Introduction to Haskell IV

Rolf Fagerberg

Spring 2005

Algebraic Types

Beside the simple type synonymes (using the keyword type),
more advanced user defined types - denoted algebraic types -
can be created with the data keyword.

The general syntax is:

data Typename zero_or_more_type-variables
= Constructorl zero_or_more_types |
= Constructor2 zero_or_more_types |

= Constructor3 zero_or_more_types
deriving (list_of_certain_classes)

The identifiers for the type name and the constructor names
must be capitalized.

Examples

Enumerated types:

data Bool = False | True
data Ordering = LT | EQ | GT
data Seasons = Winter | Spring | Summer | Fall
data WeekDays
= Mon | Tue | Wed | Thu | Fri | Sat | Sun

workDays = [Mon, Tue, Wed, Thu, Fril
Product types (alias tuples, alias records):

data DBRecord = DBRec Name Address Age
type Name = String

type Address = String

type Age = Int

personl = DBRec "Joe Dole" '"Main Street 10" 42

Examples

Alternatives:

data Shape
= Circle Float | Rectangle Float Float

Note: constructors are functions:

Circle :: Float -> Shape
shapel = Circle 3.0
Rectangle :: Float -> Float -> Shape

shape?2 = Rectangle 45.9 87.6

Additionally, they can (like the built-in constructors [1, :, etc.) be
used as patterns in pattern matching:

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle w h) = wxh

Examples
Algebraic types can be recursive:
data IntList = EmptyList | Cons Int IntList

data IntExpr = Literal Int |
Add IntExpr IntExpr |
Sub IntExpr IntExpr

data IntTree = IntLeaf |
IntNode Int IntTree IntTree

tree = IntNode 7 IntLeaf (IntNode 13 IntLeaf IntLeaf)

Constructors can be infix operators (identifier must then start
with “:7):

data IntlList = EmptyList | Int ::: IntList

Examples

Algebraic types can be parametric:

data List a = EmptyList | Cons a (List a)

data Tree a Leaf |

Node a (Tree a) (Tree a)
Example functions on trees:

depth :: Tree a -> Int
depth Leaf =0
depth (Node _ 1 r) = 1 + max (depth 1) (depth r)

inorder :: Tree a -> [a]
inorder Leaf = []
inorder (Node x 1 r) = inorder 1 ++ [x] ++ inorder r

Deriving Membership of Classes

Membership of certain standard type classes can be generated
automatically in Haskell:

data WeekDays
= Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Eq, Ord, Enum, Show, Read)

The operations of the classes are automatically defined using
obvious (recursive) definitions (with ordering going from left to
right, and using analogy with lexicographic ordering for recursive
structures). The derivation of Enum can only be done for
enumeration types (nullary constructors only).

[Mon,Wed .. Sat] ~» [Mon,Wed,Fril

	Algebraic Types
	Examples
	Examples
	Examples
	Examples
	Deriving Membership of Classes

