DMb507 Algoritmer og datastrukturer
Forar 2010

Projekt, del III

Institut for matematik og datalogi
Syddansk Universitet

24. april, 2010 (let justeret 10. maj og 21. maj 2010)

Dette projekt udleveres i tre dele. Hver del har sin deadline, saledes at
afleveringerne, og dermed arbejdet, strackkes over hele semesteret. Projektet
skal besvares individuelt. Deadline for del III er torsdag den 20. mayj.

Adaptive sorteringsalgoritmer

En sorteringsalgoritme kaldes adaptiv hvis den kgrer hurtigere, nar input-
folgen er taet pa at veere sorteret i forvejen. For at ggre dette begreb preecist,
ma man definere et mal for et inputs afstand fra at veere sorteret. Antallet af
1'j input er et klassisk mal, med mange egenskaber som intuitivt
virker fornuftige: en stigende (dvs. sorteret) fplge har nul inversioner, en
aftagende (dvs. omvendt sorteret) fglge har det maksimale antal inversioner
(nemlig n(n — 1)/2 = ©(n?)), og hvis sterre elementer flyttes foran mindre
elementer, stiger antallet af inversioner. 1 dette projekt lader vi INV betegne
antallet af inversioner i input.

inversioner

Malet for del III af projektet er at

e Vise at InsertionSort er adaptiv mht. malet INV.

e Baseret pa arbejdet i del II at udvikle en sorteringsalgoritme, Fin-
gerTreeSort, som er endnu mere adaptiv mth. INV end InsertionSort.

e Implementere InsertionSort og FingerTreeSort.

e Sammenligne disse to algoritmer, samt MergeSort (som ikke er adap-
tiv), med hensyn til kgretid i praksis pa inputs med varierende INV-
mal.

1Se del I af projektet for definitionen af inversioner



InsertionSort

InsertionSort er beskrevet i Cormen et al., afsnit 2.1, analyseret i afsnit 2.2,
og implementeret i Java som en opgave pa Ugeseddel 1.

Nar det j'te element x; i inputfglgen x1,292,23,...,2, indsattes, er ele-
menterne x1,r2,23,...,2j_1 allerede indsat og bragt i sorteret orden. Vi
lader d; vaere antallet af elementerne 1, x9, 23, ...,;_1 som er skarpt stgrre
end x; (specielt er dy altid 0).

Opgave 1

Vis at

n

> d; =INV.
j=1

Opgave 2

Lad ¢; veere defineret som nederst pa side 25 i Cormen et al. Vis at

Opgave 3

Vis at kgretiden for InsertionSort er O(n+INV). [Hint: brug opgave 1 og 2,
samt formlen midt pa side 26 i Cormen et al.]

FingerTreeSort

I ethvert bingert sggetrae kan elementerne udskrives i O(n) tid via et inorder
gennemlgb (se gverst side 288 i Cormen et al.). Dvs. at man kan sortere ved
at bygge et sggetrae og derefter udskriver elementerne. Dette tager O(n) tid
plus tiden for at bygge treaeet.

FingerTreeSort ligner InsertionSort ved at elementerne x; indseettes efter
stigende j, nu blot i et balanceret sggetrae fremfor et array. Vi vil her an-
vende rgd-sorte tracer. En yderligere idé i Finger'TreeSort er at vedligeholde
en reference T'.max til knuden med det storste element i treeet (dvs. den ned-
erste knude pa hgjrestien i traeet), og foretage spgningen efter naeste indsaet-
telsespunkt derfra (i stedet for fra roden). Her betegner indsaettelsespunktet
det blad, som under indsaettelsen bliver erstattet med en ny knude indehold-
ende xj. Mere preecist indseettes hvert nyt element x; (for j > 2) ved en
procedure beskrevet ved nedenstaende pseudokode. Referencen T.max til



knuden med det stgrste element kaldes ofte en finger, heraf navnet Fin-
ger'TreeSort.

FINGERINSERT(T', ;)
opret ny knude z indeholdende x;
if T.max.key < x;
indsaettelsespunkt = hgjre barn af T.max
T.max = z
else
v = T .max
while v.key > z; AND v # T.root
v = v.parent
sgg pa normal vis fra v efter indseettelsespunktet
erstat bladet ved indsaettelsespunktet med z
rebalancer fra z

(Ovenstaende pseudo-kode er en anelse mere hgjniveau end bogens. Detal-
jeniveauet kan gges med flg. bemeaerkninger: Koden udfgrt ved en if-case
kan implementeres ved “y = T.max”, “T.max = 2”7, efterfulgt af linierne 13
(uden else-keyword) og 14-17 pa side 315 i Cormen et al. Koden udfort ved
en else-case kan implementeres ved while-lgkken ovenfor (inkl. initialisering
af v 1 linien for lpkken), efterfulgt af “x = v”, samt linierne 3-8, 11 (med
elseif erstattet af if), og 12-17 pa side 315 i Cormen et al..)

I algoritmen FingerTreeSort oprettes fgrst et rgd-sort tree med een knude
indeholdende x1, og T.max initialiseres til at veere denne knude. Derefter
indsaettes xo,x3,...,x, alle med FINGERINSERT. Til sidst udskrives alle
elementer med et inorder gennemlgb af tracet.

Opgave 4

Argumenter for at traseet overholder inorder efter hver indssettelse. [Hint:
argumenter fgrst for at elementerne pa hgjrestien star i faldende orden nar
man gar opad langs stien.|

Opgave 5

For en else-case, lad w veere v.right.right (dvs. hgjre-hgjre barnebarnet af
v) hvis T.max # T'.root, og v.right hvis T.max = T.root. Argumenter for
at w findes (evt. som blad, dvs. NIL), og at alle elementer i w’s undertree er
skarpt stgrre end ;.



Opgave 6

Lad u veere hgjeste sorte knude pa hgjrestien som ligger under knuden w fra
opgave 5. Dvs. u er w selv eller dens hgjre barn (pga. krav 4 pa side 308 i
Cormen et al.).

Bemeerk at for enhver sort knude (herunder u) i et rgd-sort trae overholder
dets undertrae alle kravene pa side 308 i Cormen et al., og er derfor selv et
rod-sort tree. Bemeerk ogsa at for enhver knude (herunder v) i et rgd-sort
er leengste sti til et blad hgjst to gange leengere end korteste sti til et blad
(pga. kravene 4 og 5 pa side 308 i Cormen et al.).

Baseret pa disse bemeerkninger, Lemma 13.1 fra side 309 i Cormen et al.,
samt opgave 5, argumenter for at kgretiden for FINGERINSERT pa element x;
er O(1 + log(d; + 1)), nar man ikke medtager tiden til rebalancering (den
sidste linie i pseudokoden for FINGERINSERT).

Opgave 7

Man kan vise (med metoder fra Calculus) at der for alle samlinger af positive
tal y1,92,Y3, ..., yn geelder 31, log(y;) < nlog(Y/n), hvor Y = 370, ;.
(formlen siger at for fast sum Y er udtrykket Y ;" | log(y;) storst hvis alle y;
er lige store.)

Argumenter for at FingerTreeSort kerer i tid O(n + nlog(INV/n + 1)).

[Hint: Du skal bruge oplysningen ovenfor, resultaterne fra opgave 1 og op-
gave 6, samt resultatet fra opgave 2 i del IT af projektet].

(Man kan i gvrigt vise at dette er bedst mulig adaptiveness til INV for
sammenligningsbaseret (jvf. Cormen et al., afsnit 8.1) sortering: en sam-
menligningsbaseret algoritme, der korrekt sorterer alle input af storrelse n
som har et INV-tal pa I eller derunder, ma have en worst-case kegretid (over
disse input) som er Q(n + nlog(f/n +1)).)

Opgave 8

Implementer InsertionSort (eller genbrug din kode fra ugeseddel 1) og Fin-
gerTreeSort (som i meget hgj grad kan baseres pa kode fra Del II).

Det er vigtigt at du under udviklingen altid tester at output er korrekt, dvs.
efter en testkgrsel lgber output igennem og checker at det er sorteret (ved at
checke at alle nabopar star i rigtig reekkefglge). Du skal i naeste opgave male
kgretid og sammenligne algoritmer, og det er meningslgst at sammenligne
algoritmer der ikke er korrekte (det er f.eks. trivielt at lave en meget hurtig
algoritme, hvis den ikke behgver lgse opgaven).



Opgave 9

Du skal i denne opgave sammenligne kgretiden for dine implementationer
af FingerTreeSort (teoretisk set optimalt adaptiv til INV-malet), Insertion-
Sort (adaptiv til INV-malet), samt din implementation af MergeSort (ikke
adaptiv, den laver essentielt samme meaengde arbejde for alle input af samme
storrelse) fra Del 1.

Du skal fgrst vha. afprgvning finde en inputstgrrelse n, hvor MergeSort tager
ca. et sekund (den preecise tid er ikke vigtig). Dette n er fast for resten af
opgaven.

For dette n skal du kegre alle dine tre algoritmer pa input med varierende
veerdi af INV. Underviseren udleverer en Java-metode generateInput, der
som input tager n samt en parameter k, som skal ligge mellem 0 og n.
Metoden leverer sa et tilfaeldigt output med INV liggende i naerheden af nk.

Lav et program, som for hver af det tre algoritmer, og for hver af veerdierne
k=1,2,4,8,...,2", ..., n gor flg.:

e Kalder generateInput for at fa genereret et input (et array af int’s).

e Kgrer din O(nlogn) algoritme fra Del I (fra FastInv. java) pa en kopi
af det genererede input (da algoritmen jo sorterer undervejs, skal den
arbejde pa en kopi), for at teelle den preecise veerdi af INV i dette.

e Sorterer det genererede input med den pagseldende sorteringsalgo-
ritme, og maler kgretiden ved at indssettte to kald til Javas bib-
lioteksmetode System.currentTimeMillis (), eet lige fgr sorteringen
gar i gang, og eet lige bagefter (sla funktionaliteten af metoden op i
Javas online dokumentation), hvorudfra kegretiden for selve sorteringen
(og kun den, dvs. uden generering af input, opteelling af INV, check af
output) beregnes.

e Udskriver INV og kgretid.

Det kan veaere ngdvendigt at undlade de stgrste veerdier af k for algoritmen
InsertionSort, da disse vil tage for lang tid. Stop f.eks. nar tiden passerer
40 sekunder.

I rapporten skal du inkludere en graf, som for alle tre algoritmer i samme
koordinatsystem plotter log(INV/n) (hvor INV er den malte veerdi) pa
forsteaksen og malt keretid pa andenaksen. Du skal kommentere pa re-
sultatet (hvad kan man se, hvilken algoritme vil du foretrackke hvornar?).

(Det er i gvrigt veerd at bemerke at InsertionSort og FingerTreeSort ikke
skal kende INV-tallet for at opnéa den analyserede kgretid. Vi bruger kun
algoritmen fra FastInv.java fordi vi selv gerne vil kende INV-tallet for
input for at kunne lave grafen.)



Formalia

Lav en rapport, som indeholder dine svar pa opgaverne ovenfor. For spgrgs-
mal med implementation skal koden vaere passende kommenteret, skal in-
kluderes i rapporten som bilag, og eventuelle ikke-trivielle aspekter af imple-
menteringen skal diskuteres i rapportens hoveddel. Der skal afleveres rap-
porten i pdf-format, samt Java-implementationen som separate filer (dvs.
udover deres inklusion pa tryk i rapporten). Der er ingen krav til navngivn-
ing af koden her i del III.

Materialet afleveres med aflever kommandoen i en shell pa Imadas Linux-
system: Lav et directory som indeholder ovenstaende filer, flyt ned i dette,
og udfgr kommandoen aflever DM507. Dette vil kopiere indholdet af dette
directory til et sted i systemet, som underviseren kan tilgd. En email vil
blive sendt til ens studentermail som kvittering. Man kan bruge komman-
doen flere gange, senere anvendelser overskriver materialet fra tidligere an-
vendelser.

Aflever materialet senest:

Torsdag den 20. maj, 2010, kl. 23:59.



