Skriftlig Eksamen
Datastrukturer og Algoritmer (DM02)

Institut for Matematik og Datalogi
Syddansk Universitet, Odense

Mandag den 31. januar 2000, kl. 9-13

Alle saedvanlige hjeelpemidler (leerebgger, notater, etc.) samt brug af lommeregner
er tilladt.

Eksamensseattet bestar af 4 opgaver pa 7 nummererede sider (1-7). Fuld besva-
relse er besvarelse af alle 4 opgaver.

De enkelte opgavers vaegt ved bedgmmelsen er angivet i procent. Der ma gerne
refereres til algoritmer og resultater fra laerebogen inklusive gvelsesopgaverne.
Henvisninger til andre bgger (udover laerebogen) accepteres ikke som besvarelse
af et spgrgsmal.

Bemaerk, at hvis der er et spgrgsmal i en opgave, man ikke kan besvare, ma man
gerne (sa vidt det er muligt) besvare de efterfolgende sporgsmal og blot antage,
at man har en lgsning til de foregaende spgrgsmal.

Opgave 1 (30%)

Denne opgave drejer sig om binare traeer og en ny made, hvorpa de kan holdes
rimeligt balanceret.

I modsaetning til Kingston tegner vi i denne opgave ogsa bladene, nar vi tegner
traeer. Bladene er de knuder, der ikke har nogen bgrn. Vi definerer, at et blad har
hgjde 0, og som saedvanligt er hgjden af en intern knude defineret som én plus
maximum af hgjderne af knudens bgrn. Hgjden af et trae er hgjden af traeets rod.
Et tree bestaende af kun én knude har altsa hgjde 0.

Af hensyn til naeste definition siger vi, at et tomt trae (et trae med 0 knuder) har
hgjde —1.

Et hgjdebalanceret tre defineres nu til at veere et bingert trae, hvor der for alle
knuder gelder, at hgjdeforskellen pa knudens venstre og hgjre undertracer er
hojst 1. Folgende er et eksempel pa et hgjdebalanceret trze:

F.eks. har roden undertraer af hgjde 3 og 2, knuden maerket T har undertraer
begge af hgjde 1, og knuden market * har undertraeer af hgjde —1 og 0.

Spgrgsmal a: Tegn for hver af hgjderne h = 0,1,2,3,4 et mindste hgjde-
balanceret tree (dvs. faerrest mulige knuder) med hgjde h. Der skal altsa tegnes 5
uafthaengige tracer i dette sporgsmal. Angiv ogsa antallet af knuder i hvert af de
fem treeer. m|

Spgrgsmal b: Vis ved induktion, at der er mindst 2% knuder i et hgjdebalanceret
tree af hgjde h > 0.

Vink: Hvad er det storste A’ (udtrykt ved h), for hvilket man kan garantere, at
begge rodens undertraeer har hgjde mindst h'? O

Spgrgsmal c: Vis, at hvis et hgjdebalanceret trae af hgjde h indeholder n knuder,
sa geelder der h € O(logn). O

Vi udstyrer nu knuderne med et felt, diff, hvor vi noterer veerdien: hgjden af
venstre undertre minus hgjden af hgjre undertre. Da traeet er hgjdebalanceret
skal disse vaerdier vaere —1, 0 eller 1. For eksemplet ovenfor ville vi fa:

Vi er nu interesseret i at kunne fgje nye knuder til et hgjdebalanceret trae. En ny
knude tilfgjes altid laengst til venstre (en venstretilfgjelse).

Hvis vi laver en venstretilfgjelse til ovenstaende, far vi fglgende situation, hvor
den “ulovlige” difference, 2, optraeder flere steder:

For at bringe traeet i orden igen kan man bruge folgende operation:

(4) ¢ 5 A (@)

A B B C

hvor A, B og C' er vilkarlige hgjdebalancerede undertraeer, og d er enten 0 eller 1.

Spgrgsmal d: Hvad bliver veaerdierne (udtrykt i d) af diff-felterne i de to interne
knuder til hgjre, d; og ds, nar denne operation er udfort? O

Spgrgsmal e: Antag, at man laver en venstretilfpjelse til et hgjdebalanceret trae
med n knuder. Forklar, hvordan man i tid O(logn) kan sgrge for, at traeet bliver
hgjdebalanceret. O

Opgave 2 (25%)

Vi ser pa tekststrenge, hvor bogstaverne ’a’ til 'z’ og cifrene '0’ til '9’ ma indga.
Desuden ser vi pa mgnstre, der yderligere pa indeholde tegnet *’, som kan sta
for en vilkarlig streng (ogsa den tomme). Et mgnster m matcher en streng s, hvis
man kan veelge strenge for hver '*’ i mgnsteret, sa m (med disse valg indsat i
stedet for "*’) bliver lig med s.

Folgende PYTHON-funktion afger om et mgnster matcher en streng (de udskrevne
veerdier star angivet som kommentarer):

false, true =0, 1

def Match(m, s, i, j):
if i == len(m) : return j == len(s)
elif m[i] == "*":
for k in range(j, len(s)+1):
if Match(m, s, i+1, k): return true
return false
elif j == len(s): return false
elif m[i] == s[j]: return Match(m, s, i+1, j+1)
else: return false

print Match("hej * dig", "hej med dig", 0, 0) # 1
print Match("dm* er sj *vt", "dm02 er sjovt", 0, 0) # 1
print Match("*111 %222 %", "111122223333444", 0, 0) # 1
print Match("bare * jul", "gid det snart var jul", 0, 0) #0
print Match (" *13*", "karakter", 0, 0) #0
Spgrgsmal a: Forklar, hvordan Match virker. O

Det viser sig, at Match bliver kaldt med de samme parametre gentagne gange, og
at den far eksponentiel udfgrelsestid. Derfor vil vi lave en forbedring:

Spgrgsmal b: Lav en ny version af Match vha. dynamisk programmering. 0O

Spergsmal c: Hvad bliver tabelstgrrelsen i dynamisk-programmerings-udgaven?
Hvad bliver tidskompleksiteten? O

Opgave 3 (25%)

I denne opgave ser vi pa venstreprofiler. Givet en ikke-tom liste af heltal, L, skal
der konstrueres en liste, P, sa P[i] er 1, hvis L[i] er stgrre end eller lig med
alle tal til venstre for denne position i listen L, og 0 ellers. Listen P kaldes en
venstreprofil.

Som et eksempel, hvis L er listen [2,6,4,8,5,42,42,6,17], sa skal P vaere listen
[1,1,0,1,0,1,1,0,0]. P[O] er selvfglgelig altid 1.

Folgende PYTHON-program lgser problemet:

Pre
P = len(L) * [None]
m = L[0]
P[0] =1
i=1
while i < len(L): # [
if L[i] >=m:
P[i]l =1
m = L[i]
else:
P[il =0
i=i+1
Post
Spgrgsmal a: Bevis, at programmet terminerer. O

Spgrgsmal b: Lad I vaere udsagnet:

i€ IN A i<len(L) A m=max{L[0],...,L[i —1]} A
Vjie{0,...,i —1}: P[j]=1 & L[j] > max{L[0],...,L[j — 1]}

Vis, at I er en invariant for while-lgkken. O

Spegrgsmal c: Antag, at pre- og postbetingelserne for programmet er folgende:

Pre: len(L) > 1
Post: Vj € {0,...,len(L) —1}: P[j]=1 < L[j] > max{L[0],...,L[j — 1]}

Argumentér for, at programmet er korrekt. O

Opgave 4 (20%)

Nedenfor ses et eksempel pa et rodet tre.

Mere praecist er et rodet tree en orienteret graf, der er konstrueret ved at tage
udgangspunkt i et ikke-tomt bineert trae, hvor alle knuder har 0 eller 2 bgrn.
Derefter tilfgjes sa en kant fra hvert blad til roden. Endelig har kanterne ikke-
negative vaegte.

Mangden af rodede trzeer er altsa en delmangde af alle orienterede grafer. Del-
mangden har en raekke saerlige egenskaber; f.eks. er antallet af kanter mindre end
%n, hvor n er antallet af knuder.

Vi interesserer os for folgende problem: Givet et rodet tra, en reference til roden
og referencer til to knuder, a og b. Hvad er lzengden af den korteste vej fra a til b?

Spgrgsmal a: Angiv pa sa simpel form som muligt den tidskompleksitet som
Dijkstra’s algoritme vil garantere for dette problem. Argumentér for dit svar. 0O

Spgrgsmal b: Forklar, hvordan man kan lave en algoritme, der lgser problemet
i tid O(n). i

