
DM507 Algoritmer og datastrukturer

For̊ar 2010

Projekt, del III

Institut for matematik og datalogi
Syddansk Universitet

24. april, 2010 (let justeret 10. maj og 21. maj 2010)

Dette projekt udleveres i tre dele. Hver del har sin deadline, s̊aledes at
afleveringerne, og dermed arbejdet, strækkes over hele semesteret. Projektet
skal besvares individuelt. Deadline for del III er torsdag den 20. maj.

Adaptive sorteringsalgoritmer

En sorteringsalgoritme kaldes adaptiv hvis den kører hurtigere, n̊ar input-
følgen er tæt p̊a at være sorteret i forvejen. For at gøre dette begreb præcist,
må man definere et mål for et inputs afstand fra at være sorteret. Antallet af
inversioner1 i input er et klassisk mål, med mange egenskaber som intuitivt
virker fornuftige: en stigende (dvs. sorteret) følge har nul inversioner, en
aftagende (dvs. omvendt sorteret) følge har det maksimale antal inversioner
(nemlig n(n − 1)/2 = Θ(n2)), og hvis større elementer flyttes foran mindre
elementer, stiger antallet af inversioner. I dette projekt lader vi INV betegne
antallet af inversioner i input.

Målet for del III af projektet er at

• Vise at InsertionSort er adaptiv mht. målet INV.

• Baseret p̊a arbejdet i del II at udvikle en sorteringsalgoritme, Fin-
gerTreeSort, som er endnu mere adaptiv mth. INV end InsertionSort.

• Implementere InsertionSort og FingerTreeSort.

• Sammenligne disse to algoritmer, samt MergeSort (som ikke er adap-
tiv), med hensyn til køretid i praksis p̊a inputs med varierende INV-
mål.

1Se del I af projektet for definitionen af inversioner

1



InsertionSort

InsertionSort er beskrevet i Cormen et al., afsnit 2.1, analyseret i afsnit 2.2,
og implementeret i Java som en opgave p̊a Ugeseddel 1.

N̊ar det j’te element xj i inputfølgen x1, x2, x3, . . . , xn indsættes, er ele-
menterne x1, x2, x3, . . . , xj−1 allerede indsat og bragt i sorteret orden. Vi
lader dj være antallet af elementerne x1, x2, x3, . . . , xj−1 som er skarpt større
end xj (specielt er d1 altid 0).

Opgave 1

Vis at
n∑

j=1

dj = INV.

Opgave 2

Lad tj være defineret som nederst p̊a side 25 i Cormen et al. Vis at
dj = tj − 1.

Opgave 3

Vis at køretiden for InsertionSort er O(n+INV). [Hint: brug opgave 1 og 2,
samt formlen midt p̊a side 26 i Cormen et al.]

FingerTreeSort

I ethvert binært søgetræ kan elementerne udskrives i O(n) tid via et inorder
gennemløb (se øverst side 288 i Cormen et al.). Dvs. at man kan sortere ved
at bygge et søgetræ og derefter udskriver elementerne. Dette tager O(n) tid
plus tiden for at bygge træet.

FingerTreeSort ligner InsertionSort ved at elementerne xj indsættes efter
stigende j, nu blot i et balanceret søgetræ fremfor et array. Vi vil her an-
vende rød-sorte træer. En yderligere idé i FingerTreeSort er at vedligeholde
en reference T .max til knuden med det største element i træet (dvs. den ned-
erste knude p̊a højrestien i træet), og foretage søgningen efter næste indsæt-
telsespunkt derfra (i stedet for fra roden). Her betegner indsættelsespunktet
det blad, som under indsættelsen bliver erstattet med en ny knude indehold-
ende xj . Mere præcist indsættes hvert nyt element xj (for j ≥ 2) ved en
procedure beskrevet ved nedenst̊aende pseudokode. Referencen T .max til

2



knuden med det største element kaldes ofte en finger, heraf navnet Fin-
gerTreeSort.

FingerInsert(T , xj)
opret ny knude z indeholdende xj

if T .max.key ≤ xj

indsættelsespunkt = højre barn af T .max
T .max = z

else

v = T .max
while v.key > xj AND v 6= T .root

v = v.parent
søg p̊a normal vis fra v efter indsættelsespunktet

erstat bladet ved indsættelsespunktet med z
rebalancer fra z

(Ovenst̊aende pseudo-kode er en anelse mere højniveau end bogens. Detal-
jeniveauet kan øges med flg. bemærkninger: Koden udført ved en if-case
kan implementeres ved “y = T .max”, “T .max = z”, efterfulgt af linierne 13
(uden else-keyword) og 14–17 p̊a side 315 i Cormen et al. Koden udført ved
en else-case kan implementeres ved while-løkken ovenfor (inkl. initialisering
af v i linien før løkken), efterfulgt af “x = v”, samt linierne 3–8, 11 (med
elseif erstattet af if), og 12–17 p̊a side 315 i Cormen et al..)

I algoritmen FingerTreeSort oprettes først et rød-sort træ med een knude
indeholdende x1, og T .max initialiseres til at være denne knude. Derefter
indsættes x2, x3, . . . , xn alle med FingerInsert. Til sidst udskrives alle
elementer med et inorder gennemløb af træet.

Opgave 4

Argumenter for at træet overholder inorder efter hver indsættelse. [Hint:
argumenter først for at elementerne p̊a højrestien st̊ar i faldende orden n̊ar
man g̊ar opad langs stien.]

Opgave 5

For en else-case, lad w være v.right.right (dvs. højre-højre barnebarnet af
v) hvis T .max 6= T .root, og v.right hvis T .max = T .root. Argumenter for
at w findes (evt. som blad, dvs. NIL), og at alle elementer i w’s undertræ er
skarpt større end xj .

3



Opgave 6

Lad u være højeste sorte knude p̊a højrestien som ligger under knuden w fra
opgave 5. Dvs. u er w selv eller dens højre barn (pga. krav 4 p̊a side 308 i
Cormen et al.).

Bemærk at for enhver sort knude (herunder u) i et rød-sort træ overholder
dets undertræ alle kravene p̊a side 308 i Cormen et al., og er derfor selv et
rød-sort træ. Bemærk ogs̊a at for enhver knude (herunder v) i et rød-sort
er længste sti til et blad højst to gange længere end korteste sti til et blad
(pga. kravene 4 og 5 p̊a side 308 i Cormen et al.).

Baseret p̊a disse bemærkninger, Lemma 13.1 fra side 309 i Cormen et al.,
samt opgave 5, argumenter for at køretiden for FingerInsert p̊a element xj

er O(1 + log(dj + 1)), n̊ar man ikke medtager tiden til rebalancering (den
sidste linie i pseudokoden for FingerInsert).

Opgave 7

Man kan vise (med metoder fra Calculus) at der for alle samlinger af positive
tal y1, y2, y3, . . . , yn gælder

∑n
i=1

log(yi) ≤ n log(Y/n), hvor Y =
∑n

i=1
yi.

(formlen siger at for fast sum Y er udtrykket
∑n

i=1
log(yi) størst hvis alle yi

er lige store.)

Argumenter for at FingerTreeSort kører i tid O(n + n log(INV/n + 1)).

[Hint: Du skal bruge oplysningen ovenfor, resultaterne fra opgave 1 og op-
gave 6, samt resultatet fra opgave 2 i del II af projektet].

(Man kan i øvrigt vise at dette er bedst mulig adaptiveness til INV for
sammenligningsbaseret (jvf. Cormen et al., afsnit 8.1) sortering: en sam-
menligningsbaseret algoritme, der korrekt sorterer alle input af størrelse n
som har et INV-tal p̊a I eller derunder, må have en worst-case køretid (over
disse input) som er Ω(n + n log(I/n + 1)).)

Opgave 8

Implementer InsertionSort (eller genbrug din kode fra ugeseddel 1) og Fin-
gerTreeSort (som i meget høj grad kan baseres p̊a kode fra Del II).

Det er vigtigt at du under udviklingen altid tester at output er korrekt, dvs.
efter en testkørsel løber output igennem og checker at det er sorteret (ved at
checke at alle nabopar st̊ar i rigtig rækkefølge). Du skal i næste opgave måle
køretid og sammenligne algoritmer, og det er meningsløst at sammenligne
algoritmer der ikke er korrekte (det er f.eks. trivielt at lave en meget hurtig
algoritme, hvis den ikke behøver løse opgaven).

4



Opgave 9

Du skal i denne opgave sammenligne køretiden for dine implementationer
af FingerTreeSort (teoretisk set optimalt adaptiv til INV-målet), Insertion-
Sort (adaptiv til INV-målet), samt din implementation af MergeSort (ikke
adaptiv, den laver essentielt samme mængde arbejde for alle input af samme
størrelse) fra Del I.

Du skal først vha. afprøvning finde en inputstørrelse n, hvor MergeSort tager
ca. et sekund (den præcise tid er ikke vigtig). Dette n er fast for resten af
opgaven.

For dette n skal du køre alle dine tre algoritmer p̊a input med varierende
værdi af INV. Underviseren udleverer en Java-metode generateInput, der
som input tager n samt en parameter k, som skal ligge mellem 0 og n.
Metoden leverer s̊a et tilfældigt output med INV liggende i nærheden af nk.

Lav et program, som for hver af det tre algoritmer, og for hver af værdierne
k = 1, 2, 4, 8, . . . , 2i, . . . , n gør flg.:

• Kalder generateInput for at f̊a genereret et input (et array af int’s).

• Kører din O(n log n) algoritme fra Del I (fra FastInv.java) p̊a en kopi

af det genererede input (da algoritmen jo sorterer undervejs, skal den
arbejde p̊a en kopi), for at tælle den præcise værdi af INV i dette.

• Sorterer det genererede input med den p̊agældende sorteringsalgo-
ritme, og måler køretiden ved at indsættte to kald til Javas bib-
lioteksmetode System.currentTimeMillis(), eet lige før sorteringen
g̊ar i gang, og eet lige bagefter (sl̊a funktionaliteten af metoden op i
Javas online dokumentation), hvorudfra køretiden for selve sorteringen
(og kun den, dvs. uden generering af input, optælling af INV, check af
output) beregnes.

• Udskriver INV og køretid.

Det kan være nødvendigt at undlade de største værdier af k for algoritmen
InsertionSort, da disse vil tage for lang tid. Stop f.eks. n̊ar tiden passerer
40 sekunder.

I rapporten skal du inkludere en graf, som for alle tre algoritmer i samme
koordinatsystem plotter log(INV/n) (hvor INV er den målte værdi) p̊a
førsteaksen og målt køretid p̊a andenaksen. Du skal kommentere p̊a re-
sultatet (hvad kan man se, hvilken algoritme vil du foretrække hvorn̊ar?).

(Det er i øvrigt værd at bemærke at InsertionSort og FingerTreeSort ikke

skal kende INV-tallet for at opn̊a den analyserede køretid. Vi bruger kun
algoritmen fra FastInv.java fordi vi selv gerne vil kende INV-tallet for
input for at kunne lave grafen.)

5



Formalia

Lav en rapport, som indeholder dine svar p̊a opgaverne ovenfor. For spørgs-
mål med implementation skal koden være passende kommenteret, skal in-
kluderes i rapporten som bilag, og eventuelle ikke-trivielle aspekter af imple-
menteringen skal diskuteres i rapportens hoveddel. Der skal afleveres rap-
porten i pdf-format, samt Java-implementationen som separate filer (dvs.
udover deres inklusion p̊a tryk i rapporten). Der er ingen krav til navngivn-
ing af koden her i del III.

Materialet afleveres med aflever kommandoen i en shell p̊a Imadas Linux-
system: Lav et directory som indeholder ovenst̊aende filer, flyt ned i dette,
og udfør kommandoen aflever DM507. Dette vil kopiere indholdet af dette
directory til et sted i systemet, som underviseren kan tilg̊a. En email vil
blive sendt til ens studentermail som kvittering. Man kan bruge komman-
doen flere gange, senere anvendelser overskriver materialet fra tidligere an-
vendelser.

Aflever materialet senest:

Torsdag den 20. maj, 2010, kl. 23:59.

6


