its ith element by S(i), and the
multiplication of its elements by

∏
S (if S is the empty sequence then

∏
S = 1).

If a base consists of prime numbers only, then we say that it is a prime base.
The set of prime bases is denoted Basep.

Let B ∈ Base with |B| = k. We denote by v(B) = 〈d0, d1, . . . , dk〉 the repre-
sentation of a natural number v in base B. The most significant digit of v(B),
denoted msd(v(B)), is dk. If msd(v(B)) = 0 then we say that B is redundant for
v. Let S ∈ ms(N) with |S| = n. We denote the n × (k + 1) matrix of digits of
elements from S in base B as S(B). Namely, the ith row in S(B) is the vector
S(i)(B). The most significant digit column of S(B) is the k + 1 column of the
matrix and denoted msd(S(B)). If msd(S(B)) = 〈0, . . . , 0〉T , then we say that B
is redundant for S. This is equivalently characterized by

∏
B > max(S).

Definition 1 (non-redundant bases). Let S ∈ ms(N). We denote the set
of non-redundant bases for S, Base(S) =

{
B ∈ Base

∣∣∏B ≤ max(S)
}

. The
set of non-redundant prime bases for S is denoted Basep(S). The set of non-

3

redundant (prime) bases for S, containing elements no larger than `, is denoted
Base`(S) (Base`p(S)). The set of bases in Base(S)/Base`(S)/Base`p(S), is often
viewed as a tree with root 〈 〉 (the empty base) and an edge from B to B′ if and
only if B′ is obtained from B by extending it with a single integer value.

Definition 2 (sum digits). Let S ∈ ms(N) and B ∈ Base. The sum of the
digits of the numbers from S in base B is denoted sum digits(S(B)).

Example 3. The usual binary “base 2” and ternary “base 3” are represented as
the infinite sequencesB1 = 〈2, 2, 2, . . .〉 andB2 = 〈3, 3, 3, . . .〉. The finite sequence
B3 = 〈3, 5, 2, 2〉 and the empty sequence B4 = 〈 〉 are also bases. The empty base
is often called the “unary base” (every number in this base has a single digit).
Let S = {16, 30, 54, 60}. Then, sum digits(S(B1)) = 13, sum digits(S(B2)) = 12,
sum digits(S(B3)) = 9, and sum digits(S(B4)) = 160.

Let S ∈ ms(N). A cost function for S is a function costS : Base → R which
associates bases with real numbers. An example is costS(B) = sum digits(S(B)).
In this paper we are concerned with the following optimal base problem.

Definition 4 (optimal base problem). Let S ∈ ms(N) and costS a cost
function. We say that a base B is an optimal base for S with respect to costS, if
for all bases B′, costS(B) ≤ costS(B′). The corresponding optimal base problem
is to find an optimal base B for S.

The following two lemmata confirm that for the sum digits cost function, we
may restrict attention to non-redundant bases involving prime numbers only.

Lemma 5. Let S ∈ ms(N) and consider the sum digits cost function. Then, S
has an optimal base in Base(S).

Lemma 6. Let S ∈ ms(N) and consider the sum digits cost function. Then, S
has an optimal base in Basep(S).

How hard is it to solve an instance of the optimal base problem (namely,
for S ∈ ms(N))? The following lemma provides a polynomial (in max(S)) upper
bound on the size of the search space. This in turn suggests a pseudo-polynomial
time brute force algorithm (to traverse the search space).

Lemma 7. Let S ∈ ms(N) with m = max(S). Then,
∣∣Base(S)

∣∣ ≤ m1+ρ where
ρ = ζ−1(2) ≈ 1.73 and where ζ is the Riemann zeta function.

Proof. Chor et al. prove in [7] that the number of ordered factorizations of a
natural number n is less than nρ. The number of bases for all of the numbers in
S is hence bounded by

∑
n≤m n

ρ, which is bounded by m1+ρ.

3 Encoding Pseudo-Boolean Constraints

This section presents the construction underlying the sorter based encoding of
Pseudo-Boolean constraints applied in MiniSat+[9]. It is governed by the choice
of a mixed radix base B, the optimal selection of which is the topic of this paper.
The construction sets up a series of sorting networks to encode the digits, in base

4

B, of the sum of the terms on the left side of a constraint ψ = a1x1+a2x2+ · · ·+
anxn ≥ k. The encoding then compares these digits with those from k(B) from
the right side. We present the construction, step by step, through an example
where B = 〈2, 3, 3〉 and ψ = 2x1 + 2x2 + 2x3 + 2x4 + 5x5 + 18x6 ≥ 23.

Step one - representation in base:

S(B) =

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
1 2 0 0
0 0 0 1

The coefficients of ψ form a multiset S = {2, 2, 2, 2, 5, 18}
and their representation in base B, a 6 × 4 matrix, S(B),
depicted on the right. The rows of the matrix correspond
to the representation of the coefficients in base B.

Step two - counting: Representing the coefficients as four digit numbers in
base B = 〈2, 3, 3〉 and considering the values weights(B) = 〈1, 2, 6, 18〉 of the
digit positions, we obtain a decomposition for the left side of ψ:

2x1 + 2x2 + 2x3 + 2x4 + 5x5 + 18x6 =

1 · (x5) + 2 · (x1 + x2 + x3 + x4 + 2x5) + 6 · (0) + 18 · (x6)

To encode the sums at each digit position (1, 2, 6, 18), we set up a series of four
sorting networks as depicted below. Given values for the variables, the sorted

x5

x1
x2
x3
x4
x5
x5 x6

count 1′s count 2′s count 6′s count 18′s

outputs from these net-
works represented unary
numbers d1, d2, d3, d4 such
that the left side of ψ
takes the value 1 · d1 + 2 ·
d2 + 6 · d3 + 18 · d4.

Step three - converting to base: For the outputs d1, d2, d3, d4 to represent
the digits of a number in base B = 〈2, 3, 3〉, we need to encode also the “carry”
operation from each digit position to the next. The first 3 outputs must rep-
resent valid digits for B, i.e., unary numbers less than 〈2, 3, 3〉 respectively.
In our example the single potential violation to this restriction is d2, which
is represented in 6 bits. To this end we add two components to the encod-
ing: (1) each third output of the second network (y3 and y6 in the diagram)
is fed into the third network as an additional (carry) input; and (2) clauses
are added to encode that the output of the second network is to be consid-
ered modulo 3. We call these additional clauses a normalizer. The normalizer

x5

x1 y6 y6
x2 y5
x3 y4
x4 y3 y3
x5 y2 r1
x5 y1 r2 x6

count 1′s count 2′s count 6′s count 18′s

defines two outputsR =
〈r1, r2〉 and introduces
clauses specifying that
the (unary) value of
R equals the (unary)
value of d2 mod 3.

Step four - comparison: The outputs from these four units now specify a
number in base B, each digit represented in unary notation. This number is now
compared (via an encoding of the lexicographic order) to 23(B) (the value from
the right-hand side of ψ).

5

4 Measures of Optimality

We now return to the objective of this paper: For a given Pseudo-Boolean con-
straint, how can we choose a mixed radix base with respect to which the encoding
of the constraint via sorting networks will be optimal? We consider here three
alternative cost functions with respect to which an optimal base can be found.
These cost functions capture with increasing degree of precision the actual size
of the encodings.

The first cost function, sum digits as introduced in Definition 2, provides a
coarse measure on the size of the encoding. It approximates (from below) the
total number of input bits in the network of sorting networks underlying the
encoding. An advantage in using this cost function is that there always exists an
optimal base which is prime. The disadvantage is that it ignores the carry bits
in the construction, and as such is not always a precise measure for optimality.
In [9], the authors propose to apply a cost function which considers also the
carry bits. This is the second cost function we consider and we call it sum carry .

Definition 8 (cost function: sum carry). Let S ∈ ms(N), B ∈ Base with
|B| = k and S(B) = (aij) the corresponding n × (k + 1) matrix of digits. De-
note the sequences s̄ = 〈s0, s1, . . . , sk〉 (sums) and c̄ = 〈c0, c1, . . . , ck〉 (carries)
defined by: sj =

∑n
i=1 aij for 0 ≤ j ≤ k, c0 = 0, and cj+1 = (sj+cj) div B(j) for

0 ≤ j ≤ k. The “sum of digits with
carry” cost function is defined by the
equation on the right.

sum carry(S(B)) =

k∑
j=0

(sj + cj)

The following example illustrates the sum carry cost function and that it
provides a better measure of base optimality for the (size of the) encoding of
Pseudo-Boolean constraints.

Example 9. Consider the encoding of a Pseudo-Boolean constraint with coeffi-
cients S =

{
1, 3, 4, 8, 18, 18

}
with respect to bases: B1 = 〈2, 3, 3〉, B2 = 〈3, 2, 3〉,

and B3 = 〈2, 2, 2, 2〉. Figure 1 depicts the sizes of the sorting networks for each
of these bases. The upper tables illustrate the representation of the coefficients
in the corresponding bases. In the lower tables, the rows labeled “sum” indicate
the number of bits per network and (to their right) their total sum which is the
sum digits cost. With respect to the sum digits cost function, all three bases are
optimal for S, with a total of 9 inputs. The algorithm might as well return B3.

The rows labeled “carry” indicate the number of carry bits in each of the
constructions and (to their right) their totals. With respect to the sum carry
cost function, bases B1 and B2 are optimal for S, with a total of 9 + 2 = 11 bits
while B3 involves 9 + 5 = 14 bits. The algorithm might as well return B1.

The following example shows that when searching for an optimal base with
respect to the sum carry cost function, one must consider also non-prime bases.

Example 10. Consider again the Pseudo Boolean constraint ψ = 2x1 + 2x2 +
2x3 + 2x4 + 5x5 + 18x6 ≥ 23 from Section 3. The encoding with respect to

6

B1 = 〈2, 3, 3〉

S 1’s 2’s 6’s 18’s
1 1 0 0 0
3 1 1 0 0
4 0 2 0 0
8 0 1 1 0
18 0 0 0 1
18 0 0 0 1

sum 2 4 1 2 9
carry 0 1 1 0 2
comp 1 9 1 1 12

B2 = 〈3, 2, 3〉

S 1’s 3’s 6’s 18’s
1 1 0 0 0
3 0 1 0 0
4 1 1 0 0
8 2 0 1 0
18 0 0 0 1
18 0 0 0 1

sum 4 2 1 2 9
carry 0 1 1 0 2
comp 5 3 1 1 10

B3 = 〈2, 2, 2, 2〉

S 1’s 2’s 4’s 8’s 16’s
1 1 0 0 0 0
3 1 1 0 0 0
4 0 0 1 0 0
8 0 0 0 1 0
18 0 1 0 0 1
18 0 1 0 0 1

sum 2 3 1 1 2 9
carry 0 1 2 1 1 5
comp 1 5 3 1 3 13

Fig. 1. Number of inputs/carries/comparators when encoding S = {1, 3, 4, 8, 18, 18}
and three bases B1 = 〈2, 3, 3〉, B2 = 〈3, 2, 3〉, and B3 = 〈2, 2, 2, 2〉 .

B1 = 〈2, 3, 3〉 results in 4 sorting networks with 10 inputs from the coefficients
and 2 carries. So a total of 12 bits. The encoding with respect to B2 = 〈2, 9〉 is
smaller. It has the same 10 inputs from the coefficients but no carry bits. Base
B2 is optimal and non-prime.

We consider a third cost function which we call the num comp cost function.
Sorting networks are constructed from “comparators” [10] and in the encoding
each comparator is modeled using six CNF clauses. This function counts the
number of comparators in the construction. Let f(n) denote the number of
comparators in an n×n sorting network. For small values of 0 ≤ n ≤ 8, f(n) takes
the values 0, 0, 1, 3, 5, 9, 12, 16 and 19 respectively which correspond to the sizes
of the optimal networks of these sizes [10]. For larger values, the construction uses
Batcher’s odd-even sorting networks [4] for which f(n) = n · dlog2 ne · (dlog2 ne−
1)/4 + n− 1.

Definition 11 (cost function: num comp). Consider the same setting as in
Definition 8. Then,

num comp(S(B)) =

k∑
j=0

f(sj + cj)

Example 12. Consider again the setting of Example 9. In Figure 1 the rows la-
beled “comp” indicate the number of comparators in each of the sorting networks
and their totals. The construction with the minimal number of comparators is
that obtained with respect to the base B2 = 〈3, 2, 3〉 with 10 comparators.

It is interesting to remark the following relationship between the three cost
functions: The sum digits function is the most “abstract”. It is only based on
the representation of numbers in a mixed radix base. The sum carry function
considers also properties of addition in mixed-radix bases (resulting in the carry
bits). Finally, the num comp function considers also implementation details of
the odd-even sorting networks applied in the underlying MiniSat+ construction.
In Section 8 we evaluate how the alternative choices for a cost function influence
the size and quality of the encodings obtained with respect to corresponding
optimal bases.

7

5 Optimal Base Search I: Heuristic Pruning

This section introduces a simple, heuristic-based, depth-first, tree search algo-
rithm to solve the optimal base problem. The search space is the domain of
non-redundant bases as presented in Definition 1. The starting point is the brute
force algorithm applied in MiniSat+. For a sequence of integers S, MiniSat+

applies a depth-first traversal of Base17
p (S) to find the base with the optimal

value for the cost function costS(B) = sum carry(S(B)).
Our first contribution is to introduce a heuristic function and to identify

branches in the search space which can be pruned early on in the search. Each
tree node B encountered during the traversal is inspected to check if given the
best node encountered so far, bestB, it is possible to determine that all de-
scendants of B are guaranteed to be less optimal than bestB. In this case, the
subtree rooted at B may be pruned. The resulting algorithm improves on the one
of MiniSat+ and provides the basis for the further improvements introduced in
Sections 6 and 7. We need first a definition.

Definition 13 (base extension, partial cost, and admissible heuristic).
Let S ∈ ms(N), B,B′ ∈ Base(S), and costS a cost function. We say that: (1)
B′ extends B, denoted B′ � B, if B is a prefix of B′, (2) ∂costS is a partial
cost function for costS if ∀B′ � B. costS(B′) ≥ ∂costS(B), and (3) hS is an
admissible heuristic function for costS and ∂costS if ∀B′ � B. costS(B′) ≥
∂costS(B′) + hS(B′) ≥ ∂costS(B) + hS(B).

The intuition is that ∂costS(B) signifies a part of the cost of B which will be a
part of the cost of any extension of B, and that hS(B) is an under-approximation
on the additional cost of extending B (in any way) given the partial cost of B. We
denote costαS(B) = ∂costS(B) + hS(B). If ∂costS is a partial cost function and
hS is an admissible heuristic function, then costαS(B) is an under-approximation
of costS(B). The next lemma provides the basis for heuristic pruning using the
three cost functions introduced above.

Lemma 14. The following are admissible heuristics for the cases when:

1. costS(B) = sum digits(S(B)): ∂costS(B) = costS(B)−
∑
msd(S(B)).

2. costS(B) = sum carry(S(B)): ∂costS(B) = costS(B)−
∑
msd(S(B)).

3. costS(B) = num comp(S(B)): ∂costS(B) = costS(B)− f(s|B| + c|B|).

In the first two settings we take hS(B) =
∣∣{ x ∈ S ∣∣x ≥∏B

}∣∣.
In the case of num comp we take the trivial heuristic estimate hS(B) = 0

The algorithm, which we call dfsHP for depth-first search with heuristic prun-
ing, is now stated as Figure 2 where the input to the algorithm is a multiset

of integers S and the output is an optimal base. The algorithm applies a depth-
first traversal of Base(S) in search of an optimal base. We assume given: a cost
function costS , a partial cost function ∂costS and an admissible heuristic hS .
We denote costαS(B) = ∂costS(B) + hS(B). The abstract data type base has
two operations: extend(int) and extenders(multiset). For a base B and an

8

/*input*/ multiset S

/*init*/ base bestB = 〈2, 2, ..., 2〉
/*dfs*/ depth-first traverse Base(S)

at each node B, for the next value p ∈ B.extenders(S) do

base newB = B.extend(p)

if (costαS(newB) > costS(bestB)) prune

else if (costS(newB) < costS(bestB)) bestB = newB

/*output*/ return bestB;

Fig. 2. dfsHP: depth-first search for an optimal base with heuristic pruning

integer p, B.extend(p) is the base obtained by extending B by p. For a multiset
S, B.extenders(S) is the set of integer values p by which B can be extended
to a non-redundant base for S, i.e., such that

∏
B.extend(p) ≤ max(S). The

definition of this operation may have additional arguments to indicate if we seek
a prime base or one containing elements no larger than `.

Initialization (/*init*/ in the figure) assigns to the variable bestB a finite
binary base of size blog2(max(S))c. This variable will always denote the best base
encountered so far (or the initial finite binary base). Throughout the traversal,
when visiting a node newB we first check if the subtree rooted at newB should be
pruned. If this is not the case, then we check if a better “best base so far” has
been found. Once the entire (with pruning) search space has been considered,
the optimal base is in bestB.

To establish a bound on the complexity of the algorithm, denote the num-
ber of different integers in S by s and m = max(S). The algorithm has space
complexity O(log(m)), for the depth first search on a tree with height bound by
log(m) (an element of Base(S) will have at most log2(m) elements). For each
base considered during the traversal, we have to calculate costS which incurs
a cost of O(s). To see why, consider that when extending a base B by a new
element giving base B′, the first columns of S(B′) are the same as those in S(B)

(and thus also the costs incurred by them). Only the cost incurred by the most
significant digit column of S(B) needs to be recomputed for S(B′) due to base
extension of B to B′. Performing the computation for this column, we compute a
new digit for the s different values in S. Finally, by Lemma 7, there are O(m2.73)
bases and therefore, the total runtime is O(s ∗m2.73). Given that s ≤ m, we can
conclude that runtime is bounded by O(m3.73).

6 Optimal Base Search II: Branch and Bound

In this section we further improve the search algorithm for an optimal base. The
search algorithm is, as before, a traversal of the search space using the same
partial cost and heuristic functions as before to prune the tree. The difference
is that instead of a depth first search, we maintain a priority queue of nodes for
expansion and apply a best-first, branch and bound search strategy.

Figure 3 illustrates our enhanced search algorithm. We call it B&B. The ab-
stract data type priority queue maintains bases prioritized by the value of

9

base findBase(multiset S)

/*1*/ base bestB = 〈2, 2, ..., 2〉; priority queue Q =
{
〈 〉

}
;

/*2*/ while (Q 6= {} && costαS(Q.peek()) < costS(bestB))
/*3*/ base B = Q.popMin();

/*4*/ foreach (p ∈ B.extenders(S))

/*5*/ base newB = B.extend(p);

/*6*/ if (costαS(newB) ≤ costS(bestB))
/*7*/ { Q.push(newB); if (costS(newB) < costS(bestB)) bestB = newB; }
/*8*/ return bestB;

Fig. 3. Algorithm B&B: best-first, branch and bound

costαS . Operations popMin(), push(base) and peek() (peeks at the minimal en-
try) are the usual. The reason to box the text “priority queue” in the figure
will become apparent in the next section.

On line /*1*/ in the figure, we initialize the variable bestB to a finite binary
base of size blog2(max(S))c (same as in Figure 2) and initialize the queue to
contain the root of the search space (the empty base). As long as there are still
nodes to be expanded in the queue that are potentially interesting (line /*2*/),
we select (at line /*3*/) the best candidate base B from the frontier of the tree
in construction for further expansion. Now the search tree is expanded for each
of the relevant integers (calculated at line /*4*/). For each child newB of B (line
/*5*/), we check if pruning at newB should occur (line /*6*/) and if not we check
if a better bound has been found (line /*7*/) Finally, when the loop terminates,
we have found the optimal base and return it (line /*8*/).

7 Optimal Base Search III: Search Modulo Product

This section introduces an abstraction on the search space, classifying bases
according to their product. Instead of maintaining (during the search) a priority
queue of all bases (nodes) that still need to be explored, we maintain a special
priority queue in which there will only ever be at most one base with the same
product. So, the queue will never contain two different bases B1 and B2 such
that

∏
B1 =

∏
B2. In case a second base, with the same product as one already

in, is inserted to the queue, then only the base with the minimal value of costαS
is maintained on the queue. We call this type of priority queue a hashed priority
queue because it can conveniently be implemented as a hash table.

The intuition comes from a study of the sum digits cost function for which
we can prove the following Property 1 on bases: Consider two bases B1 and
B2 such that

∏
B1 =

∏
B2 and such that costαS(B1) ≤ costαS(B2). Then for any

extension of B1 and of B2 by the same sequence C, costS(B1C) ≤ costS(B2C).
In particular, if one of B1 or B2 can be extended to an optimal base, then B1

can. A direct implication is that when maintaining the frontier of the search
space as a priority queue, we only need one representative of the class of bases
which have the same product (the one with the minimal value of costαS).

10

A second Property 2 is more subtle and true for any cost function that has
the first property: Assume that in the algorithm described as Figure 3 we at
some stage remove a base B1 from the priority queue. This implies that if in the
future we encounter any base B2 such that

∏
B1 =

∏
B2, then we can be sure

that costS(B1) ≤ costS(B2) and immediately prune the search tree from B2.
Our third and final algorithm, which we call hashB&B (best-first, branch

and bound, with hash priority queue) is identical to the algorithm presented in
Figure 3, except that the the boxed priority queue introduced at line /*1*/ is
replaced by a hash priority queue .

The abstract data type hash priority queue maintains bases prioritized by
the value of costαS . Operations popMin() and peek() are as usual. Operation
push(B1) works as follows: (a) if there is no base B2 in the queue such that∏
B1 =

∏
B2, then add B1. Otherwise, (b) if costαS(B2) ≤ costαS(B1) then do

not add B1. Otherwise, (c) remove B2 from the queue and add B1.

Theorem 15.
(1) The sum digits cost function satisfies Property 1; and (2) the hashB&B

algorithm finds an optimal base for any cost function which satisfies Property 1.

We conjecture that the other cost functions do not satisfy Property 1, and
hence cannot guarantee that the hashB&B algorithm always finds an optimal base.
However, in our extensive experimentation, all bases found (when searching for
an optimal prime base) are indeed optimal.

A direct implication of the above improvements is that we can now provide
a tighter bound on the complexity of the search algorithm. Let us denote the
number of different integers in S by s and m = max(S). First note that in
the worst case the hashed priority queue will contain m elements (one for each
possible value of a base product, which is never more than m). Assuming that
we use a Fibonacci Heap, we have a O(log(m)) cost (amortized) per popMin()

operation and in total a O(m ∗ log(m)) cost for popping elements off the queue
during the search for an optimal base.

Now focus on the cost of operations performed when extracting a base B
from the queue. Denoting

∏
B = q, B has at most m/q children (integers which

extend it). For each child we have to calculate costS which incurs a cost of O(s)
and possibly to insert it to the queue. Pushing an element onto a hashed priority
queue (in all three cases) is a constant time operation (amortized), and hence
the total cost for dealing with a child is O(s).

Finally, consider the total number of children created during the search which
corresponds to the following sum:

O(

m∑
q=1

m/q) = O(m

m∑
q=1

1/q) = O(m ∗ log(m))

So, in total we get O(m ∗ log(m)) +O(m ∗ log(m) ∗ s) ≤ O(m2 ∗ log(m)). When
we restrict the extenders to be prime numbers then we can further improve this
bound to O(m2 ∗ log(log(m))) by reasoning about the density of the primes. A
proof can be found in [8].

11

8 Experiments

Experiments are performed using an extension to MiniSat+ [9] where the only
change to the tool is to plug in our optimal base algorithm. The reader is invited
to experiment with the implementation via its web interface.4 All experiments
are performed on a Quad-Opteron 848 at 2.2 GHz, 16 GB RAM, running Linux.

Our benchmark suite originates from 1945 Pseudo-Boolean Evaluation [11]
instances from the years 2006–2009 containing a total of 74,442,661 individual
Pseudo-Boolean constraints. After normalizing and removing constraints with{

0, 1
}

coefficients we are left with 115,891 different optimal base problems where
the maximal coefficient is 231 − 1. We then focus on 734 PB instances where at
least one optimal base problem from the instance yields a base with an element
that is non-prime or greater than 17. When solving PB instances, in all experi-
ments, a 30 minute timeout is imposed as in the Pseudo-Boolean competitions.
When solving an optimal base problem, a 10 minute timeout is applied.

Experiment 1 (Impact of optimal bases): The first experiment illustrates the ad-
vantage in searching for an optimal base for Pseudo-Boolean solving. We compare
sizes and solving times when encoding w.r.t. the binary base vs. w.r.t. an optimal
base (using the hashB&B algorithm with the num comp cost function). Encoding
w.r.t. the binary base, we solve 435 PB instances (within the time limit) with an
average time of 146 seconds and average CNF size of 1.2 million clauses. Using
an optimal base, we solve 445 instances with an average time of 108 seconds,
and average CNF size of 0.8 million clauses.

Experiment 2 (Base search time): Here we focus on the search time for an opti-
mal base in six configurations using the sum carry cost function. Configurations
M17, dfsHP17, and B&B17, are respectively, the MiniSat+ implementation, our
dfsHP and our B&B algorithms, all three searching for an optimal base from
Base17

p , i.e., with prime elements up to 17. Configurations hashB&B1,000,000,
hashB&B10,000, and hashB&B17 are our hashB&B algorithm searching for a base
from Base`p with bounds of ` = 1,000,000, ` = 10,000, and ` = 17, respectively.

Results are summarized in Fig. 4 which is obtained as follows. We cluster
the optimal base problems according to the values dlog1.9745Me where M is the
maximal coefficient in a problem. Then, for each cluster we take the average run-
time for the problems in the cluster. The value 1.9745 is chosen to minimize the
standard deviation from the averages (over all clusters). These are the points on
the graphs. Configuration M17 times out on 28 problems. For dfsHP17, the max-
imal search time is 200 seconds. Configuration B&B17 times out for 1 problem.
The hashB&B configurations have maximal runtimes of 350 seconds, 14 seconds
and 0.16 seconds, respectively for the bounds 1,000,000, 10,000 and 17.

Fig. 4 shows that: (left) even with primes up to 1,000,000, hashB&B is faster
than the algorithm from MiniSat+ with the limit of 17; and (right) even with
primes up to 10,000, the search time using hashB&B is essentially negligible.

4 http://aprove.informatik.rwth-aachen.de/forms/unified_form_PBB.asp

12

Fig. 4. Experiment 2: the 3 slowest configurations (left) (from back to front) M17(blue),
hashB&B1,000,000(orange) and dfsHP17(yellow). The 4 fastest configurations (right)
(from back to front) dfsHP17(yellow), B&B17(green), hashB&B10,000(brown) and
hashB&B17(azure). Note the change of scale for the y-axis with 50k ms on the left
and 8k ms on the right. Configuration dfsHP17 (yellow) is lowest on left and highest
on right, setting the reference point to compare the two graphs.

Experiment 3 (Impact on PB solving): Fig. 5 illustrates the influence of improved
base search on SAT solving for PB Constraints. Both graphs depict the number
of instances solved (the x-axis) within a time limit (the y-axis). On the left, total
solving time (with base search), and on the right, SAT solving time only.

391 397 403 409 415 421 427 433 439 445
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000 Minisat+ 17
Binary base
hashB&B sum
of digits
10,000
hashB&B carry
cost 10,000
hashB&B
comp cost
10,000

Number of instances solved

To
ta

l t
im

e
(m

s)

391 397 403 409 415 421 427 433 439 445
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000 Minisat+ 17
Binary base
hashB&B sum
of digits
10,000
hashB&B carry
cost 10,000
hashB&B
comp cost
10,000

Number of instances solved

So
lv

e
tim

e
(m

s)

Fig. 5. Experiment 3: total times (left), solving times (right)

Both graphs consider the 734 instances of interest and compare SAT solving
times with bases found using five configurations. The first is MiniSat+with
configuration M17, the second is with respect to the binary base, the third to
fifth are hashB&B searching for bases from Base10,000

p (S) with cost functions:
sum digits, sum carry , and num comp, respectively. The average total/solve
run-times (in sec) are 150/140, 146/146, 122/121, 116/115 and 108/107 (left
to right). The total number of instances solved are 431, 435, 442, 442 and 445
(left to right). The average CNF sizes (in millions of clauses) for the entire test
set/the set where all algorithms solved/the set where no algorithm solved are
7.7/1.0/18, 9.5/1.2/23, 8.4/1.1/20, 7.2/0.8/17 and 7.2/0.8/17 (left to right).

The graphs of Fig. 5 and average solving times clearly show: (1) SAT solving
time dominates base finding time, (2) MiniSat+ is outperformed by the trivial
binary base, (3) total solving times with our algorithms are faster than with the
binary base, and (4) the most specific cost function (comparator cost) outper-
forms the other cost functions both in solving time and size. Finally, note that
sum of digits with its nice mathematical properties, simplicity, and application
independence solves as many instances as cost carry.

13

1 6 11 16 21 26 31 36 41
0

20000

40000

60000

80000

100000

Number of Instances

N
um

be
r o

f C
la

us
es

Fig. 6. Experiment 4: Number (x-axis) of instances
encoded within number of clauses (y-axis) on 4
configurations. From top line to bottom: (yellow)
` = 17, i = 5, (red) ` = 17, i = 2, (green) ` = 31,
i = 5, and (blue) ` ∈ {17, 31}, i = 0.

Experiment 4 (Impact of high
prime factors): This experi-
ment is about the effects of
restricting the maximal prime
value in a base (i.e. the value
` = 17 of MiniSat+). An
analysis of the our bench-
mark suite indicates that coef-
ficients with small prime fac-
tors are overrepresented. To
introduce instances where co-
efficients have larger prime
factors we select 43 instances
from the suite and multiply
their coefficients to introduce
the prime factor 31 raised to
the power i ∈ {0, . . . , 5}. We
also introduce a slack variable
to avoid gcd-based simplification. This gives us a collection of 258 new instances.
We used the B&B algorithm with the sum carry cost function applying the limit
` = 17 (as in MiniSat+) and ` = 31. Results indicate that for ` = 31, both CNF
size and SAT-solving time are independent of the factor 31i introduced for i > 0.
However, for ` = 17, both measures increase as the power i increases. Results on
CNF sizes are reported in Fig. 6 which plots for 4 different settings the number
of instances encoded (x-axis) within a CNF with that many clauses (y-axis).

9 Related Work

Recent work [2] encodes Pseudo-Boolean constraints via “totalizers” similar to
sorting networks, determined by the representation of the coefficients in an un-
derlying base. Here the authors choose the standard base 2 representation of
numbers. It is straightforward to generalize their approach for an arbitrary mixed
base, and our algorithm is directly applicable. In [12] the author considers the
sum digits cost function and analyzes the size of representing the natural num-
bers up to n with (a particular class of) mixed radix bases. Our Lemma 6 may
lead to a contribution in that context.

10 Conclusion

It has been recognized now for some years that decomposing the coefficients in
a Pseudo-Boolean constraint with respect to a mixed radix base can lead to
smaller SAT encodings. However, it remained an open problem to determine if
it is feasible to find such an optimal base for constraints with large coefficients.
In lack of a better solution, the implementation in the MiniSat+ tool applies a
brute force search considering prime base elements less than 17.

14

To close this open problem, we first formalize the optimal base problem and
then significantly improve the search algorithm currently applied in MiniSat+.
Our algorithm scales and easily finds optimal bases with elements up to 1,000,000.
We also illustrate that, for the measure of optimality applied in MiniSat+, one
must consider also non-prime base elements. However, choosing the more simple
sum digits measure, it is sufficient to restrict the search to prime bases.

With the implementation of our search algorithm it is possible, for the first
time, to study the influence of basing SAT encodings on optimal bases. We show
that for a wide range of benchmarks, MiniSat+ does actually find an optimal
base consisting of elements less than 17. We also show that many Pseudo-Boolean
instances have optimal bases with larger elements and that this does influence
the subsequent CNF sizes and SAT solving times, especially when coefficients
contain larger prime factors.

Acknowledgement We thank Daniel Berend and Carmel Domshlak for useful
discussions.

References

1. O. Bailleux, Y. Boufkhad, and O. Roussel. A translation of pseudo boolean con-
straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 2(1-4):191–200, 2006.

2. O. Bailleux, Y. Boufkhad, and O. Roussel. New encodings of pseudo-boolean
constraints into CNF. In Proc. Theory and Applications of Satisfiability Testing
(SAT ’09), pages 181–194, 2009.

3. P. Barth. Logic-based 0-1 constraint programming. Kluwer Academic Publishers,
Norwell, MA, USA, 1996.

4. K. E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint
Computing Conference, volume 32 of AFIPS Conference Proceedings, pages 307–
314. Thomson Book Company, Washington D.C., 1968.

5. R. E. Bixby, E. A. Boyd, and R. R. Indovina. MIPLIB: A test set of mixed integer
programming problems. SIAM News, 25:16, 1992.

6. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Deciding CLU logic formulas via
boolean and pseudo-boolean encodings. In Proc. Intl. Workshop on Constraints in
Formal Verification (CFV ’02), 2002.

7. B. Chor, P. Lemke, and Z. Mador. On the number of ordered factorizations of
natural numbers. Discrete Mathematics, 214(1-3):123–133, 2000.

8. M. Codish, Y. Fekete, C. Fuhs, and P. Schneider-Kamp. Optimal Base Encodings
for Pseudo-Boolean Constraints. Technical Report, arXiv:1007.4935 [cs.DM],
available from: http://arxiv.org/abs/1007.4935.

9. N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 2(1-4):1–
26, 2006.

10. D. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

11. V. M. Manquinho and O. Roussel. The first evaluation of Pseudo-Boolean solvers
(PB’05). Journal on Satisfiability, Boolean Modeling and Computation (JSAT),
2(1-4):103–143, 2006.

12. N. Sidorov. Sum-of-digits function for certain nonstationary bases. Journal of
Mathematical Sciences, 96(5):3609–3615, 1999.

15

