
Skriftlig EksamenDatastrukturer og Algoritmer (DM02)Institut for Matematik og DatalogiOdense UniversitetTorsdag den 2. januar 1997, kl. 9{13Alle s�dvanlige hj�lpemidler (l�reb�ger, notater, etc.) samt brug af lommeregnerer tilladt.Eksamenss�ttet best�ar af 4 opgaver p�a 6 nummererede sider (1{6). Fuld besva-relse er besvarelse af alle 4 opgaver.De enkelte opgavers v�gt ved bed�mmelsen er angivet i procent. Der m�a gernerefereres til algoritmer og resultater fra l�rebogen inklusive �velsesopgaverne.Specielt m�a man gerne begrunde en p�astand med at henvise til, at det umiddel-bart f�lger fra et resultat i l�rebogen (hvis dette alts�a er sandt!). Henvisninger tilandre b�ger (udover l�rebogen) accepteres ikke som besvarelse af et sp�rgsm�al.Bem�rk, at hvis der er et sp�rgsm�al i en opgave, man ikke kan besvare, m�a mangerne besvare de efterf�lgende sp�rgsm�al og blot antage, at man har en l�sningtil de foreg�aende sp�rgsm�al.
1



Opgave 1 (30%)Vi ser p�a rektangler af h�jde 2 og l�ngde n � 2. Se eksempel nedenfor.0 3 0 4 2 5 3 3 6 7 5 60 5 1 7 6 1 2 1 0 6 3 9To felter er naboer, hvis de st�ar ved siden af hinanden eller ovenover hinanden.En nabovej er en sekvens af felter, hvor alle par af p�a hinanden f�lgende felter ernaboer. Vejen skal g�a fra et af de to yderfelter til venstre til et af de to yderfeltertil h�jre. Yderfelterne til venstre er altid 0, mens alle andre felter har v�rdierst�rre end eller lig med 0. Nedenfor ses et eksempel p�a en nabovej.0 3 0 4 2 5 3 3 6 7 5 60 5 1 7 6 1 2 1 0 6 3 9-Omkostningen af en nabovej er summen af tallene i dens felter. Nabovejen ovenforhar alts�a en omkostning p�a 62.I denne opgave er vi interesseret i at �nde omkostningen af den (en) billigstenabovej. F�lgende rekursive function kan bruges til det. Parameteren A er etrektangel som illustreret ovenfor. Mere pr�cist er A en liste af sm�a lister, hvor desm�a lister har l�ngde to. F.eks. er A[0] lig med [0,0], og A[3] lige med [4,7].def f(A, x, y):if x == len(A):return 0else:h = f(A, x + 1, y)v = f(A, x + 1, 1 - y)return A[x][y] + min(h, A[x][1 - y] + v)Sp�rgsm�al a: Forklar kort i ord, hvad f(A, x, y) beregner, og hvordan deng�r det. Herunder hvad h og v bruges til, samt hvad 1 - y skal betyde. 2Sp�rgsm�al b: Hvad er kompleksiteten af algoritmen som funktion af n? Argu-menter for dit svar. 22



Sp�rgsm�al c: Vis, at f kaldes med pr�cis de samme parametre adskillige gange(f.eks. ved at vise et eksempel). 2Sp�rgsm�al d: Lav en bedre udgave ved at anvende dynamisk programmering.Hvad bliver kompleksiteten af l�sningen? Argumenter for dit svar. 2Opgave 2 (30%)Nedenfor er angivet en funktion, der sorterer elementer i en liste i ikke-aftagendeorden.def sort(A):i = 0while i < len(A): # Ifor j in range(len(A)-(i+1)):if A[j] > A[j+1]:A[j], A[j+1] = A[j+1], A[j]i = i + 1En sorteringsmetode er stabil, hvis elementer med samme n�gle altid vil st�a isamme indbyrdes r�kkef�lge i det sorterede output som i det oprindelige input.Sp�rgsm�al a: Er sorteringsmetoden ovenfor stabil? Argumenter for dit svar. 2Vi de�nerer nu, at en liste er i c-uorden, hvor c er et heltal, hvis ethvert elementi listen er anbragt h�jst c pladser fra den plads, det ville st�a p�a, hvis listen varsorteret.Sp�rgsm�al b: Angiv en en lille �ndring i algoritmen, s�adan at den nu k�rer itid O(n) p�a lister, der er i c-uorden (den beh�ver ikke l�ngere virke p�a lister, derikke er i c-uorden). Argumenter for at �ndringen virker. 2Vi ser nu igen p�a den oprindelige algoritme (resten af opgaven antager alts�a ikke,at input er i c-uorden).Sp�rgsm�al c: Argumenter for, ati � len(A) ^ udsnittet i A fra og med len(A)� i til og med len(A)� 1 ersorteret og indeholder de st�rste elementer i Aer en invariant for while-l�kken (udsnittet er tomt f�rste gang, man kommer tilwhile-l�kken). 23



Sp�rgsm�al d: Vis, at funktionen er korrekt. Dvs. at den terminerer, og at listenp�a det tidspunkt er sorteret. 2Opgave 3 (20%)I denne opgave skal vi se p�a en implementation af en symboltabel kaldet en treap(sammentr�kning af tree og heap). Implementationen er i form af et s�getr�med elementer, der b�ade har en n�gle og en prioritet. Vi antager dog, at in-gen n�gler f�ar tildelt samme prioritet. N�glerne skal nu opfylde den s�dvanliges�getr�sbetingelse (binary search tree invariant), mens prioriteterne skal opfyldeden s�dvanlige heap-betingelse (heap invariant). Nedenfor ses en treap. N�glernest�ar �verst i knuderne og prioriteterne nederst.72����25����013������ AA 57����38������ AA 610������ AA 84����AA 918����Knuderne i tr�et er objekter af f�lgende type:class Node:def init (self, k, p, l, r):self.key = kself.pri = pself.left = lself.right = rVariablen root antages i det f�lgende at referere til tr�ets rod.Sp�rgsm�al a: Skriv en funktion MinKeys, s�a kaldet MinKeys(root, m) ud-skriver pr�cis de n�gler, der er mindre end eller lig med m. Kompleksiteten affunktionen skal v�re proportional med tr�ets h�jde plus antal n�gler, der ermindre end m. 24



Sp�rgsm�al b: Skriv en funktion MinPris, s�a kaldet MinPris(root, m) udskri-ver pr�cis de prioriteter, der er mindre end eller lig med m. Kompleksiteten affunktionen skal v�re proportional med antallet af prioriteter, der er mindre endm. 2Inds�ttelse i en treap klares som f�lger: F�rst inds�ttes elementet som s�dvanligti et s�getr� efter n�glen. Derefter roteres der (venstre- og h�jrerotationer), indtilheap-betingelsen igen er opfyldt. Inds�tter vi f.eks. elementet med n�gle 1 ogprioritet 3, laves der en venstrerotation fulgt af en h�jrerotation. Se nedenfor.72����25����013����AA 13������� @@@ 57����38������ AA 610������ SS 84����AA 918����! 72����25����13����013������ �� AA 57����38������ AA 610������ AA 84����AA 918����! 72����13����013������ AA 25����AA57����38������ AA 610����
�� AA84����AA 918����

Sp�rgsm�al c: Vis, at hvis n elementer inds�ttes i en oprindeligt tom treapi voksende r�kkef�lge med hensyn til n�glerne, s�a foretages der et amortiseretkonstant antal rotationer pr. inds�ttelse.Vink: Hvad sker der med l�ngden af h�jrestien under en inds�ttelse? 2Opgave 4 (20%)Opgaven drejer sig om en type ikke-orienterede, v�gtede grafer, kaldet ringgrafer,der best�ar af en k�de af ringe. Der er mindst to ringe, og enhver ring indeholdermindst tre kanter. V�gtene er ikke-negative heltal. Man har givet referencer til topunkter, a og b; �et i hver yderring. Nedenfor ses et eksempel, hvor k�den best�araf tre ringe 5



a t tt@@@@2����1 ����0@@@@3 t tt tHHHHHHHH6������1 4��������5QQQQQQ3 t tt tt t����3@@@@1 22 @@@@4����3 bLad n betegne antallet af knuder i grafen og m antallet af kanter.Sp�rgsm�al a: Vis, at der �ndes en konstant c, s�a m � cn. 2Antag, at grafen er repr�senteret ved den s�dvanlige kantlisterepr�sentation.Dvs. hver knude har tilknyttet en liste af referencer til pr�cis de andre knuder,den er forbundet til.Sp�rgsm�al b: Forklar kort i ord, hvordan man altid kan �nde v�gten (cost) afet letteste udsp�ndende tr� (minimum spanning tree) for en ringgraf i tid O(n).2I Kingston vises det, at kompleksiteten af Kruskal's algoritme er O(m logm) forsammenh�ngende grafer. Det kunne dog sagtens v�re, at algoritmen afvikleshurtigere p�a s�rlige (simple) graftyper.En liniegraf er en ikke-orienteret, sammenh�ngende, v�gtet graf, der best�ar afen sekvens af punkter, hvor de to endepunkter kun har en kant, mens resten harto kanter; �en til hver naboknude. Et eksempel ses nedenfor.t t t t t t t9 1 8 7 2 6Det er klart, at det letteste udsp�ndende tr� for en liniegraf simpelt hen best�araf alle kanter. F�lgende sp�rgsm�al drejer sig om at vise, at Kruskal's algoritmeikke en gang er line�r p�a liniegrafer.Som prioritetsk� og disjunkte m�ngder i Kruskal's algoritme anvendes naturligvisimplementationerne fra bogen (\heap" og \Galler-Fischer").Sp�rgsm�al c: Argumenter for, at man for ethvert k kan lave en liniegraf medn � k knuder og tildele kanterne v�gte, s�adan at Kruskal's algoritme vil tage tidproportionalt med n log n. 26


