
DM507 Algoritmer og datastrukturer

For̊ar 2010

Projekt, del II

Institut for matematik og datalogi

Syddansk Universitet

19. marts, 2010

Dette projekt udleveres i tre dele. Hver del har sin deadline, s̊aledes at
afleveringerne, og dermed arbejdet, strækkes over hele semesteret. Projektet
skal besvares individuelt. Deadline for del II er tirsdag den 20. april.

Mål

Målet for del II af projektet er at implementere rød-sorte træer, samt bevise
en øvre grænse for mængden af rebalancering. Med hensyn til updates skal
der kun ses p̊a indsættelser, ikke sletninger.

Rød-sorte træer

Rød-sorte træer er grundigt beskrevet i Cormen et al., kapitel 13. Bemærk
at pseudo-koden i dette kapitel er baseret p̊a en implementation med en
sentinel-knude til at repræsentere tomme undertræer (samt rodens forælder),
som illustreret i Figur 13.1 (b) p̊a side 310. Denne knude er altid sort. Vi
antager ogs̊a denne implementation her.

Opgaver

Opgave 1

Der skal laves en Java-implementation, baseret p̊a bogens pseudo-kode, af
rød-sorte træer, som indeholder metoderne Search (pseudo-kode side 290
eller 291), Insert (pseudo-kode side 315 (og 316, 313)), samt Inorder-

Traversal (pseudo-kode side 288).

Det antages at nøgler er af typen int (s̊a man ikke behøver bruge f.eks.
generics i Java), og at elementer blot best̊ar af nøgler (der er ikke yderligere

1



data associeret til en nøgle). Implementationen skal være i form af en Java-
klasse, som kan bruges af andre programmer. Klassen skal hedde RBT, og
skal implementere flg. interface:

public interface RBTree {

public boolean search(int k);

public void insert(int k);

public int[] inorderTraversal();

public boolean isRedBlack();

}

Metoden inorderTraversal() returnerer elementerne i et array (i sorteret
orden) fremfor at printe p̊a skærmen som i bogens pseudo-kode. Meto-
den isRedBlack() checker om et givet RBTree overholder (de vigtigste af)
kravene 1–5 p̊a side 308. Denne metode er bla. anvendelig til fejlfinding
under implementationsprocessen. Metoden skal baseres p̊a flg. pseudo-kode:

IsRedBlack(T )
return {T .root.color == black and

BHeight(T , T .root) ≥ 0 and

(not TwoReds(T , T .root))}

BHeight(T , v)
if v == T .nil

return 0
else

h1 = BHeight(T , v.left)
h2 = BHeight(T , v.right)
if h1 6= h2 or h1 == −1

return −1
elseif v.color == black

return h1 + 1
else

return h1

TwoReds(T , v)
if v == T .nil

return false

elseif {v.color == red and

(v.left.color == red or v.right.color == red)}
return true

else

return TwoReds(T , v.left) or TwoReds(T , v.right)

2



Du skal i rapporten argumentere for køretiden af denne pseudo-kode, og for
at IsRedBlack(T ) returnerer true hvis og kun hvis T opfylder kravene 2,
4, og 5 p̊a side 308 i Cormen et al. (det antages at krav 1 er opfyldt, dvs.
at der kun bruges farverne sort og rød, og krav 3 bliver automatisk opfyldt
via brugen af en sentinel-knude med farven sort).

Opgave 2

Vi ønsker i denne opgave at bevise, at hvis man starter med et tomt rød-sort
træ og laver n indsættelser, da er den samlede mængde rebalanceringsarbej-
de (dvs. arbejde lavet af pseudo-koden side 316) O(n). Denne viden vil vise
sig brugbar i del III af projektet.

For et rød-sort træ T lader vi R(T ) være antallet af sorte knuder som har
to røde børn. For eksempel er R(T ) = 1 for træet i Figur 13.1 (side 310) i
Cormen et al.. Vi skal se p̊a hvordan R(T ) udvikler sig, n̊ar T ændrer form
under indsættelser og efterfølgende rebalanceringer.

En indsættelse best̊ar i at erstatte et tomt undertræ med en ny knude, og
derefter udføre pseudo-koden p̊a side 316. Som det fremg̊ar af diskussionen
i afsnit 13.3 af Cormen et al. vil while-løkken i denne pseudo-kode løbe nul
eller flere gange gennem Case 1, og derefter højst een gang gennem Case 2
og højst een gang gennem Case 3, hvorefter den stopper.

1. Argumentér for at selve indsættelsen (at erstatte et tomt undertræ
med en ny knude, uden rebalancering) højst kan øge R(T ) med een.

2. Argumentér for at under rebalancering vil Case 2 ikke ændre R(T )
(brug Figur 13.6 og den tilhørende figurtekst).

3. Argumentér for at under rebalancering kan Case 3 højst øge R(T ) med
een (brug Figur 13.6 og den tilhørende figurtekst).

4. Argumentér for at hvis en rebalancering starter med k gange Case 1,
da vil disse sænke R(T ) med mindst k − 1 (brug Figur 13.5 og den
tilhørende figurtekst).

Vi ser nu p̊a situationen hvor man starter med et tomt rød-sort træ Tstart

og laver n indsættelser, resulterende i et træ Tslut, og ønsker at vurderere
den samlede mængde rebalanceringsarbejde.

4. Argumentér for at der højst n gange i alt udføres Case 3.

5. Lad ki betegne det antal gange Case 1 udføres ved rebalancering efter
den i’te indsættelse. Bemærk at R(Tstart) = 0, og at 0 ≤ R(Tslut).

3



Argumentér for at

0 ≤ R(Tslut) ≤ R(Tstart) + 2n −

n∑

i=1

(ki − 1)

ved at bruge tidligere viste udsagn.

6. Argumentér for at det heraf følger at
∑

n

i=1
ki ≤ 3n.

7. Argumentér for at den samlede mængde rebalanceringsarbejde under
de n indsættelser er O(n).

Formalia

Lav en rapport, som indeholder dine svar p̊a opgave 1 og 2 ovenfor. Ko-
den for opgave 1 skal være passende kommenteret, skal inkluderes i rap-
porten som bilag, og eventuelle ikke-trivielle aspekter af implementeringen
skal diskuteres i rapportens hoveddel. Der skal afleveres rapporten i pdf-
format, samt Java-implementationen som separate filer (dvs. udover deres
inklusion p̊a tryk i rapporten).

Materialet afleveres med aflever kommandoen i en shell p̊a Imadas Linux-
system: Lav et directory som indeholder ovenst̊aende filer, flyt ned i dette,
og udfør kommandoen aflever DM507. Dette vil kopiere indholdet af dette
directory til et sted i systemet, som underviseren kan tilg̊a. En email vil
blive sendt til ens studentermail som kvittering. Man kan bruge komman-
doen flere gange, senere anvendelser overskriver materialet fra tidligere an-
vendelser.

Aflever materialet senest:

Tirsdag den 20. april, 2010, kl. 23:59.

PS: Bemærk at aflevering af andres kode, f.eks. hentet fra nettet, er ek-
samenssnyd, og vil blive behandlet som s̊adan. Man lærer desuden heller
ikke noget.

4


