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The exam set consists of 6 pages (including this front page), and contains 4
questions. The weight of each question is as follows:

Question 1: 30%
Question 2: 20%
Question 3: 25%
Question 4: 25%

The parts of a question do not necessarily have equal weight.

Note that often a part can be answered independently from the other parts, and
that your solutions to one part may exploit the results of other parts, even if
these parts have not been answered.

All written aids are allowed. Unless otherwise stated in a question, use of results
from the course textbooks, and of the standard libraries of the programming
languages used, is allowed.



Question 1 (30%)

Part a: Make in Haskell a definition of

limit :: Eq a => (a -> a) -> a -> a

such that limit f x is the first value that appears two times in a row in the
sequence x , f x , f(f x) , f(f(f x))) , . . . . 2

The remaining part of this exercise is inspired by issues from databases. However,
it is not necessary to have any knowledge of databases in order to answer the
questions.

Let a relation be a list of letters (i.e., a string). For a given relation, let a func-

tional dependency be a pair of sublists of the relation. All lists in this question are
dublicate free (no element appears twice). Below are some examples of relations
and functional dependencies.

rel :: String

rel = "ABCDEFGK"

fd1,fd2 :: (String,String)

fd1 = ("AB","E")

fd2 = ("BCDFK","BG")

For a given relation R, let S be a sublist of R, and let f = (X, Y ) be a functional
dependency on R. The following pseudo-code defines what it means to expand S

using f :

If X ⊆ S then S = S ∪ Y

Here, the set operators have their usual meaning when thinking of duplicate free
lists as sets.

Part b: Make in Haskell a definition of

expand :: String -> (String,String) -> String

such that expand s fd is the result of expanding s using fd. 2



Part c: Make in Haskell a definition of

expandList :: String -> [(String,String)] -> String

such that expandList s fdList is the result of expanding s using each func-
tional dependency in fdList in turn (i.e., it is the result of expanding s using
the first functional dependency of fdList, then expanding the result of that using
the next functional dependency of fdList, etc.). 2

For a given relation R, let T be a sublist of R and let F be a list of functional
dependencies on R. The following pseudo-code describes an algorithm which
calculates what is known as the closure of T .

S = T

Repeat

For each functional dependency f in F

expand S using f

Until no change in S happened during the last iteration of repeat
Return S

Part d: Implement the algorithm above in Haskell—that is, make in Haskell a
definition of

closure :: String -> [(String,String)] -> String

such that closure t fdList is the closure of t, where fdList is the list of
functional dependencies used by the algorithm. 2



Question 2 (20%)

Part a: Implement a Prolog predicate pairsums(L1,L2) which for L1 a list of
numbers is true iff L2 is the list of sums of each neighboring pair of elements in
L1.

As an example, if L1 is [1,3,6,10], then L2 should be instantiated to [4,9,16]

by the predicate. If L1 contains less than two elements, L2 should be instantiated
to the empty list. 2

Part b: The aim here is to implement in Prolog a predicate zip(L1,L2,L3)

with functionality corresponding to the library function of the same name in
Haskell.

More precisely, implement a Prolog predicate zip(L1,L2,L3) which is true iff L1

and L2 are lists and L3 is a list of tuples combining elements in equal positions
in L1 and L2.

As an example, if L1 is [a,b,c] and L2 is [4,5,6,7], then L3 should be instan-
tiated to [(a,4),(b,5),(c,6)] by the predicate. 2

Part c: The aim here is to implement in Prolog a predicate zipWith(F,L1,L2,L3)
with functionality corresponding to the library function of the same name in
Haskell.

More precisely, implement a Prolog predicate zipWith(F,L1,L2,L3) which is
true iff F is the name (i.e., functor) of a ternary predicate, L1 and L2 are lists,
and L3 is a list of values occuring as third argument Z in f(X,Y,Z) when f is the
value of F and X and Y are elements in equal positions in L1 and L2.

As an example, if L1 is [4,5,7], L2 is [10,11,12,25], and F is add which is the
name of a ternary predicate defined by the single clause

add(X,Y,Z) :- Z is X+Y. ,

then L3 should be instantiated to [14,16,19] by the predicate.

Hint: use the Prolog operator =.. and predicate call. 2



Question 3 (25%)

Part a: For the Prolog program below, state for each of the two goals a(X,Y)
and b(X,Y) all results (i.e. all instantiations of X and Y) which will be produced
by repeated satisfaction (i.e. by repeated use of ’;’) of the goal.

a(X,Y) :- c(X),c(Y).

b(X,Y) :- !,c(X),!,c(Y),!.

c(1).

c(2) :- !.

c(3).
2

Part b: For each of the following pairs of Prolog predicates, find a most general
unifier (with occur-check), or argue that none exists. Explain each step of your
derivations.

i) a(b(b(Y)),c(c(Z)),d(d(X))) and a(X,Y,Z)

ii) x(y(y(T)),y(y(Y)),y(t)) and x(y(Z),Z,y(Y))

iii) test(Z,2,4,6) and test(X+Y,X,Y,Z)

iv) abc and [a,b,c]
2

Consider the following Haskell definition:

f a [] = []

f a (x:xs) = sum : f sum xs

where sum = a+x

Part c: Find the most general type for f. Explain each step of your derivation.

2

Part d: Make in Haskell an interactive function

findLongestLine :: IO ()

which reads two lines from the user and then prints on the screen the longest of
these. 2



Question 4 (25%)

For a list of numbers, we would like to find the sums of all prefixes. The empty pre-
fix has sum 0 by definition. As an example, the prefix sums of the list [1,2,5,10]
is the list [0,1,3,8,18].

In this question, we will consider generalized prefix sums, where a fixed value
shift is added to each prefix. As an example, the generalized prefix sums with
shift 10 of the list [1,2,5,10] is the list [10,11,13,18,28].

The following function finds generalized prefix sums with shift s, where f is the
function from part c of the previous question:

gpfs1 s xs = s : f s xs

Consider the following alternative definition:

gpfs2 = scanl (+)

scanl f e [] = [e]

scanl f e (x:xs) = e : scanl f (f e x) xs

Part a: Prove that for all finite lists xs and for all s, the following holds:

gpfs1 s xs = gpfs2 s xs

Hint: use induction on xs 2

Part b: Prove that gpfs1 s is different from gpfs2 s (for all s). 2

Part c: It is also possible to define gpfs using a cyclic structure. Do this by
completing the ... part in the following partial definition.

gpfs3 s xs = ys

where ys = ...

No proof of equality with the previous definitions needs to be given. 2


