
DM507 Algoritmer og datastrukturer

For̊ar 2010

Projekt, del I

Institut for matematik og datalogi

Syddansk Universitet

Februar 22, 2010

Dette projekt udleveres i tre dele. Hver del har sin deadline, s̊aledes at afleveringerne, og
dermed arbejdet, strækkes over hele semesteret. Projektet skal besvares individuelt. Deadline
for del I er fredag den 19. marts.

Mål

Det samlede projekt beskæftiger sig med inversioner, og med sorteringsmetoder hvis køretid
afhænger af antallet af inversioner i input.

Hovedmålet for del I af projektet er at lave en algoritme, som effektivt kan tælle antallet af
inversioner i en følge.

Inversioner

En inversion i en følge x1, x2, x3, . . . , xn af tal er et par xi, xj i følgen som indbyrdes ikke st̊ar
i sorteret orden. I dette projekt defineres sorteret som stigende (mere præcist, ikke-faldende)
orden, og en inversion er derfor et par xi, xj (med i < j) hvor xi > xj. Antallet af inversioner

i en følge er antallet af par som udgør en inversion. Da der er
(

n
2

)

= n(n − 1)/2 mulige par,
er dette det maksimale antal inversioner i en følge med n elementer.

Eksempler: en stigende følge har 0 inversioner, en faldende følge har det maksimale antal
inversioner n(n − 1)/2, og denne følge

5, 2, 7, 1, 4

har 6 inversioner (parrene 5,2; 5,1; 5,4; 2,1; 7,1 og 7,4).

Algoritmer til at tælle inversioner i en følge

En oplagt algoritme til at finde antallet af inversioner i en følge bruger en dobbelt for-løkke,
og tager derfor Θ(n2) tid. I del I af projektet skal vi udvikle en algoritme, som tager Θ(n log n)
tid. Algoritmen er en udvidelse af MergeSort algoritmen, og er baseret p̊a følgende observa-
tioner:

1

1. Hvis en følge x1, x2, x3. . . . xn deles i to

A = x1, x2, x3, . . . , xk B = xk+1, xk+2, . . . xn

da er det samlede antal inversioner lig X + Y + Z, hvor:

X er antallet af inversioner i A
Y er antallet af inversioner i B
Z er antallet af inversioner xi, xj med i ≤ k og j ≥ k + 1

2. Z ændres ikke selv om A og B hver især sorteres.

Opgaver

1. Argumenter for korrektheden af observationerne ovenfor.

2. Beskriv en udvidelse af metoden Merge (side 31 i Cormen et al.) som udover at flette
to sorterede følger A og B til én sorteret følge ogs̊a beregner tallet Z. Argumenter for
korrektheden af din metode. [Hint: Se p̊a en inversion xi, xj som hørende til det højre
endepunkt xj . Brug ogs̊a den del af løkke-invarianten for Merge (side 32 i Cormen et
al.) som siger, at hvad der allerede er kopieret fra L og R, er mindre end eller lig med
alt, der ikke er kopieret endnu.]

3. Beskriv en algoritme baseret p̊a MergeSort som finder antallet af inversioner i en følge
i Θ(n log n) tid. [Hint: brug de to observationer ovenfor.] Argumenter for korrekthed
og køretid din algoritme.

4. Implementer den simple Θ(n2) algoritme baseret p̊a en dobbelt for-løkke til at finde
antallet af af inversioner i en følge. Implementationen skal ligge i en fil der hedder
SimpleInv.java. Den skal tage sit input fra en tekstfil, der indeholder en følge af
heltal, hver adskilt af whitespace (brug f.eks. klassen java.util.Scanner og metoden
nextInt() herfra til at parse input). Den skal tage inputfilens navn fra komman-
dolinien, s̊aledes at programmet efter kompilering kan kaldes s̊aledes: java SimpleInv

inputfilnavn. Den skal skrive output (antal inversioner i input) p̊a skærmen. Der skal
udskrives et simpelt tal og intet andet (da de afleverede programmer vil blive afprøvet
med automatiserede tests).

5. Implementer MergeSort efter pseudo-koden i afsnit 2.3 i Cormen et al. Som ∞ kan
bruges værdien Integer.MAX VALUE fra klassen Integer. Det må her og i resten af
projektet antages, at denne værdi ikke forekommer i input. Implementationen skal
ligge i en fil der hedder MergeSort.java. Den skal tage sit input fra en tekstfil, der
indeholder en følge af heltal, hver adskilt af whitespace. Den skal tage inputfilens navn
fra kommandolinien, og skal skrive output p̊a skærmen (som de sorterede tal, hver
adskilt af whitespace, og intet andet).

6. Implementer din Θ(n log n) algoritme baseret p̊a MergeSort til at finde antallet af af
inversioner i en følge. Implementationen skal ligge i en fil der hedder FastInv.java.
Den skal tage sit input fra en tekstfil, der indeholder en følge af heltal, hver adskilt af
whitespace. Den skal tage inputfilens navn fra kommandolinien, og skal skrive output
(antal inversioner i input, og intet andet) p̊a skærmen.

2

Formalia

Lav en rapport, som indeholder dine svar p̊a opgaverne 1–6 ovenfor. Koden fra opgaverne 4–6
skal være passende kommenteret, skal inkluderes i rapporten som bilag, og eventuelle ikke-
trivielle aspekter af implementeringen skal diskuteres i rapportens hoveddel. Der skal afleveres
rapporten i pdf-format, samt de tre Java-programmer som separate filer (dvs. udover deres
inklusion p̊a tryk i rapporten).

Materialet afleveres med aflever kommandoen i en shell p̊a Imadas Linux-system: Lav et
directory som indeholder ovenst̊aende fire filer, flyt ned i dette, og udfør kommandoen aflever

DM507. Dette vil kopiere indholdet af dette directory til et sted i systemet, som underviseren
kan tilg̊a. Man kan bruge kommandoen flere gange, senere anvendelser overskriver materialet
fra tidligere anvendelser.

Aflever materialet senest:

Fredag den 19. marts, 2010, kl. 23:59.

3

