Skriftlig Eksamen
Datastrukturer og Algoritmer (DM02)

Institut for Matematik og Datalogi
Odense Universitet

Mandag den 12. januar 1998, kl. 9-13

Alle saedvanlige hjeelpemidler (leerebgger, notater, etc.) samt brug af lommeregner
er tilladt.

Eksamenssettet bestar af 4 opgaver pa 6 nummererede sider (1-6). Fuld besva-
relse er besvarelse af alle 4 opgaver.

De enkelte opgavers vaegt ved bedgmmelsen er angivet i procent. Der ma gerne
refereres til algoritmer og resultater fra laerebogen inklusive gvelsesopgaverne.
Specielt ma man gerne begrunde en pastand med at henvise til, at det umiddel-
bart folger fra et resultat i leerebogen (hvis dette altsa er sandt!). Henvisninger til
andre bgger (udover laerebogen) accepteres ikke som besvarelse af et spgrgsmal.

Bemaerk, at hvis der er et spgrgsmal i en opgave, man ikke kan besvare, ma man
gerne besvare de efterfglgende spgrgsmal og blot antage, at man har en lgsning
til de foregaende spgrgsmal.

Opgave 1 (40%)

Vi har et antal nggler, som vi vil have anbragt i et sggetrae. Vi véd hvor ofte, der
vil blive spgt efter de forskellige nggler, og gnsker at udnytte denne information
til at bygge et optimalt sggetrae. Nedenfor ses en raekke nggler og et besggstal for
hver nggle.

Noggle a|blc|dl|e|f
Besogstal || 30 | 42 |3 |18 |2 | 5

Summen af besggstallene i dette eksempel er 100, og tabellen forteeller dermed,
at ud af 100 sggninger vil man sgge efter a 30 gange, b 42 gange, ¢ 3 gange, osv.
Et sogetrae, der kunne vere et fornuftigt bud pa et optimalt arrangement, kunne
vaere folgende:

| ,,a/,\d
EVAN
R
-/

e

"

Dette tree har besggsverdi 70. Dette er det totale antal kanter, der skal fglges for at
lave alle de spgninger, der er angivet i tabellen. Dvs. 30 a sggninger, 42 b spgninger,
osv. Bespgsveerdien 70 er altsa fundet som 30-1+42-0+3-24+18-14+2-3+5-2.

Et optimalt spgetrae med hensyn til en given tabel er et sggetree med mindst mulig
besggsvaerdi.

Spgrgsmal a: Man kunne tro, at et optimalt sggetrae altid kan laves ved at
anbringe ngglen med storst besggstal i roden og fortsaette rekursivt med at lave
et venstre og hgjre undertrae af de nggler, der er mindre end, henholdsvis stgrre
end rodens nggle. Vis ved et eksempel, at dette ikke er tilfaeldet. O

Nedenfor defineres en funktion OBV, der skal beregne besggsvaerdien af et opti-
malt sggetrae. Funktionen kaldes med en liste af besggstal, der star i raekkefplge
svarende til sorterede nggler. F.eks. [30, 42, 3, 18, 2, 5] fra eksemplet. Funktionen
returnerer et par bestaende af det totale antal sggninger samt treets besggsverdi.

def 0BV (bt, first, last):
if first > last:
return (0,0)
elif first == last:
return (bt[first], 0)
else:
MinVal = MAXINT
for i in range(first, last + 1):
r =bt[i]
(cl,vl), (cr,vr) = 0BV(bt, first, i-1), 0BV(bt, i+1, last)
c,v=cl+r+cr,vl+cl+vr+cr
if v < MinVal:
Count, MinVal =c¢c, v
return (Count,MinVal)

print 0BV([30, 42, 3, 18, 2, 51, 0, 5) # udskriver (100, 70)

Spgrgsmal b: Forklar kort i ord, hvordan OBV virker. Herunder hvad for-lgkken
prover igennem, og hvad c1 + r + cr samt vl + cl + vr + cr beregner. 0O

Spgrgsmal c: Vis (evt. gennem et eksempel), at OBV beregner samme delre-
sultater adskillige gange.]

Spgrgsmal d: Anvend dynamisk programmering til at sendre OBV, sa delre-
sultater kun beregnes én gang. m|

Spgrgsmal e: Hvad bliver tidskompleksiteten af algoritmen, nar der anvendes
dynamisk programmering? a

Opgave 2 (25%)

Betragt nedenstaende ikke-orienterede, vaegtede graf.

a 1 2 1 2 1 1

21 1 42 2 7 2 2

Spgrgsmal a: Angiv ved en tegning et lettest udspaendende trae for grafen, samt
dets veaegt. O

Vi ser nu pa en klasse af veegtede orienterede grafer kaldet frem-og-tilbage grafer.
Knuderne i en sadan graf er organiseret i to lige lange raekker, og der er et ulige
antal knuder (mindst 3) i hver raekke. I gverste rackke gar kanterne mod hgjre og
i nederste rackke mod venstre. Desuden er der én kant mellem hvert par af knuder
i samme position i de to raekker. Disse kanter gar skiftevis ned og op (startende
med ned). Nedenstaende graf er et eksempel pa en frem-og-tilbage graf.

a 1 2 1 2 1 1

21 1 42 2 7 2 2

Spgrgsmal b: Forklar, hvordan man kan beregne korteste veje fra gverste ven-
stre hjorne (markeret med “a” i eksemplet) til alle andre knuder i en sadan graf
i tid O(n); dvs. i tid proportional med antallet af knuder n i grafen. (Dijkstra’s
algoritme er ikke hurtig nok.) a

Det fglgende sporgsmal handler ikke om frem-og-tilbage grafer.

Dijkstra’s algoritme forudsaetter, at vaegtene pa kanterne er ikke-negative. Det
er klart, at hvis der er negative kredse, sa er problemet slet ikke veldefineret,
da stileengderne kan ggres vilkarligt lave. Husk, at en kreds er en sti, der pa et
tidspunkt vender tilbage til udgangspunktet. Den kaldes negativ, hvis summen
af kanternes vaegte er negativ.

Spegrgsmal c: Find et eksempel, der viser, at Dijkstra’s algoritme faktisk ikke
virker, hvis der er negative vaegte, selv hvis der ikke er negative kredse (det er ikke
ngdvendigt at bruge ret mange knuder). Det skal forklares, hvordan Dijkstra’s
algoritme afvikles pa det eksempel, du angiver. O

Opgave 3 (15%)
Vi har givet en sorteret liste af heltal som f.eks. folgende:
A = [0,1,4,5,6,7,9,10,11,16,17,19,21,25,27,28,29]

Nu laves der et antal opdateringer, der hver iszer bestar i, at talveerdien pa
en plads i listen forgges eller formindskes. Listen er herefter ikke ngdvendigvis
sorteret.

Listen
B =1[0,1,4,3,6,7,12,10,11,16,17,15,21,25,26,28,29]

er blevet @ndret pa fire pladser i forhold til den oprindelige liste A; nemlig pa
index 3, 6, 11 og 14.

Vi véd om listerne, at der ingen dubletter er (heller ikke efter opdateringerne),
og at der efter en opdatering er mindst to usendrede elementer pa hver side af et
endret.

Vi er interesserede i at fa en udskrift af index pa sndrede elementer. Da opda-
teringerne foretages direkte i den oprindelige liste, kendes den oprindelige liste
ikke laengere, sa @ndrede elementer, der stadig star sorteret, kan naturligvis ikke
opdages. Hvis man ikke kan afggre, hvilket af to elementer, der er blevet sendret,
accepterer vi at fa begge index udskrevet.

Pa listen B ovenfor ville vi forvente folgende udskrift:

23
6
11

Vi kan nemlig ikke konstatere aendringen pa index 14, og vi kan heller ikke se,
om den &ndring, der faktisk skete pa index 3, skete pa index 2 eller 3.

Spgrgsmal a: Skriv en PYTHON funktion, der tager en opdateret liste som
argument og udskriver den omtalte liste af index, der har sendret sig. O

Opgave 4 (20%)

[forbindelse med disjunkte mangder (disjoint sets) sikrede vi logaritmisk hgjde
ved at sammensatte traeer afthaengig af deres storrelse. I denne opgave ser vi pa
et alternativ til den metode, hvor vi i stedet for at gemme antallet af knuder,
giver hver knude en rang.

Nar en ny knude laves (operationen MakeSet), gives knuden rang 0. Nar to traeer
settes sammen med Union, gores roden med mindst rang til barn af den anden
rod som nedenfor:

g, 4 T
Union B
f \ (1o > 1) / \ - / \ /le\

Der er altsa ingen knuder, der far deres rang sndret.

Hvis rgdderne har samme rang, veelges vilkarligt, og roden efter sammensatnin-
gen far sin rang talt op med én:

Ty &) T re ="+ 1
Union
= (A3
(ra = 15) [\

Operationen Find sendrer ikke strukturen.

Spgrgsmal a: Vis ved induktion pa antallet af operationer, der udfgres, at der
er mindst 2" knuder i et trae med rang r. O

Spgrgsmal b: Argumentér for, at hvis en knude med rang r har et barn med
rang ', sa er r > r'. |

Spgrgsmal c: Vis, at Find er O(logn), hvor n er antallet af elementer i struk-
turen. 0

!Dette har intet at ggre med den rang, der defineres i forbindelse med splay trees.

