Skriftlig Eksamen
Datastrukturer og Algoritmer (DMO02)

Institut for Matematik og Datalogi
Odense Universitet

Torsdag den 2. januar 1997, kl. 9-13

Alle seedvanlige hjelpemidler (leerebgger, notater, etc.) samt brug af lommeregner
er tilladt.

Eksamenssattet bestar af 4 opgaver pa 6 nummererede sider (1-6). Fuld besva-
relse er besvarelse af alle 4 opgaver.

De enkelte opgavers vaegt ved bedgmmelsen er angivet i procent. Der ma gerne
refereres til algoritmer og resultater fra leerebogen inklusive gvelsesopgaverne.
Specielt ma man gerne begrunde en pastand med at henvise til, at det umiddel-
bart fplger fra et resultat i leerebogen (hvis dette altsa er sandt!). Henvisninger til
andre bpger (udover leerebogen) accepteres ikke som besvarelse af et spgrgsmal.

Bemaerk, at hvis der er et spgrgsmal i en opgave, man ikke kan besvare, ma man
gerne besvare de efterfolgende spgrgsmal og blot antage, at man har en lgsning
til de foregaende spgrgsmal.

Opgave 1 (30%)
Vi ser pa rektangler af hgjde 2 og laengde n > 2. Se eksempel nedenfor.

To felter er naboer, hvis de star ved siden af hinanden eller ovenover hinanden.
En nabovej er en sekvens af felter, hvor alle par af pa hinanden fglgende felter er
naboer. Vejen skal ga fra et af de to yderfelter til venstre til et af de to yderfelter
til hgjre. Yderfelterne til venstre er altid 0, mens alle andre felter har verdier
storre end eller lig med 0. Nedenfor ses et eksempel pa en nabove;j.

Omkostningen af en nabovej er summen af tallene 1 dens felter. Nabovejen ovenfor
har altsa en omkostning pa 62.

[denne opgave er vi interesseret i at finde omkostningen af den (en) billigste
nabovej. Fglgende rekursive function kan bruges til det. Parameteren A er et
rektangel som illustreret ovenfor. Mere praecist er A en liste af sma lister, hvor de
sma lister har leengde to. F.eks. er A[0] lig med [0,0], og A[3] lige med [4,7].

def £(4, x, y):
if x == len(h):
return 0
else:
h=f(A,x+1,7)
v=~f(A,x+1,1-y)
return A[x] [y] + min(h, A[x][1 - y] +v)

Spgrgsmal a: Forklar kort i ord, hvad £(A, x, y) beregner, og hvordan den
gor det. Herunder hvad h og v bruges til, samt hvad 1 - y skal betyde. |

Spgrgsmal b: Hvad er kompleksiteten af algoritmen som funktion af n? Argu-
menter for dit svar. |

Spgrgsmal c: Vis, at £ kaldes med preecis de samme parametre adskillige gange
(f.eks. ved at vise et eksempel). O

Spgrgsmal d: Lav en bedre udgave ved at anvende dynamisk programmering.
Hvad bliver kompleksiteten af lgsningen? Argumenter for dit svar. |

Opgave 2 (30%)

Nedenfor er angivet en funktion, der sorterer elementer i en liste i ikke-aftagende
orden.

def sort(4):
i=0
while 1 < len(A): # [
for j in range(len(A)-(i+1)):
if A[j] > A[j+1]:
ALj1, ALj+1]1 = A[j+1]1, A[j]
i=1+1

En sorteringsmetode er stabil, hvis elementer med samme nggle altid vil sta i
samme indbyrdes raekkefglge i det sorterede output som i det oprindelige input.

Spgrgsmal a: Er sorteringsmetoden ovenfor stabil? Argumenter for dit svar. O

Vi definerer nu, at en liste er i c-uorden, hvor ¢ er et heltal, hvis ethvert element
i listen er anbragt hgjst ¢ pladser fra den plads, det ville sta pa, hvis listen var
sorteret.

Spgrgsmal b: Angiv en en lille &endring i algoritmen, sadan at den nu kgrer i
tid O(n) pa lister, der er i c-uorden (den behgver ikke leengere virke pa lister, der
ikke er i c-uorden). Argumenter for at sendringen virker. |

Vi ser nu igen pa den oprindelige algoritme (resten af opgaven antager altsa ikke,
at input er i c-uorden).

Spgrgsmal c: Argumenter for, at

i <len(A) A udsnittet i A fra og med len(A) — i til og med len(A) — 1 er
sorteret og indeholder de storste elementer i A

er en invariant for while-lpkken (udsnittet er tomt forste gang, man kommer til
while-lgkken). O

Spgrgsmal d: Vis, at funktionen er korrekt. Dvs. at den terminerer, og at listen
pa det tidspunkt er sorteret. m|

Opgave 3 (20%)

I denne opgave skal vi se pa en implementation af en symboltabel kaldet en treap
(sammentrakning af tree og heap). Implementationen er i form af et spgetrae
med elementer, der bade har en nggle og en prioritet. Vi antager dog, at in-
gen nggler far tildelt samme prioritet. Ngglerne skal nu opfylde den sadvanlige
spgetraesbetingelse (binary search tree invariant), mens prioriteterne skal opfylde
den sadvanlige heap-betingelse (heap invariant). Nedenfor ses en treap. Noglerne
star gverst i knuderne og prioriteterne nederst.

Knuderne i traeet er objekter af folgende type:
class Node:

def _init_(self, k,p, 1, r):
self .key =k
self .pri=p
self.left=1
self.right=r

Variablen root antages i det fglgende at referere til traeets rod.

Spgrgsmal a: Skriv en funktion MinKeys, sa kaldet MinKeys(root, m) ud-
skriver preecis de nggler, der er mindre end eller lig med m. Kompleksiteten af
funktionen skal vere proportional med treaeets hgjde plus antal nggler, der er
mindre end m. |

Spgrgsmal b: Skriv en funktion MinPris, sa kaldet MinPris(root, m) udskri-
ver precis de prioriteter, der er mindre end eller lig med m. Kompleksiteten af
funktionen skal veere proportional med antallet af prioriteter, der er mindre end
m. a

Indsattelse i en treap klares som fglger: Forst indsaettes elementet som szedvanligt
i et spgetra efter ngglen. Derefter roteres der (venstre- og hgjrerotationer), indtil
heap-betingelsen igen er opfyldt. Indsetter vi f.eks. elementet med nggle 1 og
prioritet 3, laves der en venstrerotation fulgt af en hgjrerotation. Se nedenfor.

- - @ @) W

Spgrgsmal c: Vis, at hvis n elementer indsettes i en oprindeligt tom treap
i voksende rackkefglge med hensyn til ngglerne, sa foretages der et amortiseret
konstant antal rotationer pr. indsaettelse.

Vink: Hvad sker der med laengden af hgjrestien under en indsattelse? O

Opgave 4 (20%)

Opgaven drejer sig om en type ikke-orienterede, veegtede grafer, kaldet ringgrafer,
der bestar af en kaede af ringe. Der er mindst to ringe, og enhver ring indeholder
mindst tre kanter. Vaegtene er ikke-negative heltal. Man har givet referencer til to
punkter, @ og b; ét i hver yderring. Nedenfor ses et eksempel, hvor keeden bestar
af tre ringe

Lad n betegne antallet af knuder i grafen og m antallet af kanter.

Spgrgsmal a: Vis, at der findes en konstant ¢, sa m < cn. m|

Antag, at grafen er repraesenteret ved den szdvanlige kantlistereprasentation.
Dvs. hver knude har tilknyttet en liste af referencer til preecis de andre knuder,
den er forbundet til.

Spgrgsmal b: Forklar kort i ord, hvordan man altid kan finde veegten (cost) af
et letteste udspeendende tree (minimum spanning tree) for en ringgraf i tid O(n).
O

I Kingston vises det, at kompleksiteten af Kruskal’s algoritme er O(m log m) for
sammenhangende grafer. Det kunne dog sagtens veere, at algoritmen afvikles
hurtigere pa seerlige (simple) graftyper.

En liniegraf er en ikke-orienteret, sammenhangende, vaegtet graf, der bestar af
en sekvens af punkter, hvor de to endepunkter kun har en kant, mens resten har
to kanter; én til hver naboknude. Et eksempel ses nedenfor.

9 1 8 7 2 6
° ® ® ® ® ®)

Det er klart, at det letteste udspaendende trae for en liniegraf simpelt hen bestar
af alle kanter. Fglgende spgrgsmal drejer sig om at vise, at Kruskal’s algoritme
ikke en gang er linezr pa liniegrafer.

Som prioritetskg og disjunkte meengder i Kruskal’s algoritme anvendes naturligvis
implementationerne fra bogen (“heap” og “Galler-Fischer”).

Spgrgsmal c: Argumenter for, at man for ethvert k kan lave en liniegraf med
n > k knuder og tildele kanterne veegte, sadan at Kruskal’s algoritme vil tage tid
proportionalt med nlog n. m|

