Skriftlig Eksamen
Algoritmer og Datastrukturer (DMO02)

Institut for Matematik og Datalogi
Syddansk Universitet, Odense

Fredag den 2. januar 2004, kl. 9-13

Alle szedvanlige hjzelpemidler (lzerebgger, notater, osv.) samt brug af lomme-
regner er tilladt.

Eksamenssattet bestar af 4 opgaver pa 4 nummererede sider (1-4).

Fuld besvarelse er besvarelse af alle 4 opgaver.

De enkelte opgavers vaegt ved bedgmmelsen er angivet i procent. Bemaerk,
at de enkelte spgrgsmal i en opgave ikke ngdvendigvis har samme vaegt.

Der méa gerne refereres til algoritmer og resultater fra leerebogen (enten den,
som blev brugt i efteraret 2002, eller den, som blev brugt i efteraret 2003)
inklusive gvelsesopgaverne. Henvisninger til andre bgger accepteres ikke som
besvarelse af et spgrgsmal.

Bemeaerk, at hvis der er et spgrgsmal, man ikke kan besvare, ma man gerne
besvare de efterfglgende sporgsmal og blot antage, at man har en lgsning til
de foregaende sporgsmal.

Husk at begrunde dine svar!

Opgave 1 (15%)

[denne opgave betragter vi problemet at evaluere et polynomium P(x) =
Apx™ + 12"+ ..+ a7+ ag i et givet punkt z = .

F.eks. er P(2) = 23, hvis P(x) = 22° + z + 5.

Lad A veere et array af leengde n + 1, og lad Afi] = a;, 0 <i < n.

I eksemplet ovenfor er A = {5,1,0,2}.

Folgende ineffektive metode beregner P(xy), nar den kaldes med evalPoly(A, o).
int evalPoly(int[] A, int x0) {

int total = 0;
for (int i=0; i<A.length; i++) {

int y=1;
for (int j=0; j<i; j++)
y =y * x0;
total = A[i] * y + total;
}
return total;
}
Spogrgsmal a: Hvad er metodens kgretid udtrykt i ©-notation? U

Folgende mere effektive metode er opkaldt efter William G. Horner.

int horner(int[] A, int x0) {
int total = A[A.length-1];
for (int i=A.length-2; i>=0; i--)
total = total * x0 + A[i];
return total;

}

Sporgsmal b: Bevis, at i starten af for-lgkken geelder total = anxg_(i+1) +
an,lxg_(”?) + ...+ a0 + aiyq, hvis metoden kaldes med horner(A, x).
Husk, at A.length =n + 1. O

Spdrgsmal c: Argumenter for, at metoden horner er korrekt, vha. resul-
tatet fra spgrgsmal b. O

Opgave 2 (30%)

Denne opgave handler om at finde letteste udspaendende traeer og korteste
veje i sammenhangende, ikke-orienterede grafer.

Lad n betegne antallet af knuder i grafen, og lad m vaere antallet af kanter.
Bemerk, at n € O(m), da grafen er sammenhangende.

Sporgsmal a: Tegn et korteste-vej-trae for nedenstaende graf. Tracet skal
have rod i knuden a. For hver knude skal den korteste vej fra a angives.

Forklar kort, hvordan du har fundet traeet. O

Sporgsmal b: Tegn et letteste udspaendende trae for grafen fra spgrgsmal
a. Argumenter for, at dit trae er et letteste udspaendende trze. O

Spgrgsmal c: Giv en simpel algoritme, som finder et letteste udspsendende
tree i tid O(m), hvis alle kanter har samme veegt. O

Sporgsmal d: Generelt har Prims algoritme kgretid O(mlogn). Antag nu,
at alle kant-vaegte er heltal mellem 1 og k. Forklar, hvordan man kan imple-
mentere Prims algoritme, sa den far kegretid O(kn + m).

Vink: anvend et array med plads til £ haegtede lister. (]

Sporgsmal e: Hvad skal der galde om £ (udtrykt ved m og n), for at
koretiden af algoritmen fra sporgsmal d er asymptotisk bedre end ©(mlogn)?
O

Opgave 3 (30%)

Denne opgave gar ud pa at finde en laengste voksende delfglge i en folge af
positive heltal. En delfglge af en fglge S af tal er som bekendt blot fglgen S
med nul eller flere tal slettet.

F.eks. er (1,4,7,2) en delfplge af (1,5,4,9,4,7,2,8).

En voksende folge er en folge (ny,no,...,ng), hvor n; < ny < ... < ny.
Dvs. (1,4,9) er eksempelvis en voksende delfglge af (1,5,4,9,4,7,2,8), og
(1,4,7,8) er en leengste voksende delfplge af (1,5,4,9,4,7,2,8).

Spergsmal a: Find en leengste voksende delfplge af (7,2,5,3,10,8,9,4). O

Lad S = (ny,ns, ..., ng) vere en folge af positive heltal. Lad A veere et array
af leengde k + 1, og antag at A[0] = 0 og A[i] = n;, for 1 <i < k.

Folgende rekursive metode beregner laengden af en laengste voksende delfglge
af S, hvis den kaldes med 1vd(A,0,0).

int lvd(int[] A, int i, int j) {
if (i == A.length) return O;
int max = 1vd(A,i+1,j);
if (ALl > A[GD A
int m = 1vd(A,i+1,1i)+1;
if (m > max) max = m;

}
return max,;
}
Sporgsmal b: Forklar, hvordan 1vd beregner sit resultat. (]

Sporgsmal c: Vis ved et eksempel, at 1vd nogle gange lgser det samme
delproblem flere gange. OJ

Spargsmal d: Lav en ny version af 1vd vha. dynamisk programmering, sa
delresultater kun beregnes én gang. Hvad er worst-case keretid og pladsfor-
brug for din algoritme? OJ

Opgave 4 (25%)

I denne opgave skal vi se pa datastrukturen min-max-hob. Den svarer til
datastrukturen hob, bortset fra at man kan udfgre bade EXTRACT-MIN og
EXTRACT-MAX i tid O(logn), hvor n er antal elementer i min-max-hoben.

En min-max-hob har hob-struktur, dvs. det nederste lag af knuder er “fyldt
op” fra venstre mod hgjre, og alle andre lag er helt fyldt op.

Ordningen af ngglerne i en min-max-hob er en smule anderledes end i en
almindelig hob: i lag med lige nummer har hver knude v en nggle, som er
mindre end eller lig med alle nggler i v’s undertrae, og i lag med ulige nummer
har hver knude v en nggle, som er stgrre end eller lig med alle nggler i v’s
undertrae. (Husk, at v’s undertrae er traeet, som bestar af v og alle dens
efterkommere.) Roden befinder sig i lag 0, rodens bgrn befinder sig i lag 1,
0SV.

Her er et eksempel pa en min-max-hob med n = 10 nggler.

Spgrgsmal a: Hvordan finder man den storste og den mindste nggle i en
min-max-hob? (]

Spgrgsmal b: Illustrer, hvordan man kan indsaette et element med nggle 1 i
min-max-hoben ovenfor ved at indsatte elementet nederst i min-max-hoben
og “boble” det pa plads (det skal selvfolgelig gores en smule anderledes end i
en almindelig hob). Vis de enkelte skridt. O]

Spgrgsmal c: Skriv pseudo-kode for EXTRACT-MIN og EXTRACT-MAX,
som sletter henholdsvis det mindste og det stgrste element i min-max-hoben.
Begge algoritmer skal have koretid O(logn). O

4

