Skriftlig Eksamen
Datastrukturer og Algoritmer (DM02)

Institut for Matematik og Datalogi
Syddansk Universitet, Odense

Tirsdag den 12. januar 1999, kl. 9-13

Alle saedvanlige hjeelpemidler (leerebgger, notater, etc.) samt brug af lommeregner
er tilladt.

Eksamenssettet bestar af 4 opgaver pa 6 nummererede sider (1-6). Fuld besva-
relse er besvarelse af alle 4 opgaver.

De enkelte opgavers vaegt ved bedgmmelsen er angivet i procent. Der ma gerne
refereres til algoritmer og resultater fra laerebogen inklusive gvelsesopgaverne.
Henvisninger til andre bgger (udover laerebogen) accepteres ikke som besvarelse
af et spgrgsmal.

Bemaerk, at hvis der er et spgrgsmal i en opgave, man ikke kan besvare, ma man
gerne (sa vidt det er muligt) besvare de efterfolgende sporgsmal og blot antage,
at man har en lgsning til de foregaende spgrgsmal.

Opgave 1 (25%)

Pa et datalogisk institut skal der lsegges fliser pa badevarelsesgulvet. Der skal
dannes en rakke datalogiske ord og begreber som f.eks. “dynamisk programme-
ring”. Desveerre kan der ikke leveres enkelt-bogstavs-fliser. I stedet kan man kgbe
fliser med forskellige kombinationer af bogstaver. Derfor har vi brug for at kunne
afgore, om en konkret tekst kan skrives vha. de flisetyper, der er til radighed.
Man kan kgbe lige sa mange, det skal veere, af de flisetyper, der fores.

Hvis man har fglgende flisetyper:

[AMI|[DYN][EN][GO][HU][JASK]|[RAMME|[RING][ROG]|[SK P|[T][VA]

sa kan man f.eks. godt skrive

IDYN||AMI|[SK P||ROG |[RAMME||RING |

Bemark, at en blank bare er et tegn pa lige fod med alle andre tegn.

Nedenstaende PYTHON program afggr generelt, om en tekst T kan skrives vha.
flisetyperne L, hvor L er en liste af de strenge, man kan kgbe pa fliser.

def Makes(L, T, i, j):
ifi == j:
return 1
for £ in L:
if f ==T[i:j]:
return 1
for k in range (i+1, j):
if Makes (L, T, i, k) and Makes(L, T, k, j):
return 1
return 0

L = ["AMI","DYN","EN","GO","HU”,”JASK","RAMME”,
||R[NG||,||ROG||,||SK Pu,uTu,u VAn]

T="DYNAMISK PROGRAMMERING"

print Makes(L, T, 0, len(T))

Spgrgsmal a: Forklar kort, hvordan programmet fungerer. O

2

Spgrgsmal b: Vis, at man kan komme til at lave det samme kald adskillige
gange under afviklingen af programmet (man behgver ikke bruge samme L og T
som i eksemplet). |

Det viser sig, at udfgrelsestiden af programmet bliver eksponentiel i leengden af
strengen 1.

Spgrgsmal c: Skriv en ny og mere effektiv udgave af Makes vha. dynamisk
programmering. O

Spegrgsmal d: Hvad bliver tidskompleksiteten, nar der anvendes dynamisk pro-
grammering? Argumentér for dit svar. a

Opgave 2 (25%)

Denne opgave handler om letteste udspaendende skove. I kurset har vi specielt
set pa Kruskal’s algoritme, der har en god kompleksitet pa generelle grafer. Nu
vil vi i stedet for generelle grafer se pa specielle klasser af grafer. Spgrgsmalene
drejer sig om at konstruere algoritmer, der pa disse specielle grafer, har endnu
bedre kompleksiteter end Kruskal’s algoritme. T hvert tilfzelde skal den algoritme,
man angiver, veere sa effektiv som muligt givet den begraensning, der er lagt pa
input-graferne.

Alle graferne er ikke-orienterede, vaegtede grafer. Graferne er ikke ngdvendigvis
sammenhangende, sa den letteste udspaendende skov bestar af et letteste ud-
spaendende trae for hver komponent i grafen.

Spgrgsmal a: Alle kanter har vaegt 1.

Beskriv en effektiv algoritme, og argumentér for algoritmens tidskompleksitet. O

Sporgsmal b: Alle kanter har vaegt 1 eller 2.

Beskriv en effektiv algoritme, og argumentér for algoritmens tidskompleksitet. O

Spgrgsmal c: Alle knuder har grad hgjst 2.

Beskriv en effektiv algoritme, og argumentér for algoritmens tidskompleksitet. O

Opgave 3 (25%)

I denne opgave har vi givet en liste af heltal A. Listen har laengde n. Vi er inter-
esseret i at beregne alle summer af dellister af laengde m, hvor 1 < m < n. Disse
resultater gemmes i listen B i samme raekkefglge, som de optraeder i A. Listen B
antages at veere lang nok. Fglgende programstump laver denne beregning:

S,1=0,0
while i < m:
S=S+A[i]
i=i+1
B[0] =S

Pre

while i <n: #]
S=S+A[i] - A[i-m]
i=i+1
B[i-m] =S

Post

Hvis vi f.eks. har A = [1,7,5,7,8,3,4], n =7 og m = 3 sa vil B komme til at
indeholde B = [13,19,20,18,15].

I denne opgave skal det vises, at den anden while-lgkke virker korrekt. Man kan
antage, at der galder fglgende prae-betingelse til den anden while-lgkke:

i=m AN S=A0]+---+Am—-1] A B[0]=5
Lad I betegne pradikatet:

1<n
N S=Ali—m]+ -+ Afli — 1]
AN Vj€{0,....,i—m}: B[j]=A[j]+ -+ Aj+m —1]

Spgrgsmal a: Vis, at I er en invariant for den anden while-lgkke. O

Spdgrgsmal b: Vis, at den anden while-lgkke terminerer. O

Postbetingelsen er:

Vje{0,...,n—m}: B[j]=A[j]+ -+ A}j + m —1]

Spgrgsmal c: Vis, at algoritmen er korrekt. O

Opgave 4 (25%)

Denne opgave handler om punkter i planen og forskellige former for sggning efter
disse punkter. Vi definerer en sggestruktur, som vi kalder et prioritetssggetre
(forkortet PS-tree).

Nedenfor ses et eksempel. Til venstre er der et koordinatsystem indeholdende syv
punkter. Til hgjre er det prioritetssggetrae, punkterne opbevares i.

A

6+ °
(. @

4 4

Y &

2 °

L w3 @) (o) (o
1 2 3 4 5

En knude i et PS-trae har felterne: left, right, x, y og x1m, hvor “xlm” star for
“r left max”. Dvs. en reference til et venstre undertrae (left), et hgjre undertrae
(right), et punkt (x og y), samt en ekstra x-veerdi (x1m), der skal indeholde den
stgrste x-koordinat i venstre undertrae. Da bladene ikke har et venstre under-
trae, har deres x1m-felt ikke nogen (interessant) vaerdi. Pa tegningen er de derfor
udeladt.

For nemheds skyld antager vi, at ingen punkter har samme 2- eller y-koordinat.

L 4

o=

Nedenfor forklarer vi, hvordan et PS-trae for n punkter kan konstrueres rekursivt.
Husk, at [§] betegner det mindste heltal, der er stgrre end eller lig med 3.

e Hvis n =0, er PS-traeet tomt.
e Hvisn = 1, bestar PS-traeet af en enkelt knude indeholdende det ene punkt.

e Hvis n > 1, anbringes det punkt, der har stgrst y-koordinat, i roden. De
resterende n — 1 punkter deles i en venstrehalvdel bestaende af de [25+]
punkter med mindst z-koordinat og en hgjre halvdel bestaende af resten af

punkterne.

Rodens venstrebarn er et PS-trae, der konstrueres udfra punkterne i venstre
halvdel, og rodens hgjrebarn er et PS-trae, der konstrueres udfra punkterne
i hgjre halvdel.

Endelig anbringes den storste z-koordinat i venstre undertrae ogsa i roden
i feltet x1m.

Det kan antages, at man har en funktion IsLeaf til radighed, som afggr, om en
knude er et blad eller ej.

Spgrgsmal a: Skriv en PYTHON-funktion, der i tid O(logn) afggr, om et punkt
(x,y) findes i et givet PS-tree T. |

Spgrgsmal b: Forklar, hvordan man givet et tal b kan finde (og udskrive) alle
de punkter, der har y-koordinat stgrre end eller lig med b.

Hvis der er k sadanne punkter, skal resultatet findes i tid O(k). |

Spgrgsmal c: Givet to tal a; og as, sa a; < as. Hvor i treeet finder man punkter
(x,y),sa a1 < x < ay?

Igen antager vi, at k er storrelsen af output. Hvordan udskriver man alle disse
punkter i tid O(logn + k)? O

Spgrgsmal d: Givet tre tal a;, as og b, sa a; < ao. Hvor i traeet finder man
punkter (z,y), sa a; <z < ay ogy > b?

Igen antager vi, at k er storrelsen af output. Hvordan udskriver man alle disse
punkter i tid O(logn + k)? O

