
Dm507	
  –	
  project	
  1	
  
Emil	
  Sjulstok	
  Rasmussen	
   -­‐	
  050391	
  

Hold:	
  M1	
  



Problem	
  1	
  
In	
  assignment	
  1	
  I	
  have	
  used	
  an	
  ArrayList	
  to	
  store	
  the	
  int’s	
  from	
  the	
  text	
  file,	
  

while	
  in	
  assignment	
  2	
  I	
  have	
  just	
  used	
  an	
  int	
  array.	
  I	
  did	
  this	
  to	
  show	
  that	
  both	
  

methods	
  can	
  be	
  used,	
  but	
  I	
  found	
  it	
  easier	
  to	
  use	
  the	
  int	
  array	
  instead	
  of	
  

ArrayLists.	
  In	
  order	
  to	
  make	
  the	
  array	
  the	
  appropriate	
  size,	
  since	
  normal	
  arrays	
  

can’t	
  be	
  expanded	
  automatically,	
  I	
  traversed	
  the	
  input	
  file	
  an	
  extra	
  time	
  to	
  count	
  

the	
  number	
  of	
  integers	
  it	
  contains.	
  In	
  the	
  end	
  we	
  are	
  trying	
  to	
  create	
  an	
  

algorithm	
  that	
  runs	
  in	
  O(n	
  lg(n))	
  time	
  so	
  it	
  can	
  be	
  justified	
  to	
  traverse	
  the	
  list	
  

twice,	
  since	
  it	
  only	
  takes	
  linear	
  time.	
  

The	
  SimpleInv	
  algorithm	
  finds	
  the	
  inversions	
  in	
  an	
  array	
  by	
  just	
  compare	
  each	
  

element	
  in	
  the	
  list,	
  which	
  makes	
  it	
  very	
  easy	
  to	
  implement.	
  But	
  this	
  

straightforward	
  way	
  doesn’t	
  make	
  for	
  a	
  very	
  good	
  running	
  time,	
  since	
  it	
  uses	
  two	
  

nested	
  loops,	
  it	
  has	
  a	
  running	
  time	
  of	
  Θ(n2).	
  In	
  the	
  following	
  problems	
  we	
  should	
  

end	
  up	
  with	
  an	
  algorithm	
  with	
  a	
  much	
  better	
  running	
  time.	
  

Problem	
  2	
  
To	
  implement	
  MergeSort	
  I	
  pretty	
  much	
  just	
  followed	
  the	
  pseudo	
  code	
  from	
  the	
  
book.	
  The	
  only	
  thing	
  one	
  needs	
  to	
  keep	
  in	
  mind	
  is	
  that	
  in	
  the	
  pseudo	
  code	
  arrays	
  
start	
  at	
  index	
  1	
  and	
  in	
  java	
  they	
  start	
  at	
  index	
  0.	
  There	
  is	
  also	
  another	
  thing	
  that	
  
causes	
  somewhat	
  of	
  a	
  problem,	
  in	
  the	
  pseudo	
  code	
  int’s	
  of	
  value	
  infinity	
  is	
  stored	
  
in	
  the	
  end	
  of	
  the	
  two	
  arrays	
  but	
  in	
  java	
  we	
  can’t	
  use	
  infinity.	
  Therefore	
  I	
  use	
  the	
  
command	
  	
  

integer.MaX_VALUE.	
  

This	
  sets	
  the	
  integer	
  to	
  the	
  largest	
  possible,	
  which	
  is	
  something	
  around	
  

2,147,483,647.	
  As	
  long	
  as	
  the	
  we	
  don’t	
  deal	
  with	
  numbers	
  this	
  size	
  we	
  should	
  be	
  

good.	
  	
  

In	
  MergeSort	
  line	
  89	
  I	
  have	
  used	
  the	
  command	
  	
  

int	
  q	
  =(int)	
  Math.floor((p+r)/2);	
  

I	
  did	
  this	
  to	
  make	
  sure	
  the	
  value	
  (p+r)/2	
  was	
  rounded	
  down	
  properly.	
  One	
  could	
  

argue	
  that	
  just	
  typecasting	
  (p+r)/2	
  as	
  an	
  integer	
  like	
  so	
  

int	
  q	
  =	
  int	
  (p+r)/2;	
  



Would	
  be	
  enough,	
  but	
  I	
  wasn’t	
  totally	
  sure	
  this	
  would	
  round	
  down	
  in	
  the	
  way	
  I	
  

wanted.	
  So	
  I	
  did	
  it	
  in	
  a	
  more	
  tedious	
  way	
  but	
  now	
  I’m	
  sure	
  that	
  q	
  is	
  rounded	
  

down	
  properly.	
  

	
  

Problem	
  3	
  
To	
  modify	
  the	
  merge	
  algorithm	
  to	
  also	
  count	
  the	
  number	
  of	
  inversions	
  between	
  

the	
  sub	
  arrays	
  L	
  and	
  R,	
  can	
  easily	
  be	
  done	
  when	
  we	
  now	
  that	
  the	
  two	
  sub	
  arrays	
  

are	
  sorted.	
  Since	
  the	
  two	
  arrays	
  are	
  sorted,	
  we	
  know	
  that	
  if	
  L[i]>R[i]	
  then	
  the	
  

rest	
  of	
  the	
  elements	
  in	
  L	
  will	
  also	
  be	
  greater	
  then	
  R[i]	
  and	
  there	
  will	
  be	
  L.length-­‐

1-­‐i	
  elements	
  left	
  in	
  the	
  array,	
  with	
  this	
  in	
  mind	
  we	
  can	
  implement	
  the	
  counter	
  

zCounter	
  in	
  the	
  following	
  way.	
  

We	
  start	
  by	
  initiating	
  the	
  new	
  variable.	
  

Int	
  zCounter	
  =	
  0;	
  

Then	
  after	
  line	
  17	
  in	
  the	
  pseudo	
  code	
  from	
  the	
  book	
  we	
  insert	
  the	
  following	
  

zCounter	
  =	
  zCounter	
  +	
  (L.length-­1-­i);	
  

Lastly	
  I	
  also	
  want	
  the	
  algorithm	
  to	
  return	
  the	
  number	
  of	
  inversions,	
  so	
  after	
  the	
  

last	
  line	
  in	
  Merge	
  I	
  add	
  

return	
  zCounter;	
  

This	
  effectively	
  gives	
  us	
  the	
  number	
  of	
  inversions	
  between	
  the	
  subarrays	
  L	
  and	
  

R,	
  I	
  will	
  show	
  that	
  this	
  implementation	
  is	
  correct	
  in	
  the	
  following	
  section.	
  	
  

	
  

Problem	
  4	
  
If	
  we	
  use	
  the	
  suggested	
  loop	
  invariant,	
  i.e.	
  zCounter	
  =	
  z	
  -­‐	
  inv(s,t),	
  we	
  start	
  by	
  

showing	
  that	
  this	
  loop	
  invariant	
  is	
  true	
  before	
  the	
  loop	
  is	
  initiated.	
  

Initialization:	
  	
  

	
  Before	
  we	
  enter	
  the	
  loop	
  we	
  need	
  to	
  show	
  that	
  zCounter	
  is	
  zero,	
  to	
  do	
  this	
  we	
  

use	
  that	
  z	
  is	
  always	
  the	
  same	
  number	
  because	
  it	
  is	
  just	
  the	
  number	
  of	
  inversions	
  



between	
  the	
  two	
  arrays	
  and	
  this	
  number	
  does	
  not	
  change,	
  the	
  number	
  of	
  

inversions	
  between	
  s	
  and	
  t	
  however	
  does.	
  We	
  now	
  the	
  following	
  about	
  s	
  and	
  t	
  

p+i-­‐1	
  ≤	
  s	
  ≤	
  q	
  	
   	
   	
  q+j≤t≤r	
  

Before	
  we	
  enter	
  the	
  loop	
  i=1	
  and	
  j=1	
  that	
  is	
  	
  

p	
  ≤	
  s	
  ≤	
  q	
  	
   	
   	
  q+1≤	
  t	
  ≤r	
  

But	
  this	
  means	
  that	
  s	
  spans	
  the	
  entire	
  array	
  L	
  and	
  t	
  spans	
  the	
  entire	
  array	
  R	
  so	
  

the	
  number	
  of	
  inversions	
  between	
  these	
  two	
  is	
  exactly	
  z.	
  This	
  leaves	
  us	
  with	
  

zCounter	
  =	
  z-­‐z	
  =	
  0.	
  Which	
  is	
  what	
  we	
  wanted	
  to	
  show.	
  	
  

Maintenance:	
  

If	
  we	
  move	
  a	
  number	
  from	
  L	
  into	
  A	
  it	
  will	
  form	
  no	
  inversion	
  pairs	
  with	
  the	
  

numbers	
  in	
  R,	
  because	
  they	
  are	
  all	
  higher	
  and	
  have	
  a	
  greater	
  index.	
  When	
  we	
  

move	
  a	
  number	
  from	
  R	
  into	
  A	
  it	
  forms	
  inversion	
  pairs	
  with	
  all	
  the	
  remaining	
  

numbers	
  in	
  L	
  therefore	
  we	
  increase	
  zCounter	
  with	
  L.length-­‐1-­‐I,	
  which	
  is	
  all	
  the	
  

numbers	
  in	
  L.	
  This	
  way	
  we	
  are	
  insured	
  that	
  all	
  the	
  inversions	
  between	
  the	
  two	
  

arrays	
  are	
  found.	
  

So	
  when	
  the	
  loop	
  increases	
  j,	
  t	
  in	
  the	
  loop	
  invariant	
  decreases,	
  that	
  is	
  zCounter	
  

gets	
  bigger,	
  because	
  we	
  subtract	
  a	
  smaller	
  amount	
  (inv(s,t))	
  from	
  z,	
  but	
  the	
  

number	
  of	
  inversions	
  that	
  inv(s,t)	
  have	
  lost	
  are	
  now	
  stored	
  in	
  zCounter.	
  

Termination:	
  

When	
  the	
  loop	
  terminates	
  we	
  would	
  expect	
  that	
  zCounter	
  =	
  z,	
  because	
  in	
  the	
  

loop	
  invariant	
  we	
  would	
  have	
  that	
  inv(s,t)	
  =	
  0	
  so	
  zCounter	
  =	
  z	
  -­‐0	
  	
  	
  

This	
  is	
  true	
  because	
  when	
  we	
  exit	
  the	
  loop	
  we	
  have	
  moved	
  all	
  the	
  numbers	
  in	
  the	
  

two	
  arrays	
  and	
  therefore	
  we	
  have	
  all	
  the	
  inversions.	
  	
  

	
  

The	
  running	
  time	
  of	
  the	
  algorithm	
  will	
  be	
  the	
  same	
  as	
  before,	
  i.e.	
  θ(n	
  lg(n))	
  since	
  

I	
  only	
  added	
  a	
  counter.	
  

	
  



Problem	
  5	
  
To	
  create	
  the	
  desired	
  algorithm	
  we	
  only	
  need	
  to	
  use	
  the	
  tools	
  we	
  have	
  already	
  

described.	
  That	
  is	
  the	
  modified	
  merge,	
  and	
  for	
  mergesort	
  to	
  return	
  some	
  integer,	
  

which	
  will	
  be	
  the	
  number	
  of	
  inversions	
  in	
  the	
  given	
  array.	
  

	
  If	
  we	
  implement	
  the	
  modified	
  version	
  of	
  merge	
  in	
  MergeSort.java,	
  it	
  will	
  find	
  the	
  

inversions	
  between	
  all	
  the	
  sub	
  arrays	
  as	
  I	
  have	
  explained	
  I	
  the	
  previous	
  problem.	
  

If	
  we	
  add	
  up	
  all	
  these	
  inversion	
  it	
  turns	
  out	
  that	
  we	
  get	
  all	
  the	
  inversions	
  in	
  the	
  

array.	
  	
  

In	
  order	
  for	
  this	
  to	
  work	
  properly,	
  we	
  will	
  have	
  to	
  return	
  zCounter	
  for	
  all	
  the	
  

subarrays,	
  not	
  just	
  the	
  last	
  one.	
  Modifying	
  mergesort	
  in	
  the	
  following	
  way	
  solves	
  

that	
  problem.	
  

public	
  static	
  int	
  mergesort(int[]	
  A,int	
  p,int	
  r){	
  
	
   if(p<r){	
  
	
   	
  	
  	
  int	
  q	
  =(int)	
  Math.floor((p+r)/2);	
  
	
   	
  	
  	
  int	
  l	
  =	
  mergesort(A,p,q);	
  
	
   	
   int	
  k	
  =	
  mergesort(A,q+1,r);	
  
	
   	
   int	
  z	
  =	
  merge(A,p,q,r);	
  
	
   return	
  z+l+k;}	
  
	
   return	
  0;	
  
Here	
  the	
  variables	
  l,	
  k	
  and	
  z	
  are	
  just	
  used	
  to	
  store	
  the	
  zCounter	
  values	
  for	
  all	
  the	
  
recursive	
  calls.	
  This	
  I	
  needed	
  so	
  I	
  can	
  add	
  them	
  up	
  and	
  return	
  them.	
  
When	
  this	
  is	
  done,	
  we	
  need	
  to	
  print	
  the	
  output	
  of	
  mergesort,	
  so	
  instead	
  of	
  just	
  
calling	
  MergeSort	
  on	
  the	
  given	
  array.	
  This	
  is	
  quite	
  easily	
  done.	
  
System.out.println(MergeSort(A,0,A.length-­1));	
  

This	
  way	
  the	
  output	
  will	
  be	
  the	
  number	
  of	
  inversions	
  in	
  the	
  array	
  A.	
  
The	
  correctness	
  of	
  this	
  algorithm	
  will	
  be	
  shown	
  in	
  the	
  next	
  problem.	
  

	
  

Problem	
  6	
  
To	
  show	
  how	
  my	
  modified	
  version	
  of	
  MergeSort	
  works	
  I	
  have	
  included	
  this	
  

picture	
  that	
  shows	
  how	
  mergesort	
  first	
  breaks	
  down	
  the	
  initial	
  array,	
  

[5,2,4,7,1,3,2,6]	
  into	
  sub	
  arrays	
  of	
  size	
  one	
  and	
  then	
  merging	
  them	
  all	
  together	
  

via	
  the	
  modified	
  merge	
  procedure.	
  Merge	
  has	
  been	
  modified	
  to	
  count	
  the	
  

inversions	
  between	
  two	
  subarrays	
  when	
  merging	
  them,	
  as	
  I	
  have	
  argued	
  in	
  the	
  



previous	
  assignments.	
  The	
  number	
  besides	
  the	
  two	
  arrows	
  that	
  shows	
  when	
  two	
  

arrays	
  are	
  merging	
  is	
  the	
  inversions	
  between	
  the	
  two	
  subarrays,	
  i.e.	
  zCounter.	
  

	
  

The	
  number	
  of	
  inversions	
  in	
  the	
  shown	
  array	
  is	
  14,	
  and	
  if	
  I	
  add	
  up	
  all	
  the	
  

inversions	
  between	
  the	
  different	
  sub	
  arrays	
  I	
  get	
  11+1+1+1	
  =	
  14,	
  which	
  is	
  what	
  I	
  

expected.	
  Now	
  that	
  I	
  have	
  “shown”	
  that	
  the	
  algorithm	
  works,	
  I	
  will	
  try	
  to	
  use	
  

induction	
  to	
  prove	
  it.	
  

We	
  now	
  that	
  when	
  A.length≤1	
  there	
  can	
  be	
  no	
  inversions	
  in	
  it	
  because	
  it	
  is	
  either	
  

empty	
  or	
  just	
  have	
  one	
  element.	
  If	
  A.length≤1	
  in	
  FastInv.java	
  then	
  mergesort	
  will	
  

return	
  zero,	
  because	
  p	
  would	
  be	
  greater	
  then	
  or	
  equal	
  to	
  r.	
  This	
  takes	
  care	
  of	
  the	
  

case	
  where	
  there	
  is	
  1	
  or	
  fewer	
  elements	
  in	
  A.	
  

I	
  now	
  assume	
  that	
  FastInv	
  returns	
  the	
  correct	
  number	
  of	
  inversions	
  when	
  

A.length<	
  k,	
  where	
  k	
  =	
  2,3,4	
  …	
  n-­‐1,	
  now	
  we	
  consider	
  the	
  case	
  where	
  A.length	
  =	
  n.	
  

FastInv	
  will	
  create	
  two	
  new	
  sub	
  arrays	
  R	
  and	
  L,	
  L	
  consisting	
  of	
  the	
  first	
  half	
  of	
  A	
  

in	
  sorted	
  order	
  and	
  R	
  consisting	
  of	
  the	
  second	
  half	
  of	
  A	
  in	
  sorted	
  order.	
  We	
  can	
  

see	
  that	
  L<n	
  and	
  R<n	
  by	
  using	
  induction	
  we	
  can	
  conclude	
  that	
  the	
  number	
  of	
  

inversions	
  calculated	
  and	
  stored	
  in	
  l	
  and	
  k	
  are	
  correct.	
  	
  

To	
  show	
  that	
  we	
  get	
  all	
  the	
  inversions	
  that	
  are	
  in	
  A,	
  we	
  look	
  at	
  the	
  three	
  cases	
  of	
  

inversions	
  that	
  are	
  possible,	
  all	
  have	
  that	
  L[i]>R[j].	
  

If	
  i	
  and	
  j	
  are	
  in	
  the	
  first	
  half	
  of	
  A	
  then	
  the	
  inversions	
  are	
  calculated	
  and	
  stored	
  in	
  

the	
  variable	
  l	
  in	
  the	
  mergesort	
  procedure	
  



If	
  i	
  and	
  j	
  are	
  in	
  the	
  second	
  half	
  of	
  A	
  then	
  the	
  inversions	
  are	
  calculated	
  and	
  stored	
  

in	
  the	
  variable	
  k	
  in	
  the	
  mergesort	
  procedure	
  

If	
  i	
  and	
  j	
  are	
  in	
  the	
  first	
  half	
  and	
  second	
  half	
  respectively	
  then	
  they	
  are	
  calculated	
  

by	
  the	
  modified	
  merge	
  procedure	
  and	
  stored	
  in	
  z.	
  

Therefore	
  this	
  algorithm	
  will	
  find	
  all	
  the	
  inversions	
  in	
  the	
  array	
  A,	
  and	
  return	
  

them,	
  since	
  it	
  return	
  l+k+z.	
  

	
  

The	
  running	
  time	
  of	
  this	
  algorithm	
  will	
  still	
  be	
  θ(n	
  lg(n)),	
  since	
  we	
  only	
  add	
  

constant	
  work,	
  which	
  is	
  absorbed	
  in	
  the	
  constant	
  related	
  to	
  the	
  big	
  theta	
  

notation.	
  	
  

	
  

Problem	
  7	
  
Here	
  I	
  have	
  implemented	
  the	
  changes	
  in	
  mergeSort	
  i	
  found	
  in	
  problem	
  6	
  so	
  it	
  

finds	
  the	
  number	
  of	
  inversions	
  in	
  the	
  given	
  array,	
  A.	
  Again	
  I	
  have	
  used	
  a	
  simple	
  

int	
  array	
  to	
  store	
  the	
  numbers,	
  and	
  found	
  the	
  appropriate	
  size	
  of	
  the	
  array	
  by	
  

traversing	
  the	
  list	
  ones	
  before	
  adding	
  the	
  numbers.	
  	
  

After	
  implementing	
  this	
  algorithm	
  I	
  timed	
  the	
  two	
  algorithms	
  SimpleInv.java	
  and	
  

FastInv.java	
  when	
  their	
  input	
  was	
  an	
  approximately	
  50.000	
  digit	
  reversely	
  

sorted	
  array.	
  This	
  yields	
  a	
  running	
  time	
  for	
  SimpleInv	
  that	
  is	
  around	
  40	
  seconds	
  

and	
  a	
  running	
  time	
  for	
  FastInv	
  that	
  is	
  around	
  30	
  miliseconds.	
  This	
  really	
  shows	
  

how	
  big	
  a	
  difference	
  there	
  is	
  between	
  the	
  two	
  algorithms,	
  and	
  how	
  important	
  

choosing	
  the	
  right	
  algorithm	
  is.	
  

	
  

	
  

	
  

	
  	
  



Appendix	
  

SimpleInv:	
  
import	
  java.util.*;	
  
import	
  java.io.*;	
  
public	
  class	
  SimpleInv{	
  
public	
  static	
  void	
  main(String[]	
  args){	
  
ArrayList<Integer>	
  A	
  =	
  new	
  ArrayList<Integer>();	
  
//	
  Creates	
  a	
  new	
  ArrayList	
  named	
  A	
  that	
  will	
  be	
  used	
  to	
  store	
  the	
  integers	
  from	
  
the	
  given	
  text	
  file.	
  	
  
	
   	
   Scanner	
  sc	
  =	
  new	
  Scanner(System.in);	
  
	
   	
   //	
  Creates	
  a	
  new	
  scanner	
  called	
  sc	
  that	
  will	
  be	
  used	
  to	
  handle	
  the	
  
input	
  from	
  the	
  text	
  file.	
  
	
   	
   File	
  infile	
  =	
  new	
  File(args[0]);	
  
	
   	
   try{	
  
	
   	
   Scanner	
  s	
  =	
  new	
  Scanner(infile);	
  
	
   	
   	
  
	
   	
   while(s.hasNext()){	
  
	
   	
   	
   A.add(s.nextInt());	
  
	
   	
   }	
  
	
   }	
  catch(FileNotFoundException	
  ex){	
  
	
   System.out.println("File	
  not	
  found!");	
  
	
   }	
  
	
   //	
  The	
  above	
  adds	
  each	
  integer	
  from	
  the	
  tekst	
  file,	
  given	
  as	
  an	
  argument	
  
in	
  the	
  cmd,	
  to	
  the	
  ArrayList	
  A,	
  if	
  the	
  given	
  file	
  does	
  not	
  exist	
  an	
  error	
  message	
  
will	
  be	
  thrown.	
  	
  
	
   	
  
	
   	
   int	
  counter	
  =	
  0;	
  
	
   	
   //	
  Here	
  a	
  variable	
  called	
  counter	
  is	
  created	
  and	
  set	
  to	
  be	
  zero.	
  This	
  
variable	
  will	
  count	
  the	
  number	
  of	
  inversions	
  in	
  the	
  tekst	
  file.	
  
	
   	
   	
  
	
   	
  
	
   	
   for(int	
  i=0;	
  i<A.size()-­‐1;	
  i++){	
  
	
   	
   	
   for(int	
  j	
  =	
  i+1	
  ;j<A.size();	
  j++){	
  
	
   	
   	
   	
   if(A.get(i)>A.get(j)){	
  
	
   	
   	
   	
   counter++;	
  
	
   	
   	
   }	
  
	
   	
   	
   }	
  
	
   	
   	
   	
  
	
   	
   }	
  
	
   	
   	
  
	
   	
   System.out.println(counter);	
  
	
   //	
  The	
  two	
  for	
  loops	
  runs	
  through	
  every	
  number	
  in	
  A	
  and	
  checks	
  if	
  
A[i]>A[j]	
  i.e.	
  if	
  there	
  is	
  an	
  invertion,	
  if	
  there	
  the	
  counter	
  is	
  increased	
  by	
  one.	
  
	
   }	
  
}	
  
	
  



MergeSort:	
  

import	
  java.util.*;	
  
import	
  java.io.*;	
  
public	
  class	
  MergeSort{	
  
	
   	
  	
  public	
  static	
  void	
  main(String[]	
  args){	
  
	
   	
  
	
   File	
  infile	
  =	
  new	
  File(args[0]);	
  
	
   int	
  counter=	
  0;	
  
	
   int	
  x	
  =	
  0;	
  
	
   try{	
  
	
   Scanner	
  s	
  =	
  new	
  Scanner(infile);	
   	
  
	
   while(s.hasNextInt()){	
  
	
   	
   s.nextInt();	
  
	
   	
   counter++;	
  
	
   }	
  
}	
  catch(FileNotFoundException	
  e){	
  
	
   System.out.println("File	
  not	
  found");	
  
}	
  
//	
  The	
  above	
  traverses	
  the	
  file	
  given	
  as	
  an	
  argument	
  in	
  the	
  cmd,	
  and	
  counts	
  the	
  
number	
  of	
  integers	
  in	
  it	
  in	
  the	
  parameter	
  counter	
  
	
  
	
  
int	
  A[]	
  =	
  new	
  int[counter];	
   	
  
//Here	
  the	
  array	
  of	
  ints,	
  A,	
  that	
  should	
  hold	
  the	
  elements	
  from	
  the	
  tekst	
  file,	
  is	
  
created.	
  
	
  
	
  
	
   try{	
  
	
   	
   Scanner	
  sc	
  =	
  new	
  Scanner(infile);	
  
	
   	
   while(sc.hasNextInt()){	
  
	
   	
   	
   A[x]	
  =	
  sc.nextInt();	
  
	
   	
   	
   x++;	
  
	
   	
   }	
  
	
   }	
  catch(FileNotFoundException	
  ex){	
  
	
   	
   System.out.println("File	
  not	
  found");	
  



	
   }	
  
	
   //	
  The	
  above	
  adds	
  each	
  element	
  from	
  the	
  tekst	
  file	
  to	
  the	
  array	
  A.	
  If	
  the	
  
name	
  given	
  in	
  the	
  cmd	
  is	
  not	
  a	
  tekst	
  file,	
  an	
  exception	
  is	
  thrown.	
  
	
   	
  
	
  
	
   	
  mergesort(A,0,A.length-­‐1);	
  
	
   //	
  Here	
  the	
  mergesort	
  procedure	
  is	
  called	
  with	
  the	
  array	
  A,	
  the	
  start	
  of	
  A	
  
and	
  the	
  end	
  of	
  a,	
  as	
  arguments.	
  
	
   	
  
	
   	
  
	
   for(int	
  i=0;i<A.length;i++){	
  
	
   	
   System.out.print(A[i]	
  +	
  "	
  ");	
  
	
   }	
  
	
   //This	
  for	
  loop	
  prints	
  the	
  sorted	
  array	
  A	
  in	
  one	
  line.	
  
	
   	
  	
  }	
  
	
   	
  
public	
  static	
  void	
  merge(int[]	
  A,	
  int	
  p	
  ,int	
  q,	
  int	
  r){	
  
	
   int	
  n1	
  =	
  q-­‐p+1;	
  
	
   int	
  n2	
  =	
  r-­‐q;	
  
	
   int[]	
  L	
  =	
  new	
  int[n1+2];	
  
	
   int[]	
  R	
  =	
  new	
  int[n2+2];	
  
	
   //	
  Creates	
  the	
  variables	
  nedded	
  in	
  the	
  procedure	
  merge.	
  
	
   	
  
	
   for(int	
  i=1;	
  i<=n1;	
  i++){	
  
	
   	
   L[i]	
  =	
  A[p+i-­‐1];	
  
	
   	
   }	
  
	
   	
   //	
  Adds	
  the	
  appropriate	
  numbers	
  to	
  the	
  subarray	
  L	
  
	
   	
   	
  
	
   	
   for(int	
  j=1;	
  j<=n2;	
  j++){	
  
	
   	
   	
   R[j]	
  =	
  A[q+j];	
  
	
   	
   }	
  
	
   	
   //	
  Adds	
  the	
  appropriate	
  numbers	
  to	
  the	
  subarray	
  R	
  
	
   	
   	
  
	
   	
   L[n1+1]	
  =	
  Integer.MAX_VALUE;	
  
	
   	
   R[n2+1]	
  =	
  Integer.MAX_VALUE;	
  



	
   	
   //	
  Here	
  we	
  add,	
  what	
  corresponds	
  to	
  infinity,	
  to	
  the	
  end	
  of	
  each	
  of	
  
the	
  subarrays	
  L	
  and	
  R,	
  so	
  the	
  procedure	
  nows	
  when	
  the	
  arrays	
  end.	
  	
  
	
   	
   	
  
	
   	
   int	
  i	
  =	
  1;	
  
	
   	
   int	
  j	
  =	
  1;	
  
	
   	
   //	
  Here	
  the	
  variables	
  i	
  and	
  j	
  are	
  initially	
  set	
  to	
  be	
  one,	
  which	
  we	
  
will	
  need	
  later	
  
	
   	
   for(int	
  k	
  =	
  p;	
  k<=r;	
  k++){	
  
	
   	
   	
   if(L[i]	
  <=	
  R[j]){	
  
	
   	
   	
   	
   A[k]	
  =	
  L[i];	
  
	
   	
   	
   	
   i	
  =	
  i+1;	
  
	
   	
   	
   }	
  
	
   	
   	
   else{	
  
	
   	
   	
   	
   A[k]	
  =	
  R[j];	
  
	
   	
   	
   	
   j	
  =	
  j+1;	
  
	
   	
   	
   }	
  
	
   	
   }	
  
	
   }	
  
	
   	
  
	
  
//	
  The	
  above	
  for	
  loop	
  checks	
  if	
  L[i]<=R[j],	
  and	
  adds	
  the	
  smallest	
  back	
  to	
  the	
  
original	
  array	
  A,	
  such	
  that	
  A	
  will	
  consist	
  of	
  its	
  original	
  elements	
  in	
  a	
  sorted	
  order.	
  
	
  
	
  
public	
  static	
  void	
  mergesort(int[]	
  A,int	
  p,int	
  r){	
  
	
   if(p<r){	
  
	
   	
  	
  	
  int	
  q	
  =(int)	
  Math.floor((p+r)/2);	
  
	
   	
  	
  	
   mergesort(A,p,q);	
  
	
   	
   mergesort(A,q+1,r);	
  
	
   	
   merge(A,p,q,r);	
  
	
   }	
  
	
   //	
  Here	
  the	
  procedure	
  mergesort	
  is	
  created.	
  It	
  calls	
  itself	
  in	
  such	
  a	
  way	
  
that	
  it	
  creates	
  two	
  subproblems	
  each	
  of	
  the	
  original	
  size	
  divided	
  by	
  two.	
  
}	
  
}	
  
	
  



	
  
	
  

FastInv:	
  
import	
  java.util.*;	
  
import	
  java.io.*;	
  
public	
  class	
  FastInv{	
  
	
   	
  	
  public	
  static	
  void	
  main(String[]	
  args){	
  
	
   	
  
	
   File	
  infile	
  =	
  new	
  File(args[0]);	
  
	
   int	
  counter=	
  0;	
  
	
   int	
  x	
  =	
  0;	
  
	
   try{	
  
	
   Scanner	
  s	
  =	
  new	
  Scanner(infile);	
   	
  
	
   while(s.hasNextInt()){	
  
	
   	
   s.nextInt();	
  
	
   	
   counter++;	
  
	
   }	
  
}	
  catch(FileNotFoundException	
  e){	
  
	
   System.out.println("File	
  not	
  found");	
  
}	
  
//	
  The	
  above	
  traverses	
  the	
  file	
  given	
  as	
  an	
  argument	
  in	
  the	
  cmd,	
  and	
  counts	
  the	
  
number	
  of	
  integers	
  in	
  it	
  in	
  the	
  parameter	
  counter	
  
	
  
	
  
int	
  A[]	
  =	
  new	
  int[counter];	
   	
  
//Here	
  the	
  array	
  of	
  ints,	
  A,	
  that	
  should	
  hold	
  the	
  elements	
  from	
  the	
  tekst	
  file,	
  is	
  
created.	
  
	
  
	
  
	
   try{	
  
	
   	
   Scanner	
  sc	
  =	
  new	
  Scanner(infile);	
  
	
   	
   while(sc.hasNextInt()){	
  
	
   	
   	
   A[x]	
  =	
  sc.nextInt();	
  
	
   	
   	
   x++;	
  
	
   	
   }	
  
	
   }	
  catch(FileNotFoundException	
  ex){	
  
	
   	
   System.out.println("File	
  not	
  found");	
  
	
   }	
  
	
   //	
  The	
  above	
  adds	
  each	
  element	
  from	
  the	
  tekst	
  file	
  to	
  the	
  array	
  A.	
  If	
  the	
  
name	
  given	
  in	
  the	
  cmd	
  is	
  not	
  a	
  tekst	
  file,	
  an	
  exception	
  is	
  thrown.	
  
	
   	
  
	
  
	
   	
  System.out.println(	
  mergesort(A,0,A.length-­‐1));	
  
	
   //	
  Here	
  the	
  mergesort	
  procedure	
  is	
  called	
  with	
  the	
  array	
  A,	
  the	
  start	
  of	
  A	
  
and	
  the	
  end	
  of	
  a,	
  as	
  arguments,	
  and	
  is	
  printed	
  so	
  we	
  get	
  the	
  number	
  of	
  inversions	
  
of	
  in	
  A	
  as	
  the	
  output.	
  
	
   	
  	
  }	
  
	
   	
  



public	
  static	
  int	
  merge(int[]	
  A,	
  int	
  p	
  ,int	
  q,	
  int	
  r){	
  
	
   int	
  n1	
  =	
  q-­‐p+1;	
  
	
   int	
  n2	
  =	
  r-­‐q;	
  
	
   int[]	
  L	
  =	
  new	
  int[n1+2];	
  
	
   int[]	
  R	
  =	
  new	
  int[n2+2];	
  
	
   //	
  Creates	
  the	
  variables	
  nedded	
  in	
  the	
  procedure	
  merge.	
  
	
   	
  
	
   for(int	
  i=1;	
  i<=n1;	
  i++){	
  
	
   	
   L[i]	
  =	
  A[p+i-­‐1];	
  
	
   	
   }	
  
	
   	
   //	
  Adds	
  the	
  appropriate	
  numbers	
  to	
  the	
  subarray	
  L	
  
	
   	
   	
  
	
   	
   for(int	
  j=1;	
  j<=n2;	
  j++){	
  
	
   	
   	
   R[j]	
  =	
  A[q+j];	
  
	
   	
   }	
  
	
   	
   //	
  Adds	
  the	
  appropriate	
  numbers	
  to	
  the	
  subarray	
  R	
  
	
   	
   	
  
	
   	
   	
  
	
   	
   	
  
	
   	
   L[n1+1]	
  =	
  Integer.MAX_VALUE;	
  
	
   	
   R[n2+1]	
  =	
  Integer.MAX_VALUE;	
  
	
   	
   //	
  Here	
  we	
  add,	
  what	
  corresponds	
  to	
  infinity,	
  to	
  the	
  end	
  of	
  each	
  of	
  
the	
  subarrays	
  L	
  and	
  R,	
  so	
  the	
  procedure	
  nows	
  when	
  the	
  two	
  arrays	
  end.	
  	
  
	
   	
   	
  
	
   	
   int	
  zCounter	
  =	
  0;	
  
	
   	
   int	
  i	
  =	
  1;	
  
	
   	
   int	
  j	
  =	
  1;	
  
	
   	
   //	
  Here	
  the	
  variables	
  i,	
  j	
  and	
  zCounter	
  are	
  initially	
  set	
  to	
  be	
  one,	
  
which	
  we	
  will	
  need	
  later	
  
	
   	
   for(int	
  k	
  =	
  p;	
  k<=r;	
  k++){	
  
	
   	
   	
   if(L[i]	
  <=	
  R[j]){	
  
	
   	
   	
   	
   A[k]	
  =	
  L[i];	
  
	
   	
   	
   	
   i	
  =	
  i+1;	
  
	
   	
   	
   }	
  
	
   	
   	
   else{	
  
	
   	
   	
   	
   A[k]	
  =	
  R[j];	
  
	
   	
   	
   	
   j	
  =	
  j+1;	
  
	
   	
   	
   	
   zCounter	
  =	
  zCounter	
  +	
  (L.length-­‐1-­‐i);	
  
	
   	
   	
   }	
  
	
   	
   }	
  
return	
  zCounter;	
   }	
  
	
   	
  
	
  
//	
  The	
  above	
  for	
  loop	
  checks	
  if	
  L[i]<=R[j],	
  and	
  adds	
  the	
  smallest	
  back	
  to	
  the	
  
original	
  array	
  A,	
  such	
  that	
  A	
  will	
  consist	
  of	
  its	
  original	
  elements	
  in	
  a	
  sorted	
  order.	
  
//	
  Here	
  zCounter	
  counts	
  the	
  number	
  of	
  inversions	
  between	
  the	
  two	
  arrays	
  that	
  
are	
  being	
  merged,	
  as	
  explained	
  in	
  assignment	
  5-­‐6	
  
	
  
	
  



public	
  static	
  int	
  mergesort(int[]	
  A,int	
  p,int	
  r){	
  
	
   if(p<r){	
  
	
   	
  	
  	
  int	
  q	
  =(int)	
  Math.floor((p+r)/2);	
  
	
   	
  	
  	
  int	
  l	
  =	
  mergesort(A,p,q);	
  
	
   	
   int	
  k	
  =	
  mergesort(A,q+1,r);	
  
	
   	
   int	
  z	
  =	
  merge(A,p,q,r);	
  
	
   return	
  z+l+k;}	
  
	
   //	
  Here	
  the	
  procedure	
  mergesort	
  is	
  created.	
  It	
  calls	
  itself	
  in	
  such	
  a	
  way	
  
that	
  it	
  creates	
  two	
  subproblems	
  each	
  of	
  the	
  original	
  size	
  divided	
  by	
  two,	
  until	
  
each	
  sub	
  array	
  is	
  of	
  size	
  one,	
  then	
  it	
  calls	
  merge	
  on	
  them.	
  
	
   //	
  l,	
  k	
  and	
  z	
  are	
  here	
  variables	
  that	
  hold	
  zCounter	
  for	
  all	
  the	
  subproblems,	
  
therefor	
  we	
  add	
  them	
  together	
  and	
  return	
  them	
  to	
  get	
  all	
  the	
  inversions	
  in	
  A.	
  
return	
  0;	
  
}	
  
}	
  
	
  


