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Abstract

Our goal is to study the feasibility of porting termination analysis techniques developed
for one programming paradigm to another paradigm. In this paper, we show how to adapt
termination analysis techniques based on polynomial interpretations - very well known in
the context of term rewrite systems (TRSs) - to obtain new (non-transformational) ter-
mination analysis techniques for definite logic programs (LPs). This leads to an approach
that can be seen as a direct generalization of the traditional techniques in termination
analysis of LPs, where linear norms and level mappings are used. Our extension general-
izes these to arbitrary polynomials. We extend a number of standard concepts and results
on termination analysis to the context of polynomial interpretations. We also propose a
constraint-based approach for automatically generating polynomial interpretations that
satisfy the termination conditions. Based on this approach, we implemented a new tool,
called Polytool, for automatic termination analysis of LPs.

KEYWORDS: Termination analysis, acceptability, polynomial interpretations.

1 Introduction

Termination analysis plays an important role in the study of program correctness.

A termination proof is mostly based on a mapping from computational states to

http://arxiv.org/abs/0912.4360v1
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some well-founded ordered set. Termination is guaranteed if the mapped values of

the encountered states during a computation, under this mapping, decrease w.r.t.

the order.

For LPs, termination analysis is done by mapping terms and atoms to a well-

founded set of natural numbers by means of norms and level mappings. Proving

termination is based on the search for a suitable norm and level mapping such that

the resulting predicate calls decrease under the mapping.

Until now, most termination techniques for LPs are based on the use of linear

norms and linear level mappings, which measure the size of each term or atom as

a linear combination of the sizes of its sub-terms. For example, the Hasta-La-Vista

system (Serebrenik and De Schreye 2003) infers one specific linear norm and linear

level mapping. In the context of numerical computations, it includes a refinement

on this, based on a case analysis. The tool cTI (Mesnard and Bagnara 2005) uses

a concrete linear norm. The analyzers TermiLog (Lindenstrauss and Sagiv 1997;

Lindenstrauss 2000) and TerminWeb (Codish and Taboch 1999; Taboch et al. 2002)

use a combination of several linear norms to obtain an approximation of the program

and then infer linear level mappings for termination analysis of the approximated

program. However, the restriction to linear norms and level mappings limits the

power of termination analysis considerably. To illustrate this point, consider the fol-

lowing example, der, that formulates rules for computing the repeated derivative of

a function in some variable u. This example from (De Schreye and Serebrenik 2002;

Dershowitz et al. 1997) is inspired by a similar term rewriting example from (Dershowitz 1995).

Example 1 (der)

d(der (u), 1). (1)

d(der (X + Y ),DX + DY ) :− d(der (X),DX ), d(der (Y ),DY ). (2)

d(der (X ∗ Y ), X ∗ DY + Y ∗ DX ) :− d(der (X),DX ), d(der (Y ),DY ). (3)

d(der (der (X)),DDX ) :− d(der (X),DX ), d(der (DX ),DDX ). (4)

We are interested in proving termination of this program w.r.t. the set of queries

S = { d(t1, t2) | t1 is a ground term and t2 is an arbitrary term}. So the set of

queries is specified by a mode that considers the first argument of d as an input

argument and the second as an output.

As shown in (Dershowitz et al. 1997; Nguyen and De Schreye 2005), the termi-

nation proof is impossible when using a linear norm and a linear level mapping.

Indeed, it turns out that all existing non-transformational termination analyzers

for LPs mentioned above fail to prove termination of this example. �

In this paper, we propose a general framework for termination proofs of LPs

based on polynomial interpretations. Using polynomial interpretations as a basis

for ordering terms in TRSs was first introduced by Lankford in (Lankford 1979).

It is currently one of the best known and most widely used techniques in TRS

termination analysis.

We develop the approach within an LP context. Classical approaches in LP ter-
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mination use interpretations that map to natural numbers (using linear polyno-

mial functions). In contrast, we will use interpretations that map to polynomials

(using arbitrary polynomial functions). To adapt the classical LP approaches to

polynomial interpretations, we use the concepts of “abstract norm” and “abstract

level mapping” (Verschaetse and De Schreye 1991). We show that with our new

approach, one can also prove termination of programs like Example 1.

We also developed an automated tool (Polytool) for termination analysis based

on our approach (Nguyen and De Schreye 2007). We embedded this within the

constraint-based approach developed in (Decorte et al. 1999) and combined it with

the non-linear Diophantine constraint solver developed by Fuhs et al. (Fuhs et al. 2007)

(implemented in the AProVE system (Giesl et al. 2006)) to provide a completely au-

tomated system.

The paper is organized as follows. In the next section, we present some prelimi-

naries. In Section 3, we introduce the notion of polynomial interpretations in logic

programming and show how this approach can be used to prove termination. In

Section 4, we discuss the automation of the approach. In Section 5, we provide and

discuss the results of our experimental evaluation. We end with a conclusion in

Section 6.

2 Preliminaries

After introducing the basic terminology of LPs in Section 2.1, we recapitulate the

concepts of norms and level mappings in Section 2.2 and explain their use for

termination proofs in Section 2.3.

2.1 Notations and Terminology

We assume familiarity with LP concepts and with the main results of logic program-

ming (Apt 1990; Lloyd 1987). In the following, P denotes a definite logic program.

We use VarP , FunP , and PredP to denote the sets of variables, function, and pred-

icate symbols of P . Given an atom A, rel(A) denotes the predicate occurring in

A. Let p, q be predicates occurring in the program P . We say that p refers to q if

there is a clause in P such that p is in its head and q is in its body. We say that

p depends on q if (p, q) is in the transitive closure of the relation “refers to”. If

p depends on q and vice versa, p and q are called mutually recursive, denoted by

p ⋍ q. A clause in P with a predicate p in its head and a predicate q in its body,

such that p and q are mutually recursive, is called a (mutually) recursive clause.

Within such a recursive clause, the body-atoms with predicate symbol q are called

(mutually) recursive atoms. Let TermP and AtomP denote, respectively, the sets

of all terms and atoms that can be constructed from P .

In this paper, we focus our attention on definite logic programs and SLD-derivations

where the left-to-right selection rule is used. Such derivations are referred to as LD-

derivations; the corresponding derivation tree is called LD-tree. We say that a query

Q LD-terminates for a program P , if the LD-tree for (P, Q) is finite (left-termination
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(Lloyd 1987)). In the following, we usually speak of “termination” instead of “LD-

termination” or “left-termination”.

2.2 Norms and Level Mappings

The concepts of norm and level mapping are central in termination analysis of logic

programs.

Definition 1 (norm, level mapping)

A norm is a mapping ‖.‖ : TermP → N. A level-mapping is a mapping |.| :

AtomP → N.

Several examples of norms can be found in the literature (Bossi et al. 1991). One

of the most commonly used norms is the list-length norm ‖.‖ℓ which maps lists to

their lengths and any other term to 0. Another frequently used norm is the term-

size norm ‖.‖τ which counts the number of function symbols in a term. Both of

them belong to a class of norms called linear norms which is defined as follows.

Definition 2 (linear norm and level mapping (Serebrenik 2003))

A norm ‖.‖ is a linear norm if it is recursively defined by means of the following

schema:

- ‖X‖ = 0 for any variable X ,

- ‖f(t1, . . . , tn)‖ = f0 +
∑n

i=1 fi‖ti‖ where fi ∈ N and n ≥ 0.

Similarly, a level mapping |.| is a linear level mapping if it is defined by means of

the following schema:

- |p(t1, . . . , tn)| = p0 +
∑n

i=1 pi‖ti‖ where pi ∈ N and n ≥ 0.

2.3 Conditions for Termination w.r.t. General Orders

A quasi-order on a set S is a reflexive and transitive binary relation % defined on

elements of S. We define the associated equivalence relation ≈ as s ≈ t if and only

if s % t and t % s. A well-founded order on S is a transitive relation ≻ where there

is no infinite sequence s0 ≻ s1 ≻ . . . with si ∈ S. A reduction pair (%,≻) consists of

a quasi-order % and a well-founded order ≻ that are compatible (i.e., t1 % t2 ≻ t3
implies t1 ≻ t3). We also need the following notion of a call set.

Definition 3 (call set)

Let P be a program and S be a set of atomic queries. The call set, Call(P, S), is the

set of all atoms A, such that a variant of A is the selected atom in some derivation

for (P ,Q), for some Q ∈ S.

Most often, one regards infinite sets S of queries. For instance, this is the case in

Example 1. As in Example 1, S is then specified in terms of modes or types. As a con-

sequence, in an automated approach, a safe over-approximation of Call(P, S) needs

to be computed, using a mode or a type inference technique (e.g., (Bruynooghe et al. 2005;

Gallagher et al. 2005; Heaton et al. 2000; Janssens and Bruynooghe 1992)).
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In order to obtain a termination criterion that is suitable for automation, one

usually estimates the effect of the atoms in the bodies of clauses by suitable inter-

argument relations. This notion can be defined for arbitrary reduction pairs.

Definition 4 (interargument relation (De Schreye and Serebrenik 2002))

Let P be a program, p be a predicate in P , and (%,≻) be a reduction pair on TermP .

An interargument relation for p in P w.r.t. (%,≻) is a relation Rp with the same

arity as p: Rp = {p(t1, . . . , tn) | ti ∈ TermP for all 1 ≤ i ≤ n, and ϕp(t1, . . . , tn)},

where:

- ϕp(t1, . . . , tn) is a boolean expression (in terms of disjunction, conjunction,

and negation) of inequalities s % s′ or s ≻ s′, in which

- s, s′ are constructed from t1, . . . , tn by applying function symbols from FunP .

Rp is a valid interargument relation for p in P w.r.t. (%,≻) if and only if for every

p(t1, . . . , tn) ∈ AtomP : P |= p(t1, . . . , tn) implies p(t1, . . . , tn) ∈ Rp.

Example 2 (interargument relation)

Let P be the standard append program that computes list concatenation. Then

there are a number of valid interargument relations. Consider the reduction pair

(%,≻) corresponding to the list-length norm ‖.‖ℓ, i.e., t1 % t2 if and only if ‖t1‖ℓ ≥

‖t2‖ℓ and t1 ≻ t2 if and only if ‖t1‖ℓ > ‖t2‖ℓ. For instance, valid interargument

relations for append w.r.t. (%,≻) are Rappend = {append(t1, t2, t3) | t1, t2, t3 ∈

TermP ∧ ϕappend(t1, t2, t3)}, where ϕappend(t1, t2, t3) could be:

- t3 % t2 ∧ t3 % t1,

- t3 % t2,

- [t1, t2|t3] ≻ [t2|t3], or

- true

Of course, usually only the first two interargument relations are useful for termina-

tion analysis. �

Finally, we need the notion of rigidity, in order to deal with bindings that are due

to unification in LD-derivations. These bindings would have to be back-propagated

to the variables in the initial goal. We reformulate rigidity for arbitrary reduction

pairs.

Definition 5 (rigidity - adapted from (De Schreye and Serebrenik 2002))

A term or atom A ∈ TermP ∪ AtomP is called rigid w.r.t. a reduction pair (%,≻)

if A ≈ Aσ holds for any substitution σ. A set of terms (or atoms) S is called rigid

w.r.t. (%,≻) if all its elements are rigid w.r.t. (%,≻).

Example 3 (rigidity)

The list [X |t] (X is a variable, t is a ground term) is rigid w.r.t. the reduction

pair (%,≻) corresponding to the list-length norm. For any substitution σ, we have

‖[X |t]σ‖ℓ = 1 + ‖t‖ℓ = ‖[X |t]‖ℓ. Therefore, [X |t]σ ≈ [X |t] w.r.t. (%,≻).

However, the list [X |t] is not rigid w.r.t. the reduction pair (%′,≻′) corresponding

to the term-size norm ‖.‖τ , i.e., t1 %′ t2 if and only if ‖t1‖τ ≥ ‖t2‖τ and t1 ≻′ t2 if

and only if ‖t1‖τ > ‖t2‖τ . �
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The following definition introduces the desired termination criterion, i.e., it recalls

the definition of rigid order-acceptability w.r.t. a set of atoms.

Definition 6 (rigid order-acceptability (De Schreye and Serebrenik 2002))

Let S be a set of atomic queries. A program P is rigid order-acceptable w.r.t. S

if there exists a reduction pair (%,≻) on AtomP where Call(P, S) is rigid w.r.t.

(%,≻) and where for each predicate p in P , there is a valid interargument relation

Rp in P w.r.t. (%,≻) such that

- for any clause A :− B1, B2, . . . , Bn in P ,

- for any atom Bi ∈ {B1 . . . , Bn} such that rel(Bi) ⋍ rel(A),

- for any substitution θ such that the atoms B1θ, . . . , Bi−1θ are elements of

their associated interargument relations Rrel(B1), . . . , Rrel(Bi−1):

Aθ ≻ Biθ.

Theorem 1 states that rigid order-acceptability is a sufficient condition for ter-

mination. We refer to (Serebrenik 2003), Theorems 3.32 and 3.54, for the proof of

Theorem 1.

Theorem 1 (termination criterion by rigid order-acceptability)

If P is rigid order-acceptable w.r.t. S, then P terminates for any query in S.

Rigid order-acceptability is sufficient for termination, but is not necessary for it

(see (De Schreye and Serebrenik 2002)). With Definition 6 and Theorem 1, proving

termination of a program requires verifying the rigidity of the call set, verifying

the validity of interargument relations for predicates, and verifying the decrease

conditions for the (mutually) recursive clauses.

We will not discuss here the decidability or undecidability results related to var-

ious problems concerning: (i) the rigidity of the call set and (ii) the validity of

interargument relations. The interested reader may refer to the relevant literature.

In the remainder of this paper we provide some answers to the question in the

setting of a given set S, an inferred order based on polynomial interpretations,

abstractions of S based on types, type inference to approximate the call set, and

interargument relations based on inequalities between polynomials.

3 Polynomial Interpretation of a Logic Program

The approach presented in the previous section can be considered a theoretical

framework for termination analysis of LPs based on general orders on terms and

atoms. In this section, we specialize it to orders based on polynomial interpretations.

We first introduce polynomial interpretations in Section 3.1. Then in Section 3.2

we reformulate the termination conditions for LPs from Section 2.3 for polynomial

interpretations.
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3.1 Polynomial Interpretations

In this paper, we only consider polynomials with natural numbers as coefficients

(so-called “natural coefficients”). Because natural numbers will occur many times

in this paper, we will simply refer to them as “numbers”.

We say that a variable X occurs in a polynomial p if the polynomial contains

a monomial with a coefficient different from 0 and X occurs in this monomial. If

X1, . . . , Xn are all the variables occurring in a polynomial p, we often denote p as

p(X1, . . . , Xn). For every polynomial p, there is an associated polynomial function

Fp = λX1, . . . , Xn. p(X1, . . . , Xn). For numbers or polynomials x1, . . . , xn, we often

write “p(x1, . . . , xn)” instead of “Fp(x1, . . . , xn)”. Given p(X1, . . . , Xn) and m ≥ 1

we also have an associated polynomial function Fp,m = λX1, . . . , Xn, Y1, . . . , Ym.

p(X1, . . . , Xn). For such an associated function on an extended domain, we often

write “p(x1, . . . , xn, y1, . . . , ym)” to denote “Fp,m(x1, . . . , xn, y1, . . . , ym)”.

Definition 7 (orders on polynomials)

Let p and q be two polynomials. Let X1, . . . , Xn be all variables occurring in p or q.

The quasi-order %N is defined as p %N q if and only if p(x1, . . . , xn) ≥ q(x1, . . . , xn)

for all x1, . . . , xn ∈ N. The strict order ≻N is defined as p ≻N q if and only if

p(x1, . . . , xn) > q(x1, . . . , xn) for all x1, . . . , xn ∈ N.

Observe that (%N,≻N) is a reduction pair. In other words, ≻N is well-founded

and transitive, %N is reflexive and transitive, and %N and ≻N are compatible. Let

Σ we denote the set of all polynomials with natural coefficients. Note that all

these polynomials p are weakly monotonic, i.e., xi ≥ yi for all 1 ≤ i ≤ n implies

p(x1, . . . , xn) ≥ p(y1, . . . , yn).

A polynomial interpretation maps each function and each predicate symbol of

the program to a polynomial.

Definition 8 (polynomial interpretation)

A polynomial interpretation I for a logic program P maps each symbol f of arity

n in FunP ∪ PredP to a polynomial pf(X1, . . . , Xn).

Every polynomial interpretation induces a norm and a level mapping. Although it

is standard in logic programming to distinguish between norms and level mappings,

to simplify the formalization, here we will only introduce a level mapping and define

it on both terms and atoms.

Definition 9 (polynomial level mapping)

The level mapping associated with a polynomial interpretation I, is a mapping

|.|I : TermP ∪ AtomP → Σ, which is defined recursively as:

- |X |I = X if X is a variable,

- |f(t1, . . . , tn)|I = pf (|t1|I , . . . , |tn|I), where pf = I(f).

Every polynomial interpretation induces corresponding orders.
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Definition 10 (reduction pair corresponding to polynomial interpretation)

Let I be a polynomial interpretation. We define the relations %I and ≻I on TermP ∪

AtomP as follows:

- s %I t if and only if |s|I %N |t|I for any s, t ∈ TermP ∪AtomP

- s ≻I t if and only if |s|I ≻N |t|I for any s, t ∈ TermP ∪AtomP

Again, observe that the orders induced by a polynomial interpretation form a

reduction pair.

Example 4 (polynomial interpretation for “der”)

Let I be a polynomial interpretation with

I(+) = I(∗) = p+(X1, X2) = p∗(X1, X2) = X1 + X2 + 2

I(u) = I(1) = pu = p1 = 1

I(der ) = pder (X) = X2 + 2X + 2

I(d) = pd(X1, X2) = X1

Then d(der (X + Y ), DX + DY ) ≻I d(der (X), DX), since |d(der (X + Y ), DX +

DY )|I = (X + Y + 2)2 + 2(X + Y + 2) + 2 ≻N |d(der (X), DX)|I = X2 + 2X + 2.

3.2 Termination of Logic Programs by Polynomial Interpretations

We now re-state Definition 6 and Theorem 1 for the special case of polynomial

interpretations. So instead of interargument relations for arbitrary orders as in

Definition 4, we now use interargument relations w.r.t. polynomial interpretations.

Definition 11 (interargument relation w.r.t. a polynomial interpretation)

Let P be a program, p be a predicate in P , and I be a polynomial interpretation. Rp

is an interargument relation for p in P w.r.t. I iff Rp is an interargument relation

for p in P w.r.t. (%I ,≻I).

Instead of rigidity w.r.t. general orders as in Definition 5, we define rigidity w.r.t.

polynomial interpretations.

Definition 12 (rigidity w.r.t. a polynomial interpretation)

A term or atom A ∈ TermP ∪AtomP is called rigid w.r.t. a polynomial interpreta-

tion I iff A is rigid w.r.t. (%I ,≻I), i.e., iff A ≈I Aσ holds for any substitution σ. A

set of terms (or atoms) S is called rigid w.r.t. I if all its elements are rigid w.r.t. I.

For polynomial interpretations, rigidity can also be characterized in an alternative

way using relevant variables.

Definition 13 (relevant variables)

Let I be a polynomial interpretation and A be a term or atom. A variable X in A

is called relevant w.r.t. I if there exists a substitution {X → t} of a term t for X ,

such that A{X → t} 6≈I A.

Example 5 (relevant variables)

Let A = [X |Y ] and I be the interpretation corresponding to the list-length norm

‖.‖ℓ, i.e., |[H |T ]|I = 1 + |T |I . Then the only relevant variable of A is Y . �
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Proposition 1 (alternative characterization of rigidity)
Let I be a polynomial interpretation and A be a term or atom. Then A is rigid

w.r.t. I iff A has no relevant variables w.r.t. I.

Proof
Obvious from Definitions 12 and 13.

Using the notions of interargument relations and rigidity w.r.t. a polynomial

interpretation, we obtain the following specialization of Theorem 1:

Corollary 1 (termination criterion with polynomial rigid order-acceptability)
Let S be a set of atomic queries and P be a program. Let I be a polynomial

interpretation, where Call(P, S) is rigid w.r.t. I and where for each predicate p in

P , there is a valid interargument relation Rp in P w.r.t. I such that

- for any clause A :− B1, B2, . . . , Bn in P ,
- for any atom Bi ∈ {B1 . . . , Bn} such that rel(Bi) ⋍ rel(A),
- for any substitution θ such that the atoms B1θ, . . . , Bi−1θ are elements of

their associated interargument relations Rrel(B1), . . . , Rrel(Bi−1):

Aθ ≻I Biθ.

Then P terminates for any query in S.

Proof
The corollary immediately follows from Theorem 1.

Corollary 1 can be applied to verify termination of a logic program w.r.t. a set

of queries. More precisely, we have to check that all conditions in the following

termination proof procedure are satisfied by some polynomial interpretation I. In

Section 4 we will discuss how to find such an interpretation automatically.

Procedure 1 (a procedure for automatic termination analysis)
The termination proof procedure derived from Corollary 1 contains the following

three steps:

Step 1: The call set Call(P, S) must be rigid w.r.t. I. In other words, no

query A in the call set may have a relevant variable w.r.t. I.
Step 2: For a clause that has body-atoms between the head and a (mutually)

recursive body-atom, valid interargument relations of those atoms w.r.t. I

need to be inferred.
Step 3: For every clause, the polynomial level mapping of the head w.r.t. I

should be larger than that of any (mutually) recursive body-atom, given that

interargument relations for intermediate body-atoms hold.

For Step 2, we can follow the standard approach for LPs to verify that a relation

R holds for all elements of the Herbrand model (see e.g. (Lloyd 1987)). To this end,

one has to verify TP (R) ⊆ R, where TP is the immediate consequence operator

corresponding to the program P . Thus, we verify the validity of interargument

relations by first checking whether they are correct for the facts in the program.

Then for every clause, if the interargument relations hold for all body-atoms, the

interargument relation for the head should also hold.
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Example 6 (applying Corollary 1 to the “der”-program)

Consider again the “der”-program from Example 1 and the set of queries S =

{d(t1, t2) | t1 is a ground term and t2 is an arbitrary term}. Note that here,

Call(P, S) = S. Let I be the polynomial interpretation from Example 4. Then

no A ∈ Call (P, S) has a relevant variable w.r.t. I. This means that Call(P, S) is

rigid w.r.t. I.

Let Rd = {d(t1, t2) | t1, t2 ∈ TermP , t1 ≻I t2} be an interargument relation for

the predicate d. Checking the validity of Rd is equivalent to verifying the correctness

of the following conditions for any substitution θ:

der (u)θ ≻I (1)θ

der (X)θ ≻I DX θ and der (Y )θ ≻I DY θ implies

der (X + Y )θ ≻I (DX + DY )θ

der (X)θ ≻I DX θ and der (Y )θ ≻I DY θ implies

der (X ∗ Y )θ ≻I (X ∗ DY + Y ∗ DX )θ

der (X)θ ≻I DX θ and der (DX )θ ≻I DDX θ implies

der (der(X))θ ≻I DDX θ.

To prove termination, we also need the following decrease conditions for any

substitution θ:

d(der (X + Y ),DX + DY )θ ≻I d(der (X),DX )θ

d(der (X),DX )θ satisfies Rd implies

d(der (X + Y ),DX + DY )θ ≻I d(der (Y ),DY )θ

d(der (X ∗ Y ), X ∗ DY + Y ∗DX )θ ≻I d(der (X),DX )θ

d(der (X),DX )θ satisfies Rd implies

d(der (X ∗ Y ), X ∗ DY + Y ∗ DX )θ ≻I d(der (Y ),DY )θ

d(der (der (X)),DDX )θ ≻I d(der (X),DX )θ

d(der (X),DX )θ satisfies Rd implies

d(der (der(X)),DDX )θ ≻D d(der (DX ),DDX )θ

The conditions above are equivalent to the following inequalities on the variables

X, Y,DX ,DY ,DDX . For the conditions on the valid interargument relation, we

obtain:

5 > 1

∀X, Y,DX ,DY ∈ N : X2 + 2X + 2 > DX ∧ Y 2 + 2Y + 2 > DY ⇒

(X + Y + 2)2 + 2(X + Y + 2) + 2 > DX + DY + 2

∀X, Y,DX ,DY ∈ N : X2 + 2X + 2 > DX ∧ Y 2 + 2Y + 2 > DY ⇒

(X + Y + 2)2 + 2(X + Y + 2) + 2 > x + DY + Y + DX + 3

∀X,DX ,DDX ∈ N : X2 + 2X + 2 > DX ∧ DX 2 + 2DX + 2 > DDX ⇒

(X2 + 2X + 2)2 + 2(X2 + 2X + 2) + 2 > DDX
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And for the decrease conditions we obtain:

∀X, Y ∈ N : (X + Y + 2)2 + 2(X + Y + 2) + 2 > X2 + 2X + 2
∀X, Y,DX ∈ N : X2 + 2X + 2 > DX ⇒ (X + Y + 2)2 + 2(X + Y + 2) + 2 > Y 2 + 2Y + 2

∀X, Y ∈ N : (X + Y + 2)2 + 2(X + Y + 2) + 2 > X2 + 2X + 2
∀X, Y,DX ∈ N : X2 + 2X + 2 > DX ⇒ (X + Y + 2)2 + 2(X + Y + 2) + 2 > Y 2 + 2Y + 2

∀X ∈ N : (X2 + 2X + 2)2 + 2(X2 + 2X + 2) + 2 > X2 + 2X + 2
∀X, DX ∈ N : X2 + 2X + 2 > DX ⇒ (X2 + 2X + 2)2 + 2(X2 + 2X + 2) + 2 > DX 2 + 2DX + 2

The above inequalities are easily verified for all instantiations of the variables by

numbers. Hence, the program terminates w.r.t. the set of queries S. �

4 Automating the Termination Proof

A key question is how to automate the search for a polynomial interpretation and

for interargument relations. In other words, to prove termination of a logic pro-

gram, one has to synthesize the coefficients of the polynomials associated with

the function and predicate symbols as well as the formulas ϕp(t1, . . . , tn) defining

the interargument relations. In the philosophy of the constraint-based approach in

(Decorte et al. 1999), we do not choose a particular polynomial interpretation and

particular interargument relations. Instead, we introduce a general symbolic form

for the polynomials associated with the function and predicate symbols and for the

interargument relations. As an example, assume that polynomials of degree 2 are se-

lected for the interpretation. Then instead of assigning the polynomial pq(X1, X2) =

X2
1 + 2X1X2 to a predicate symbol q of arity 2, we would, for example, assign the

symbolic polynomial pq(X1, X2) = q00 + q10X1 + q01X2 + q11X1X2 + q1X
2
1 + q2X

2
2 ,

where the qi and qij are unknown coefficients ranging over N. So our approach for

termination analysis works as follows:

• introduce symbolic versions of the polynomials associated with function and

predicate symbols,

• express all conditions resulting from Corollary 1 as constraints on the coeffi-

cients (e.g. q00, q10, q01, . . .),

• solve the resulting system of constraints to obtain values for the coefficients.

Each solution for this constraint system gives rise to a concrete polynomial inter-

pretation and to concrete valid interargument relations such that all conditions of

Corollary 1 are satisfied. Therefore, each solution gives a termination proof.

In order to assign symbolic polynomials to the function and predicate symbols,

we make the decision of assigning linear polynomials to predicate symbols and linear

or simple-mixed polynomials to function symbols. These classes of polynomials are

defined as follows:

- The linear class: each monomial of a polynomial in this class contains at most

one variable of at most degree 1:

p(X1, . . . , Xn) = p0 +
∑n

k=1 pkXk

- The simple-mixed class: each monomial of a polynomial in this class contains

either a single variable of at most degree 2 or several variables of at most
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degree 1:

p(X1, . . . , Xn) =
∑

jk∈{0,1} pj1...jn
X

j1
1 . . . Xjn

n +
∑n

k=1 pkX2
k

The above classes of polynomials have proved to be particularly useful for auto-

mated termination proofs of TRSs. For more details on these classes of polynomials

we refer to (Contejean et al. 2005; Steinbach 1992). In our work, these choices re-

sulted from extensive experiments with different kinds of polynomials, where our

goal was to optimize both the efficiency and the power of the termination analyzer.

In Section 4.1, we first reformulate the conditions of our termination criterion in

Corollary 1, using the above symbolic forms of polynomials. Then in Section 4.2, we

transform these symbolic conditions into constraints on the unknown coefficients of

the symbolic polynomials. Afterwards, in Section 4.3 we show how these resulting

Diophantine constraints can be solved automatically. Finally, we conclude with a

comparison of our contributions with related work from term rewriting in Section

4.4.

4.1 Reformulating the Termination Conditions

In this subsection, we reformulate all termination conditions of Corollary 1, i.e., of

Procedure 1. These include the rigidity property (Step 1), the valid interargument

relations (Step 2), and the decrease conditions (Step 3). The reformulation results in

symbolic constraints, based on the symbolic forms of the polynomial interpretations.

4.1.1 Rigidity Conditions (Procedure 1, Step 1)

There are several ways to approximate Call(P, S) (e.g., (Bruynooghe et al. 2005;

Gallagher et al. 2005; Heaton et al. 2000; Janssens and Bruynooghe 1992)). In this

paper, we apply the approximation technique of (Gallagher et al. 2005; Janssens and Bruynooghe 1992).

More precisely, we first specify the set of queries as a set of rigid type graphs. Then

the technique in (Gallagher et al. 2005; Janssens and Bruynooghe 1992) is used to

compute a new, finite set of rigid type graphs which approximate Call(P, S). Each

of these new rigid type graphs represents a so-called call pattern. For further details,

we refer to (Gallagher et al. 2005; Janssens and Bruynooghe 1992).

In the following, we recapitulate the notion of rigid type graphs and show how

rigidity conditions are derived from the set of call patterns. First, we recall and ex-

tend some basic definitions from (Janssens and Bruynooghe 1992), which are based

on linear norms and level-mappings, to the case of general polynomial interpreta-

tions. Example 7 will illustrate these definitions.

Definition 14 (rigid type graph (Janssens and Bruynooghe 1992))
A rigid type graph T is a 5-tuple, (Nodes ,ForArcs,BackArcs ,Label ,ArgPos), where

1. Nodes is a finite non-empty set of nodes.
2. ForArcs ⊆ Nodes × Nodes such that (Nodes ,ForArcs) is a tree.
3. BackArcs ⊆ Nodes × Nodes such that for every arc (m, n) ∈ BackArcs , node

n is an ancestor of node m in the tree (Nodes ,ForArcs).
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4. Label is a function Nodes → FunP ∪ PredP ∪ {MAX,OR}.

5. If a node n is labelled with f ∈ FunP ∪ PredP and f has arity k, then the

node n has exactly k outgoing arcs (counting both ForArcs and BackArcs).

These arcs are labelled with the numbers 1, . . . , k. For every such arc (n, m),

ArgPos(n, m) returns the corresponding label from {1, . . . , k}.

The intuition behind rigid type graphs is related to the tree representation of

terms and atoms in LP. A rigid type graph generalizes the tree representation of

an atom by allowing:

• nodes labeled by MAX, denoting any term,

• nodes labeled by OR, denoting the union of all denotations of the sub-graphs

rooted at this node,

• backarcs, denoting repeated traversals of a sub-graph.

For each rigid type graph representing a set of atoms S, each node MAX in the

graph corresponds to a possible occurrence of a variable in the atoms of S. The

set S is rigid w.r.t. the polynomial interpretation I iff all these variables are not

relevant w.r.t. I. In the following, we formulate this rigidity condition syntactically

based on the rigid type graph.

Definition 15 (critical path (Decorte et al. 1999))

Let T =(Nodes ,ForArcs,BackArcs ,Label ,ArgPos) be a rigid type graph. A critical

path in T is a path of arcs from the tree ForArcs which goes from the root node of

the tree to a node labelled MAX.

The following proposition is extended from (Decorte et al. 1993), where in (Decorte et al. 1993)

each function or predicate symbol is associated with a linear norm or level mapping.

It provides a method to generate constraints for rigidity.

Proposition 2 (checking rigidity by critical paths)

Let P be a program and T = (Nodes ,ForArcs,BackArcs ,Label ,ArgPos) be a

rigid type graph representing a set of atoms S. Let I be a polynomial interpre-

tation, where for any function or predicate symbol f of arity k we have I(f) =

pf(X1, . . . , Xk) =
∑

0≤j1,...,jk≤Mf
fj1...jk

X
j1
1 . . . X

jk

k . The set S is rigid w.r.t. I iff on

every critical path of T there exists an arc (n, m) with Label(n) = f , arity(f) = k,

and ArgPos(n, m) = i such that
∑

ji>0 fj1...jk
= 0, where k is the arity of f .

Proof

Since we only regard polynomials with non-negative coefficients fj1...jk
, the condi-

tion
∑

ji>0 fj1...jk
= 0 is equivalent to the requirement that fj1...jk

= 0, whenever

ji > 0. This in turn is equivalent to the condition that Xi is not involved in

pf(X1, . . . , Xk). Hence, the condition in the above proposition is equivalent to the

requirement that for any MAX node, there is at least one function or predicate

symbol f on the critical path to this MAX node, for which the argument position

corresponding to the path is not involved in pf . So equivalently, the atoms in the set

S have no relevant variables w.r.t. I. According to Proposition 1, this is equivalent

to rigidity w.r.t. I.
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Fig. 1. Rigid type graph for Example 7

The following corollary shows how to express the above rigidity check as a con-

straint on the coefficients of the polynomial interpretation. To this end, we express

the existence condition of an appropriate arc (n, m) by a suitable multiplication.

Corollary 2 (symbolic condition for checking rigidity)

Let T be a rigid type graph representing a set of atoms S and let CP be a

critical path of T . Let (n1, m1), . . . , (ne, me) be all arcs in CP such that for all

d ∈ {1, . . . , e}, Label(nd) = fd is a function or predicate symbol of some arity kd and

ArgPos(nd,

md) = id. If for any such CP we have

e∏

d=1

(
∑

j
(id)

> 0

fd
j1...j

(kd)
) = 0, (5)

then S is rigid w.r.t. I.

Example 7 (symbolic polynomial interpretation and rigidity constraints for the “der”-program)

For Example 1, we define a symbolic polynomial interpretation I as follows.

I(+) = p1X
2
1 + p2X

2
2 + p11X1X2 + p10X1 + p01X2 + p00

I(∗) = m1X
2
1 + m2X

2
2 + m11X1X2 + m10X1 + m01X2 + m00

I(der ) = der2X
2 + der 1X + der0

I(u) = cu

I(1) = c1

I(d) = d0 + d1X1 + d2X2

We will reformulate the termination conditions for this example in symbolic form.

However for reasons of space, we will not give all polynomial constraints. Instead, in

order to illustrate the main ideas, in each sub-section we only present one constraint

for the corresponding type of conditions.
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Instead of checking termination of the “der”-program w.r.t. the set of queries

S = {d(t1, t2) | t1 is a ground term, t2 is an arbitrary term} as in Example 1, we

now regard the set of queries S1 = {d(t1, t2) | t1 is of the form der(t′1), where t′1
is a ground term constructed from the function symbols u, +, ∗, der , and t2 is an

arbitrary term}. S1 is represented by the type graph in Figure 1.

Obviously, termination of the program w.r.t. S1 also implies termination w.r.t.

S. This can be proved easily by showing that for any query Q ∈ S \S1, the program

trivially terminates by finite failure.

In our example, type inference (Janssens and Bruynooghe 1992) computes the

call set Call(P, S1) = S1, i.e., the graph in Figure 1 also represents Call (P, S1). Its

only critical path consists of just the arc from the root to the node labelled MAX.

Hence from the graph, the following rigidity condition is generated according to

Corollary 2:

d2 = 0

�

4.1.2 Valid Interargument Relations (Procedure 1, Step 2)

Next we consider the other symbolic constraints, derived for valid interargument

relations and decrease conditions. We will show that they all take the form:

∀X ∈ N : p1 ≥ q1 ∧ . . . ∧ pn ≥ qn ⇒ pn+1 ≥ qn+1 (6)

where n ≥ 0 and pi, qi are polynomials with natural coefficients. Here, X is the

tuple of all variables occurring in p1, . . . , pn+1, q1, . . . , qn+1.

There are a number of works on inferring valid interargument relations of predi-

cates. In (Decorte et al. 1999), interargument relations are formulated as inequali-

ties between a linear combination of the “inputs” and a linear combination of the

“outputs”. We will not define input and output arguments formally in this paper,

since we do not use them in our approach, but informally, inputs are the arguments

of a predicate symbol which are only called with ground terms and outputs are the

remaining arguments.

We propose a new form of interargument relation, namely polynomial interargu-

ment relations, which are of the following form:

Rp = {p(t1, . . . , tn) | ip(|t1|I , . . . , |tn|I) %N op(|t1|I , . . . , |tn|I)} (7)

where ip and op are polynomials with natural coefficients.

The form of interargument relations in (Decorte et al. 1999) can be considered a

special case of the form (7) above, where ip(|t1|I , . . . , |tn|I) is constructed from the

input arguments only and op(|t1|I , . . . , |tn|I) is only constructed from the outputs.

Since the approach in (Decorte et al. 1999) only considers relations between the

input and output arguments of the predicates, it has some limitations. In some cases,

the desired relation does not compare inputs with outputs, but the relation holds

among the inputs only or among the outputs only. In particular, if all arguments of
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a predicate are inputs (or outputs), then the approach in (Decorte et al. 1999) fails

to infer any useful relation among them. The following example shows this point.

It computes the natural division of the first and second arguments of the predicate

div and returns the result in its third argument.

Example 8 (div)

div (X, s(Y ), 0) :− less(X, s(Y )).

div (X, s(Y ), s(Z)) :− sub(X, s(Y ), R), div (R, s(Y ), Z). (8)

sub(X, 0, X).

sub(s(X), s(Y ), Z) :− sub(X, Y, Z).

less(0, s(Y )).

less(s(X), s(Y )) :− less(X, Y ).

We consider the set of queries S = { div(t1, t2, t3) | t1 and t2 are ground terms,

and t3 is an arbitrary term}. This program terminates for all these queries. If we look

at Clause (8), the decrease in size between the head and the recursive body-atom can

be established if we can infer a suitable valid interargument relation for sub. This

relation should imply that within Clause (8), the first argument of sub is greater

than its third argument. However, if we apply the approach in (Decorte et al. 1999),

inferring such an interargument relation for sub is impossible. Since the first two

sub-arguments are used as input and the last one is output, the approach can only

infer interargument relations where a linear combination of the sizes of the first

and second arguments is greater than or equal to the size of the third argument.

Then, we cannot conclude that for every successful answer substitution for the call

sub(X, s(Y ), R) in Clause (8), the first sub-argument X is strictly greater than the

third sub-argument R.

In contrast, if we use Form (7), then it is possible to infer the following valid

interargument relation for sub:

Rsub = {sub(t1, t2, t3) | |t1|I %N |t2|I + |t3|I}

Note that in the right-hand side |t2|I + |t3|I of the above inequality, we have both

an input argument t2 and an output argument t3. This valid polynomial inter-

argument relation guarantees that for any successful answer substitution for the

call sub(X, s(Y ), R) in Clause (8), we have |X |I ≻N |R|I if |s(Y )|I %N 1. Our

implementation in the system Polytool is indeed able to infer this interargument

relation using the constraint solving technique explained below. Therefore, Polytool

can prove termination of “div”. If we used the form of interargument relations in

(Decorte et al. 1999) instead, Polytool would not be able to solve this problem. �.

Similar to the symbolic form of polynomial interpretations, we also use a sym-

bolic form of polynomial interargument relations. To this end, we take symbolic

polynomials ip and op. For the inference of valid interargument relations, we then

apply the technique proposed in (Decorte et al. 1999), cf. Procedure 1, Step 2.

For any sequence of terms t1, . . . , tn, let Rp(t1, . . . , tn) abbreviate the inequality
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ip(|t1|I , . . . , |tn|I) ≥ op(|t1|I , . . . , |tn|I). The goal is to impose constraints on the

polynomials ip and op which ensure that the corresponding interargument relation

Rp = {p(t1, . . . , tn) | ∀X ∈ N : Rp(t1, . . . , tn)} is valid. To this end, we generate

for every clause of the program:

p(t) :− p1(t1), . . . , pn(tn)

the constraint

∀X ∈ N : Rp1(t1) ∧ . . . ∧ Rpn
(tn) ⇒ Rp(t).

It is clear that this formula has Form (6).

Example 9 (symbolic interargument relation for the “der”-program)

We continue Example 7 and use linear polynomials for ider and oder , i.e., ider (X, Y ) =

i0 + i1X + i2Y and oder = o0 + o1X + o2Y . Hence, the the symbolic form of the

polynomial interargument relation for the predicate d is

Rd = {d(t1, t2) | i0 + i1|t1|I + i2|t2|I %N o0 + o1|t1|I + o2|t2|I}.

There are four clauses (1) - (4) from which constraints for valid interargument

relations are inferred. We only present the constraint resulting from the last clause

(4):

d(der (der (X)),DDX ) :− d(der (X),DX ), d(der (DX ),DDX )

Here, we obtain the constraint

∀X,DX ,DDX ∈ N :

Rd(der (X),DX ) ∧ Rd(der (DX ),DDX ) ⇒ Rd(der (der(X)),DDX ). (9)

�

4.1.3 Decrease Conditions (Procedure 1, Step 3)

Finally, one has to require the decrease condition between the head and any (mu-

tually) recursive body-atom in any (mutually) recursive clause. So for any clause

p(t) :− p1(t1), . . . , pn(tn)

of the program where p ⋍ pi (i.e., where p and pi are mutually recursive), we require

∀X ∈ N : Rp1(t1) ∧ . . . ∧ Rpi−1(ti−1) ⇒ |p(t)|I ≥ |pi(ti)|I + 1.

Obviously, the formula is in Form (6).

Example 10 (constraints for the decrease conditions of “der”)

There are three recursive clauses (2) - (4) where decrease conditions can be inferred.

We present the decrease condition for the recursive body-atom d(der (DX ),DDX )
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of the last clause (4):

∀X,DX ,DDX ∈ N :

i0 + i1(der 2X
2 + der 1X + der0) + i2DX ≥

o0 + o1(der 2X
2 + der 1X + der0) + o2DX

⇒ (10)

d0 + d1(der 2(der 2X
2 + der 1X + der0)

2+

der 1(der 2X
2 + der 1X + der0) + der 0) + d2DDX ≥

d0 + d1(der 2DX 2 + der 1DX + der 0) + d2DDX + 1.

�

4.2 From Symbolic Conditions to Constraints on Coefficients

Our goal is to find a polynomial interpretation such that all constraints generated

in the previous section are satisfied. To this end, we transform all these constraints

into Diophantine constraints. In this transformation, we first eliminate implications,

cf. Section 4.2.1. Afterwards, in Section 4.2.2, the universally quantified variables

(e.g., X, DX, DDX, . . .) are removed and the former unknown coefficients (e.g.,

der0, der 1, der 2, . . .) become the new variables. If the resulting Diophantine con-

straints can be solved, then the program under consideration is terminating.

As we analyzed in Section 4.1.1, all generated rigidity constraints have the Form

(5). Hence, these are already Diophantine constraints which only contain unknown

coefficients, but no universally quantified variables.

The other constraints, generated for the valid interargument relations and the

decrease conditions, have the following form:

∀X ∈ N : p1 ≥ q1 ∧ . . . ∧ pn ≥ qn ⇒ pn+1 ≥ qn+1, (6)

where n ≥ 0 and pi, qi are polynomials with natural coefficients.

In the following, we introduce a two-phase method to transform all constraints

of Form (6) into Diophantine constraints on the unknown coefficients.

4.2.1 First Phase: Removing Implications

The constraints of Form (6) are implications. In the first phase, such constraints are

transformed into inequalities without premises, i.e., into constraints of the form

∀X ∈ N : p ≥ 0. (11)

However, here p is a polynomial with integer (i.e., possibly negative) coefficients.

The transformation is sound : if the new constraints of Form (11) are satisfied by

some substitution which instantiates the unknown coefficients with numbers, then

this substitution also satisfies the original constraints of Form (6).

The idea for the transformation is the following. Constraints of the form (6) may
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have an arbitrary number n of premises pi ≥ qi. We first transform them into

constraints with at most one premise. Obviously, p1 ≥ q1 ∧ . . . ∧ pn ≥ qn implies

p1 + . . . + pn ≥ q1 + . . . qn. Thus, instead of (6), it would be sufficient to demand

∀X ∈ N : p1 + . . . + pn ≥ q1 + . . . qn ⇒ pn+1 ≥ qn+1.

So in order to combine the n polynomials in the premise, we can use the polyno-

mial prem(X1, . . . , Xn) = X1 + . . . + Xn. Then instead of (6), we may require

∀X ∈ N : prem(p1, . . . , pn) ≥ prem(q1, . . . , qn) ⇒ pn+1 ≥ qn+1.

A similar method was also used for termination analysis of logic programs in

(Decorte et al. 1999) and for termination of term rewriting in (Giesl et al. 2006,

Section 7.2) to transform disjunctions of polynomial inequalities into one single

inequality.

For example, the constraint

∀X1, X2, X3 ∈ N : X1 ≥ X2 ∧ X2 ≥ X3 ⇒ X1 ≥ X3

can now be transformed into

∀X1, X2, X3 ∈ N : X1 + X2 ≥ X2 + X3 ⇒ X1 ≥ X3

Since the latter constraint is valid, the former one is valid as well.

However, in order to make the approach more powerful, one could also use other

polynomials prem in order to combine the n inequalities in the premise. The reason

is that if prem is restricted to be the addition, then many valid constraints of the

form (6) would be transformed into invalid ones. For example, the valid constraint

∀X1, X2, X3 ∈ N : X1 ≥ X2
2 ∧ X2 ≥ X2

3 ⇒ X1 ≥ X4
3

would be transformed into the invalid constraint

∀X1, X2, X3 ∈ N : X1 + X2 ≥ X2
2 + X2

3 ⇒ X1 ≥ X4
3 .

For instance, the constraint does not hold for X1 = 4, X2 = 0, and X3 = 2.

To make the transformation more general and more powerful, we therefore per-

mit the use of arbitrary polynomials prem with natural coefficients. In the above

example, now the resulting constraint

∀X1, X2, X3 ∈ N : prem(X1, X2) ≥ prem(X2
2 , X2

3 ) ⇒ X1 ≥ X4
3

would indeed be valid for a suitable choice of prem. For instance, one could choose

prem to be the addition of the first argument with the square of the second argument

(i.e., prem(X1, X2) = X1 + X2
2 ).

By the introduction of the new polynomial prem, every constraint of the form (6)

can now be transformed into an implication with at most one premise. It remains

to transform such implications further into unconditional inequalities. Obviously,

instead of

prem(p1, . . . , pn) ≥ prem(q1, . . . , qn) ⇒ pn+1 ≥ qn+1, (12)

it is sufficient to demand

pn+1 − qn+1 ≥ prem(p1, . . . , pn) − prem(q1, . . . , qn). (13)
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This observation was already used in the work of (Decorte et al. 1999) and also in

termination techniques for term rewriting to handle such conditional polynomial

inequalities (Brauburger and Giesl 1998; Giesl et al. 2007).

However, the approach can still be improved. Recall that we used an arbitrary

polynomial prem to combine the polynomials in the former premises. In a similar

way, one could also apply an arbitrary polynomial conc to the polynomials pn+1

and qn+1 in the former conclusion. To see why this can be necessary, consider the

valid constraint

∀X ∈ N : 2X ≥ 2 ⇒ X ≥ 1.

With the transformation of (12) into (13) above, it would be transformed into the

unconditional constraint

∀X ∈ N : X − 1 ≥ 2X − 2,

which is invalid. We have encountered several examples of this kind in our experi-

ments, which motivates this further extension. In such examples, it would be better

to apply a suitable polynomial conc to the polynomials X and 1 in the former

conclusion. Then we would obtain

∀X ∈ N : conc(X) − conc(1) ≥ 2X − 2

instead. By choosing conc(X) = 2X , now the resulting constraint is valid.

So to summarize, in the first phase of our transformation, any constraint of the

form (6) is transformed into the unconditional constraint

∀X ∈ N : conc(pn+1) − conc(qn+1) ≥ prem(p1, . . . , pn) − prem(q1, . . . , qn). (14)

Here, prem and conc are two arbitrary new polynomials. The only requirement that

we have to impose is that conc must not be a constant. Indeed, if conc would be

a constant, then (14) no longer implies that (12) holds for all instantiations of the

variables in the polynomials p1, . . . , pn+1, q1, . . . , qn+1. Note that we do not need a

similar requirement on prem. If a constant prem would satisfy (14), then (6) trivially

holds. The following proposition proves the soundness of this transformation.

Proposition 3 (Soundness of Removing Implications)

Let prem and conc be two polynomials with natural coefficients, where conc is not

a constant. Moreover, let p1, . . . , pn+1, q1, . . . , qn+1 be arbitrary polynomials with

natural coefficients. If

∀X ∈ N : conc(pn+1) − conc(qn+1) − prem(p1, . . . , pn) + prem(q1, . . . , qn) ≥ 0

is valid, then

∀X ∈ N : p1 ≥ q1 ∧ . . . ∧ pn ≥ qn ⇒ pn+1 ≥ qn+1

is also valid.

Proof

For any tuple of numbers x, let pi(x) and qi(x) denote the numbers that result from
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pi and qi by instantiating the variables X by the numbers x. So if p(X1, X2) is the

polynomial X2
1 + 2X1X2, then p(2, 1) = 8.

Suppose that there is a tuple of numbers x with pi(x) ≥ qi(x) for all i ∈

{1, . . . , n}. We have to show that then pn+1(x) ≥ qn+1(x) holds as well.

Since prem only has natural coefficients, it is weakly monotonic. Thus, pi(x)

≥ qi(x) for all i ∈ {1, . . . , n} implies prem(p1(x), . . . , pn(x)) ≥ prem(q1(x),

. . . , qn(x)) and thus, prem(p1(x), . . . , pn(x))−prem(q1(x), . . . , qn(x)) ≥ 0. The pre-

requisites of the proposition ensure

conc(pn+1) − conc(qn+1) ≥ prem(p1, . . . , pn) − prem(q1, . . . , qn)

for all instantiations of the variables. Hence, we also obtain

conc(pn+1(x)) − conc(qn+1(x)) ≥ 0 or, equivalently,

conc(pn+1(x)) ≥ conc(qn+1(x)). (15)

Now suppose that pn+1(x) 6≥ qn+1(x). Since pn+1(x) and qn+1(x) are numbers

(not polynomials with variables), we would then have pn+1(x) < qn+1(x). Since

conc only has non-negative coefficients and since it is not a constant, it is strictly

monotonic. Thus, pn+1(x) < qn+1(x) would imply

conc(pn+1(x)) < conc(qn+1(x))

in contradiction to (15). Hence, we have pn+1(x) ≥ qn+1(x), as desired.

For the symbolic form of prem and conc, we again choose linear or simple-mixed

polynomials. From our experiments, this choice provided good results on the bench-

mark programs, while remaining reasonably efficient. By applying Proposition 3,

we can now transform all constraints for the termination proof into unconditional

constraints of the form (11). If there exists a substitution of the unknown coeffi-

cients by numbers that makes the resulting unconditional constraints valid, then

the same substitution also satisfies the original conditional constraints.

Example 11 (applying Proposition 3 to the “der”-program)

We choose the decrease condition (10) in Example 10 as an example showing how

to transform an implication into an unconditional constraint.

Since the constraint (10) has only one premise, here the polynomial prem has

arity 1. We choose a simple-mixed form for prem and a linear form for conc:

prem(X) = prem0 + prem1X + prem2X
2 conc(X) = conc0 + conc1X.

Since conc must not be a constant, one also has to impose the constraint

conc1 > 0.

Now we can transform (10) into an unconditional constraint. Here, we use the
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following abbreviations:

p1 = i0 + i1(der2X
2 + der1X + der 0) + i2DX

q1 = o0 + o1(der 2X
2 + der 1X + der0) + o2DX

p2 = d0 + d1(der 2(der 2X
2 + der 1X + der0)

2+

der 1(der 2X
2 + der 1X + der0) + der 0) + d2DDX

q2 = d0 + d1(der 2DX 2 + der 1DX + der0) + d2DDX + 1

Then (10) is the constraint

∀X,DX ,DDX ∈ N : p1 ≥ q1 ⇒ p2 ≥ q2

and its transformation yields

∀X,DX ,DDX ∈ N : conc0 + conc1 p2 − conc0 − conc1 q2

−prem0 − prem1 p1 − prem2 p2
1

+prem0 + prem1 q1 + prem2 q2
1 ≥ 0.

By applying standard simplifications, the constraint can be rewritten to the follow-

ing form:

∀X,DX ∈ N : M1X
4 + M2X

3 + M3X
2 + M4X+

M5DX 2 + M6DX + M7X
2DX + M8XDX + M9 ≥ 0 (16)

where M1, . . . , M9 are polynomials over the unknown coefficients premj , ij, oj ,

der j , and dj with j ∈ {0, 1, 2} and concj with j ∈ {0, 1}. For example, we have

M1 =def conc1 d1 der 3
2 + prem2 o2

1 der2
2 − prem2 i21 der 2

2.

�

4.2.2 Second Phase: Removing Universally Quantified Variables

In this phase, we transform any constraint of the form

∀X ∈ N : p ≥ 0 (11)

into a set of Diophantine constraints on the unknown coefficients. The transfor-

mation is again sound : if there is a solution for the resulting set of Diophantine

constraints, then this solution also satisfies the original constraint (11).

We use a straightforward transformation proposed by (Hong and Jakuš 1998),

which is also used in all related tools for termination of term rewriting. One only

requires that all coefficients of the polynomial p are non-negative integers. Obvi-

ously, the criterion is only sufficient, because, for instance, p(X) = (X − 1)2 ≥ 0,

but X2 − 2X + 1 does not have non-negative coefficients only.

Example 12 (removing universally quantified variables for the “der”-program)
We continue the transformation of Example 11. Here, we obtained the constraint

(16). We derive the following set of Diophantine constraints which contains the

unknown coefficients concj , premj , ij, oj , der j , and dj as variables: M1 ≥ 0, M2 ≥

0, . . . , M9 ≥ 0. �
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4.3 Solving Diophantine Constraints

The previous sections showed that one can formulate all termination conditions in

symbolic form and that one can transform them automatically into a set of Dio-

phantine constraints. The problem then becomes solving a system of non-linear Dio-

phantine constraints with the unknown coefficients as variables. If the Diophantine

constraints are solvable, then the logic program under consideration is terminating.

Solving such problems has been studied intensively, especially in the context of

constraint logic programming. Moreover, there are approaches from termination

of term rewriting in order to solve such restricted Diophantine constraints au-

tomatically e.g., (Borralleras et al. 2009; Contejean et al. 2005; Fuhs et al. 2007).

In (Fuhs et al. 2007), Diophantine constraints are encoded as a SAT-problem, and

then a SAT solver is used to solve the resulting SAT-problem. As shown in (Fuhs et al. 2007),

this approach is significantly more efficient than solving Diophantine constraints by

dedicated solvers like (Contejean et al. 2005) or by standard implementations of

constraint logic programming like in SICStus Prolog.

Example 13 (solving Diophantine constraints for the“der”-program)

We start with the symbolic polynomial interpretation from Example 7 (e.g., with

I(der)

= der 2X
2 + der1X + der0) and obtain the solution der 2 = 1 and der0 = der 1 = 2,

which corresponds to X2 + 2X + 2. Similarly, we start with the symbolic form of

the polynomial interargument relation as in Example 9:

Rd = {d(t1, t2) | i0 + i1|t1|I + i2|t2|I %N o0 + o1|t1|I + o2|t2|I}.

Then we get the solution i1 = 1, i0 = i2 = 0, o2 = 1, o0 = o1 = 0. This corresponds

to the interargument relation Rd = {d(t1, t2) | |t1|I %N |t2|I}. So we obtain the

concrete simple-mixed polynomial interpretation from Example 4 and the concrete

interargument relation from Example 6. �

4.4 Relation to Approaches from Term Rewriting

Finally, we briefly discuss the connection between our approach for automated LP

termination proofs from Section 4.1 - 4.3 and related approaches used for termina-

tion analysis of TRSs.

Section 4.1 describes how to obtain constraints for a symbolic polynomial order

which guarantee that the requirements of our termination criterion are fulfilled.

This is similar to related approaches used in term rewriting. Here, one also chooses

a symbolic polynomial interpretation and constructs corresponding inequalities. If

one applies polynomial interpretations directly for termination analysis of TRSs,

then these inequalities ensure that every rewrite rule is strictly decreasing. If one

uses more sophisticated termination techniques like the dependency pair method

(Arts and Giesl 2000; Giesl et al. 2006; Hirokawa and Middeldorp 2005), then one

builds inequalities which ensure that dependency pairs are weakly or strictly de-

creasing and that rules are weakly decreasing. The decrease conditions of depen-

dency pairs correspond to our decrease conditions in Section 4.1.3 and the re-
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quirement that rules are weakly decreasing roughly corresponds to our symbolic

constraints for valid interargument relations in Section 4.1.2. Still, there are sub-

tle differences. For example, in LPs, a predicate symbol may have several output

arguments which is the reason for the different polynomials ip and op in our poly-

nomial interargument relations. Moreover, while term rewriting uses matching for

evaluation, in logic programming one uses unification. This is the reason for our

additional rigidity conditions in Section 4.1.1.

The approach in Section 4.2 shows how to find suitable values for the symbolic

coefficients. This is the same problem as in the corresponding techniques for term

rewriting. However, the usual techniques in term rewriting can only handle uncon-

ditional inequalities. Therefore, we have developed a new method in Section 4.2.1

to remove conditions. This is a new contribution of the present paper. In fact, af-

ter having developed this contribution for the current paper, due to its success in

the tool Polytool, two of the authors of the current paper later even adapted this

method to term rewriting (see (Fuhs et al. 2008, Footnote 14)).

The techniques of the short sections 4.2.2 and 4.3 are identical to the correspond-

ing approaches used in term rewriting. We only included them here in order to have

a self-contained presentation of our approach and to finish its illustration with the

“der”-example.

5 Experimental Evaluation

In this section we discuss the experimental evaluation of our approach. We imple-

mented our technique in a system called Polytool (Nguyen and De Schreye 2007)

written in SICStus Prolog.1 Essentially, the Polytool system consists of four mod-

ules: The first module is the type inference engine, where we use the inference system

of (Gallagher et al. 2005). The second module generates all termination conditions

using symbolic polynomials as in Section 4.1. The third module transforms the re-

sulting polynomial constraints into Diophantine constraints, as in Section 4.2. The

final module is a Diophantine constraint solver, cf. Section 4.3. We selected the SAT-

based Diophantine solver (Fuhs et al. 2007) of the AProVE tool (Giesl et al. 2006).

We tested the performance of Polytool on a collection of 296 examples. The

collection (Table 1) consists of all benchmarks for logic programming from the Ter-

mination Problem Data Base (TPDB),2 where all examples that contain arithmetic

or built-in predicates were removed.

Polytool applies the following strategy: first, we search for a linear polynomial

interpretation. If we cannot find such an interpretation satisfying the termination

conditions, then we search for a simple-mixed polynomial interpretation. More pre-

cisely, then we still interpret predicate symbols by linear polynomials, but we map

function symbols to simple-mixed polynomials. We use similar symbolic polynomi-

als for conc and prem from Section 4.2.1: if the polynomial interpretation is linear,

then both conc and prem are linear. Otherwise, we use a linear form for conc and

1 For the source code, we refer to http://www.cs.kuleuven.be/~manh/polytool.
2 http://www.termination-portal.org/wiki/Termination_Competition

http://www.cs.kuleuven.be/~manh/polytool
http://www.termination-portal.org/wiki/Termination_Competition
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a simple-mixed form for prem . The domain for all unknown coefficients in the gen-

erated Diophantine constraints is fixed to the set {0, 1, 2}. The experiments were

performed on an AMD 64 bit, 2GB RAM running Linux.

We performed an experimental comparison with other leading systems for au-

tomated termination analysis of logic programs, namely: Polytool-WST07, cTI-1.1

(Mesnard and Bagnara 2005), TerminWeb (Codish and Taboch 1999; Taboch et al. 2002),

TALP (Ohlebusch et al. 2000) and AProVE (Giesl et al. 2006). For TALP, the option

of non-linear polynomial interpretations was chosen. For cTI-1.1, we selected the

“default” option. For AProVE and TerminWeb, the fully automatic modes were cho-

sen. We did not include the tool Hasta-La-Vista (Serebrenik and De Schreye 2003)

in the evaluation because it is a predecessor of Polytool. We used a time limit of

60 seconds for testing each benchmark on each termination tool. This time limit is

also used in the annual termination competition.

In Table 1, we give the numbers of benchmarks which are proved terminating

(”YES”), the number of benchmarks which could not be proved terminating but

where processing ended within the time limit (”FAILURE”), and the number of

benchmarks where the tool did not stop before the timeout (”TIMEOUT”). The

number in square brackets is the average runtime (in seconds) that a particular

tool uses to prove termination of benchmarks (or fails to prove termination of

them within the time limit). The detailed experiments (including also the source

code of the benchmarks and the termination proofs produced by the tools) can be

found at http://www.cs.kuleuven.be/~manh/polytool/POLY/journal07.html.

Note that the two examples der and div presented in this paper do not occur in

the TPDB. For completeness we just mention that Polytool and AProVE succeed on

der , whereas cTI-1.1 and TerminWeb fail, and TALP reaches the timeout. For div ,

all systems except TALP succeed. In the next sub-sections we discuss the results of

the experiments. For a more detailed discussion, we refer to (Nguyen 2009).

TALP cTI-1.1 TerminWeb Polytool AProVE

YES 163 [2.54] 167 [0.06] 177 [0.54] 214 [4.28] 232 [6.34]

FAILURE 112 [1.45] 129 [0.05] 118 [0.6] 62[10.48] 57 [19.08]

TIMEOUT 21 0 1 20 7

Table 1. The results for 296 benchmarks of the TPDB

5.1 Comparison between Polytool and cTI-1.1

Similar to Polytool, cTI-1.1 deploys a global constraint-based approach to termina-

tion analysis. However, different from Polytool, in cTI-1.1 termination inference of

the analyzed program relies on its two main abstract approximations: a program in

http://www.cs.kuleuven.be/~manh/polytool/POLY/journal07.html


26 Manh Thang Nguyen et al.

CLP(N), where all terms of the program are mapped to expressions in N according

to a fixed symbolic norm (e.g., the symbolic3 term-size norm by default), and a

program in CLP(B), where B denotes the booleans, which is obtained from the pro-

gram in CLP(N) by mapping any number to 1, any variable to itself, and addition

to logical conjunction. The purpose of these abstractions is to capture the decrease

conditions (the program in CLP(N)) and the boundedness information (the program

in CLP(B)) of the program.

As shown in Table 1, Polytool outperforms cTI-1.1. The only benchmark where

cTI-1.1 can prove termination and Polytool fails is the example incomplete2.pl in

the directory SGST06 of the TPDB. However, if we reset the range for the values

of the unknown coefficients in the generated Diophantine constraints to {0, . . . , 8},

then Polytool can prove termination for the example as well.

There are several reasons for the less powerful performance of cTI-1.1 in com-

parison with Polytool. First of all, cTI-1.1 uses a fixed symbolic norm to map the

analyzed program to a program in CLP(N), for which all termination conditions

are formulated. However, in some cases, the selected symbolic norm is not suitable

to capture the decrease in the analyzed program. Then as a result, cTI-1.1 cannot

prove termination. The TPDB contains a number of such benchmarks, e.g., flat.pl,

normal.pl in the talp directory and countstack.pl, factor.pl, flatten.pl in the SGST06

directory.

Secondly, when we use the term-size or list-length norm for the abstract approxi-

mation in cTI-1.1, all constant symbols are mapped to the same number in N. As a

result, cTI-1.1 fails for examples where the difference among constant symbols plays

a role for the termination behavior. In Polytool, different constant symbols can be

mapped to different numbers in N. Therefore, termination of examples such as sim-

ple.pl in the talp directory, pl2.3.1.pl in the plumer directory, at.pl in the SGST06

directory, etc. can be proved, whereas cTI-1.1 fails.

Thirdly, since termination analysis of cTI-1.1 is based on linear symbolic norms, it

cannot prove termination of programs such as Example 1 or the example hbal tree.pl

in the TPDB. In contrast, Polytool can prove termination of these examples using

simple-mixed polynomial interpretations.

Finally, there are examples like applast.pl, bappend.pl, blist.pl, btappend.pl, btap-

plast.pl, confdel.pl and btree.pl in the SGST06 directory, whose termination cannot

be proved by cTI-1.1, since cTI-1.1 only uses groundness instead of type analysis.

The termination proof of these examples also fails with TALP for the same reason. In

contrast, Polytool and AProVE succeed for them and TerminWeb succeeds for some

of them (i.e., applast.pl, bappend.pl, blist.pl, confdel.pl). The success of Polytool and

TerminWeb is due to the use of types instead of modes and AProVE succeeds be-

cause of so-called argument filterings which remove argument positions of function

and predicate symbols that are irrelevant for termination. But TerminWeb still fails

on some of these examples, since it uses a fixed norm for part of its analysis.

3 The difference between the “term-size norm” and the “symbolic term-size norm” is that the
“term-size norm” maps all variables to 0, whereas the “symbolic term-size norm” maps any
variable to itself (as in polynomial interpretations).
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A strong point of cTI-1.1 is that it is very fast (it is by far the fastest tool in the

experiments). The reason is that cTI-1.1 fixes the norm in advance. Therefore it re-

quires much less unknown coefficients to formulate termination conditions. Another

strong point of cTI-1.1 is its ability of performing termination inference (i.e., it can

try to detect all terminating modes for a program), which is impossible for Poly-

tool at this moment. Finally, recent extensions of cTI-1.1 include non-termination

proofs, which are not supported by the other systems in our experiments.

5.2 Comparison between Polytool and TerminWeb

Similar to cTI-1.1, TerminWeb also uses fixed symbolic norms, e.g., the term-size

norm, the list-length norm, or (as in our experiments) a combination of type-based

norms (Bruynooghe et al. 2007) to approximate the analyzed program. Therefore,

it has similar problems as cTI-1.1. In fact, termination of examples such as flat.pl,

normal.pl, countstack.pl, factor.pl, flatten.pl discussed in Section 5.1 cannot be proved

by TerminWeb either.

Different from Polytool and cTI-1.1, TerminWeb applies a local approach to ter-

mination analysis, where different norms and level mappings are used for different

loops in the program (Codish and Taboch 1999). Hence, TerminWeb can prove ter-

mination of a class of programs where lexicographic orders are required (e.g., the

benchmarks ackermann.pl and vangelder.pl in the TPDB). In fact, these programs

could already be proven terminating by TermiLog (Lindenstrauss and Sagiv 1997;

Lindenstrauss 2000), the first generally available automatic termination analyzer for

LPs. TermiLog succeeds on these programs due to the query-mapping pairs approach

(Lindenstrauss et al. 2004), which has some similarity to the dependency pair ap-

proach (Arts and Giesl 2000; Giesl et al. 2006; Hirokawa and Middeldorp 2005). For

termination of such programs, the global technique based on polynomial interpre-

tations deployed in Polytool is insufficient. We are working on an extension using de-

pendency graphs that is able to deal with such programs as well (Nguyen et al. 2008;

Schneider-Kamp et al. 2009).

Similar to cTI-1.1, TerminWeb is much faster than Polytool. This is again due to

the fact that TerminWeb uses a fixed symbolic norm to approximate the analyzed

program.

5.3 Comparison between Polytool, AProVE, and TALP

A point of similarity between Polytool, TALP, and AProVE is that all these systems

use polynomial interpretations as the basis for the termination analysis. However in

TALP and AProVE, polynomial interpretations are applied indirectly: given a logic

program and a set of queries, these tools first transform them into a TRS whose

termination is sufficient for the termination of the original logic program. Then,

termination analysis is applied to the resulting TRS. Due to this transformational

approach, several other termination techniques developed for TRSs become appli-

cable for the analysis of LPs as well. In particular, AProVE uses many different

methods for proving termination.
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A limitation of the transformational approach in TALP is that it can only handle

well-moded logic programs. There are many non-well-moded examples in the TPDB

that can be solved by most other tools but not by TALP.

AProVE instead applies a quite strong transformational approach, which can also

deal with non-well-moded logic programs (Schneider-Kamp et al. 2009). Together

with the powerful back-end TRS termination prover, this makes AProVE a very

strong LP termination system. In fact, in both our experiments and in the termina-

tion competitions, AProVE was always in the first place. In particular, it can prove

termination of most examples whenever some other tool can. Nevertheless, there

exists one example in the TPDB (i.e., incomplete.pl) where AProVE fails to prove

its termination but Polytool succeeds. In general, the main important observation

when comparing Polytool and AProVE is that although Polytool only uses poly-

nomial interpretations and AProVE uses a large collection of different termination

techniques, Polytool is already almost as powerful as AProVE.

Similar to TerminWeb, cTI-1.1, and TALP, AProVE uses mode analysis and does

not provide the expressivity of types. However, it can express classes like bounded

lists, since it uses argument filterings. Nevertheless, in some cases, the effect of

argument filterings is not “deep” enough to represent redundant argument positions

adequately, cf. (Nguyen 2009). Finally, as shown in Table 1, AProVE is the slowest

tool in the experiments. One reason is that the transformation may generate quite

complex TRSs that require more time for termination analysis. Another reason is

that AProVE contains much more different termination techniques than the other

tools and it tries to apply them all after each other.

6 Conclusions

Since a few years, the LP and the TRS termination analysis communities jointly

organize the “International Workshop on Termination” (WST). As a part of this

workshop, the International Competition of Termination Tools is organized annu-

ally, allowing different termination tools from different categories, including term

rewriting and logic programming, to compete. These workshops have raised a con-

siderable interest in gaining a better understanding of each other’s approaches. It

soon became clear that there has to be a close relationship between one of the

most popular techniques for TRSs, polynomial interpretations, and one of the key

techniques for LPs, acceptability with linear norms and level mappings. However,

partly because of the distinction between orders over the numbers (LPs) versus

orders over polynomials (TRSs), the actual relation between the approaches was

unclear.

One main conclusion of the research that led to this paper is that the distinction

is a superficial one. So one outcome of our work is that, indeed, the polynomial

interpretations used for TRSs are a direct generalization of the current practice for

LPs.

On the more technical level, the contribution of this paper is twofold. Firstly, we

provide a complete and revised theoretical framework for polynomial interpretations

in LP termination analysis (cf. Section 3). A first variant of such a framework was
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introduced in a preliminary version of this paper (Nguyen and De Schreye 2005).

Parts of this build on the results in (De Schreye and Serebrenik 2002) on order-

acceptability and the results in (Decorte et al. 1999) on the constraint-based ap-

proach for termination analysis. Another part extends the results of Bossi et al.

(Bossi et al. 1991) on the syntactic characterization of rigidity. The main revisions

are in the concept of polynomial interpretations and the concept of rigidity. Sec-

ondly, we adapt the constraint-based approach in (Decorte et al. 1999) to represent

all termination conditions symbolically, and introduce a new approach to find such

polynomial interpretations automatically (cf. Section 4).

We also developed an automated tool (Polytool (Nguyen and De Schreye 2007))

for termination proofs of LPs based on polynomial interpretations. The main con-

tribution of the implementation is the integration of a number of techniques in-

cluding the termination framework in Section 3, the call pattern inference tools in

(Bruynooghe et al. 2005; Gallagher et al. 2005; Heaton et al. 2000; Janssens and Bruynooghe 1992),

the constraint-based approach in Section 4, and the Diophantine constraint solver in

(Fuhs et al. 2007), to provide a completely automated termination analyzer. Poly-

tool participated in the annual International Competitions of Termination Tools

since 2007 and reached the second place, just after AProVE.

We have also conducted extensive experimental evaluation for Polytool and com-

pared it empirically with other termination analyzers such as cTI-1.1, TerminWeb,

TALP, and AProVE, cf. Section 5. The evaluation shows that Polytool is powerful

enough to solve a large number of benchmarks. In particular, it can also verify

termination of examples for which non-linear norms are required.

The current paper and the corresponding tool provide a good basis to adapt

further techniques from the area of TRS termination to the LP domain. In this

way, the power of automated termination analysis can be increased substantially.

Moreover, such adaptations will clarify the connections between the numerous ter-

mination techniques developed for TRSs and for LPs, respectively. First steps into

this direction are (Nguyen et al. 2008; Schneider-Kamp et al. 2009).
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