Skriftlig Eksamen
Datastrukturer og Algoritmer (DM02)

Institut for Matematik og Datalogi
Syddansk Universitet, Odense

Onsdag den 31. januar 2001, kl. 9-13

Alle saedvanlige hjeelpemidler (leerebgger, notater, etc.) samt brug af lommeregner
er tilladt.

Eksamenssettet bestar af 4 opgaver pa 7 nummererede sider (1-7). Fuld besvarel-
se er besvarelse af alle 4 opgaver. De enkelte opgavers vaegt ved bedgmmelsen er
angivet i procent. Der ma gerne refereres til algoritmer og resultater fra lserebo-
gen inklusive gvelsesopgaverne. Henvisninger til andre bgger (udover laerebogen)
accepteres ikke som besvarelse af et spgrgsmal.

Bemaerk, at hvis der er et spgrgsmal i en opgave, man ikke kan besvare, ma man
gerne (sa vidt det er muligt) besvare de efterfolgende sporgsmal og blot antage,
at man har en lgsning til de foregaende sporgsmal.

Opgave 1 (25%)

Et palindrom er en tekst, der er ens forfra og bagfra. Eksempler er “bob”, “abba”
“kajak” og “enafdemderredmedfane”.

Vi ser nu pa folgende problem: Givet en streng, hvad er det mindste antal pa-
lindromer, strengen kan opdeles i? Da en streng, der bestar af kun ét tegn, er et
palindrom, findes der altid en opdeling i et antal palindromer, og dermed findes
der altid et mindste antal.

Nedenfor ses nogle af de mulige opdelinger af strengen “parallelle” i palindromer:

llparallellell = Ilpll + llarall + Illll + lllelll + lllll + llell
llparallellell = Ilpll + llarall + Illlll + Ilellell
llparallellell = Ilpll + llarall + Illlll + Ilell + Illlll + llell

Den, der bestar af fzerrest, er den i midten, og man kan faktisk ikke opdele denne
streng i feerre end 4.

Nedenstaende PYTHON-funktion beregner dette minimale antal. Funktionskaldet
MP("parallelle", 0, 10) returnerer altsa tallet 4. Vi antager, at vi har en
funktion IsPalindrome til radighed, der givet en streng og to index i og j afger,
om delstrengen fra og med index i til (men ikke med) index j er et palindrom.

def MP(s, i, j):
if IsPalindrome(s, i, j):

return 1
else:
m=3j-1

for k in range(i + 1, j):
p=MP(s, i, k) + MP(s, k, j)
ifp<m:m=p

return m

Spgrgsmal a: Forklar, hvordan resultatet beregnes. Herunder hvad de indgaende
variabler anvendes til. O

Spgrgsmal b: Vis (gerne ved et eksempel), at MP generelt under den rekursive
beregning af svaret kaldes med samme argument flere gange. O

Spgrgsmal c: Lav en ny version af MP med dynamisk programmering. O

Spgrgsmal d: Redeggr for tabelstgrrelse og kompleksitet i den udgave, hvor der
anvendes dynamisk programmering. O

Opgave 2 (25%)

I denne opgave vil vi se pa diamantgrafer. En diamantgraf er en vagtet ikke-
orienteret graf af en bestemt form som illustreret nedenfor (vaegtene er ikke vist).

En diamantgraf med n knuder, n > 3, bestar altsa af en top-knude, en bund-
knude, samt n — 2 mellem-knuder, der hver har en kant til top-knuden og en kant
til bund-knuden.

Alle vaegtene er stgrre end eller lig med nul.

I denne opgave er vi interesserede i at beregne et letteste udspzendende trae (LUT)
for diamantgrafer.

Se pa nedenstaende algoritme, som vi vil kalde Algoritme Forkert.

e Find en mellem-knude u, der har mindst sum af vaegte pa sine to kanter.
e Inkludér u’s to kanter i LUT.

e For alle mellem-knuder v # u: inkludér v’s letteste kant i LUT.

Spgrgsmal a: Vis, at Algoritme Forkert ikke altid beregner et letteste udspaen-
dende tree for en diamantgraf.]

Spgrgsmal b: Vis, at vaegten af et trae beregnet af Algoritme Forkert kan veaere
vilkarligt teet pa 50% tungere end det letteste. O

Vi antager nu, at vi anvender en kantlisterepraesentation. Dvs. at hver knude har
en liste af sine naboknuder.

Spgrgsmal c: Beskriv selv en O(n) algoritme, der faktisk beregner letteste ud-
spendende trae for en diamantgraf. Argumentér for korrekthed og kompleksitet.
O

Vi ser nu pa en ny klasse af grafer, vi kunne kalde overordnede diamantgrafer;
stadig veegtede og ikke-orienterede. Denne type grafer har overordnet form som en
diamantgraf, men det, der for var en mellem-knude, kan nu vare en helt generel
sammenhangende graf. Se eksemplet nedenfor, hvor vi har p generelle grafer K;
til K.

O

Det er velkendt, at vi pa en sammenhangende graf med m kanter kan beregne et
letteste udspaendende trae i tid O(mlogm), f.eks. vha. Kruskals algoritme.

Spgrgsmal d: Antag, at hver komponent har pracis logm kanter, nar man
medregner de to kanter fra komponenten til henholdsvis top- og bund-knuden

(dvs. at der er p = == komponenter).

Forklar, hvordan man kan beregne letteste udspaendende tra for en sadan over-
ordnet diamantgraf i tid asymptotisk bedre end O(mlogm).

Argumentér for, hvordan kompleksiteten opnas. O

Opgave 3 (25%)

Et palindrom er en tekst, der er ens forfra og bagfra. Eksempler er “bob”, “abba”
“kajak” og “enafdemderredmedfane”.

Som det ogsa kan ses af udsagnet Final, afggr nedenstaende algoritme, om en
streng ¢ er et palindrom.

Husk, at t[-(i+1)] blot er kortere notation for t[len(t)-(i+1)].

I hele denne opgave star x/y for heltalsdivision. Dvs. at hvis y ikke gar op i x,
rundes resultatet ned til neermeste hele tal. F.eks. er 7/2 = 3.

Pre: true
i=0
while i < len(t)/2 and t[i] == t[-(i+1)]: # [
i=1+1
Post: (i =len(t)/2) & Vj € {0,...,len(t)/2 —1}: t[j] =t[-(j + 1)]
IsPal = (i == 1len(t)/2)
Final: IsPal < Vj € {0,...,len(t)/2 — 1}: t[j] = t[—(j + 1)]

Spgrgsmal a: Vis, at fglgende udsagn [er en invariant for while-lgkken:
i<len(t)/2 N Vje{0,...,i—1}: t[j]=t[—(j +1)]

a

Spergsmal b: Vis terminering, blandt andet ved at angive en termineringsfunk-
tion. O

Spgrgsmal c: Vis, at umiddelbart efter while-lgkken geelder udsagnet Post. O

Opgave 4 (25%)

Vi ser pa opdelingen af de naturlige tal i et endeligt antal disjunkte intervaller,
der til sammen udggr alle de naturlige tal. Det sidste interval vil derfor altid
indeholde “resten” af tallene, sa det vil veere uendeligt stort.

Her er et eksempel:

1,12,13,..]

Det er ikke hensigtmeessigt explicit at gemme store intervaller (og da slet ikke et
uendeligt interval), sa derfor vil vi se pa en alternativ repraesentation, som vi vil
kalde en delepunktsreprasentation.

Eksemplet ovenfor har fglgende delepunktsrepraesentation:
{0,5,6,9,11}
Dvs. at et interval repraesenteres ved det fgrste tal i intervallet, som kaldes inter-

vallets repraesentant.

Vi vil nu interessere os for fglgende tre operationer, der alle skal kunne kaldes
med ethvert naturligt tal:

rep(z): Returnerer reprasentanten for det interval, som x ligger i.

cut(x): Gor ingenting, hvis = er reprasentanten for det interval x
ligger i. Ellers opdeles intervallet [a, . .., b] i to intervaller [a, ...,z —1]
og [z,...,b].

paste(x): Ggr ingenting, hvis x tilhgrer det sidste interval. Ellers
kombineres det interval, x ligger i, med det efterfglgende interval.

Spegrgsmal a: Forklar, hvad sker der med delepunktsreprasentationen ved en
cut og ved en paste. O

Vi lader n betegne antallet af intervaller pa et givet tidspunkt.
Spgrgsmal b: Forklar, hvordan man vha. et splay-trae kan lave en datastruktur

for dette problem, sa alle tre operationer fa kompleksitet amortiseret O(logn).
O

Vi vil nu yderligere interessere os for folgende operation:

next (z,s): Gor ingenting, hvis = tilhgrer det sidste interval. Ellers
returneres repraesentanten for det forste interval af laengde mindst s,
der kommer efter det interval, som x ligger i.

Spgrgsmal c: Forklar, hvordan man kan lave en datastruktur, sa alle fire ope-
rationer pa intervalopdelinger kan udfores i amortiseret O(logn). |

