
DM507
Project part III

Esben H. Christensen 300790, M1

Delivered 25/05/2012

Esben H. Christensen SDU Odense

Indhold

1 Task 1 2

2 Task 2 2

3 Task 3 3

4 Task 4 4

5 Task 5 6

6 Appendix 8
6.1 Time.java . 8

6.2 RBT.java . 14

6.3 RBTree.java . 20

6.4 InversionTimeGraph.R . 21

1

Esben H. Christensen SDU Odense

1 Task 1

I will argue that FingerInsert overholds inorder after insertion of a new node. If we enter

the if statement (xj � T:max :key) we insert the new node z as the right child of T:max.
Since z:key = xj � T:max :key we still have inorder because all nodes beside z are

inorder by the original tree and z:key � T:max :key � all other nodes.
If we enter the else statement (xj < T:max :key) then we search from v = T:max to

it�s parent with a while loop and if xj < v:p:key we go up to it�s parent and we do this

until xj � v:key or v = T:root. If we hit the root of the tree then it is just a normal

search and after insertion inorder is upheld. If we end the while loop with xj � v:key then
xj � v:p:key because nodes we go through is in decreasing order when going from right

children to parents by the the �gure in the task description. This means that xj � all

nodes besides v0s subtree. This means that a normal binary search from the root would

go through v and it will be the same as when searching from v. This means that searching

from v and inserting as a result of this will be an inorder tree since a normal search from

the root will result in an inorder tree.

2 Task 2

In this task I will argue the runtime of FingerTreeSort by analysing each part of the

sorting process i.e.:

� Insertion = Search for insertion point + replace leaf with node.

� Rebalancing of the tree after each insertion.

� Retrieve the sortet input.

The search part of insertion for all nodes can be shown to be inO
�
n+ n log

�
INV
n
+ 1
��

and relpacing a leaf by a node takes constant time. The total work of rebalancing the

tree after each insertion has been shown to take O(n) in part II of the project because

the tree is a red-black tree. Retrieving the sortet input takes O(n) beacuse we only touch

each node once.

This means that the total work will be:

O

�
n+ n log

�
INV

n
+ 1

�
+ n+ n

�
= O

�
3n+ n log

�
INV

n
+ 1

��
= O

�
n+ n log

�
INV

n
+ 1

��

2

Esben H. Christensen SDU Odense

3 Task 3

I will start by looking at the asymptotic runtime for InsertionSort for di¤erent number

of inversions since we know that InsertionSort runs in �(n+ INV):

InsertionSort
INV �(n+ INV)

0 �(n+ 0) = �(n)

n �(n+ n) = �(n)

n3=2 �(n+ n3=2) = �(n3=2)
n2

4
�(n+ n2

4
) = �(n2)

The asymptotic runtime for FingerTreeSort for di¤erent number of inversions has been

shown to be O(n+n log(INV
n
+1)) and it can be shown that it is also
(n+n log(INV

n
+1))

) �
�
n+ n log(INV

n
+ 1)

�
:

FingerTreeSort

INV �(n+ n log
�
INV
n
+ 1
�
)

0 �(n+ n log
�
0
n
+ 1
�
) = �(n+ n � 0) = � (n)

n �(n+ n log
�
n
n
+ 1
�
) = �(n+ n � log (2 + 1)) = � (n)

n3=2 �
�
n+ n log

�
n3=2

n
+ 1
��
= �(n+ n log

�
n1=2 + 1

�
) = �

�
n+ n1

2
log(n)

�
= �(n log(n))

n2

4
�
�
n+ log

�
n2

4n
+ 1
��
= �

�
n+ n log

�
1
4
n+ 1

��
= �(n+ n log (n)) = � (n log (n))

The asymptotic runtime for MergeSort does not depend on the number of inversions

and the runtime for MergeSort has been shown in part I of the project to be �(n log (n)).

3

Esben H. Christensen SDU Odense

4 Task 4

In the implementation of FingerTreeSort I will reuse the implementation of RedBlack

trees from the second part of the project, where the insert method will use FingerIn-

sert as described in the project description. The inorderTraversal method has also been

modi�ed so it will return an integer arraylist so when measuring the runtime this is not

included because the integers are sorted in the integer arraylist. The tree will also have

an extra attribute max which will indicate the largest key in the tree which is needed in

FingerInsert but the rest is exactly as in the second part of the project. I have imple-

mented FingerInsert with a method insert which will create a new node with the given

key and call the method FingerInsert with the tree and this node:

public void insert(int k) {

RBnode z = new RBnode(k,this.nil);

FingerInsert(z);

}%

%EndExpansion

\ The implicit pseudo code of FingerInsert where we use this max attribute

of the tree and insert the new node as max if it is larger than the max

value and going upwards in the tree until it is larger than the next parent\

is implemented as follows:

%TCIMACRO{%

%\TeXButton{FingerInsert Pseudo}{\begin{verbatim}

%public void FingerInsert(RBnode z) {

% RBnode y = this.nil;

% if (z.key >= this.max.key) {

% y = this.max;

% this.max = z;

% } else {

% RBnode v = this.max;

% while (z.key < v.key && v != this.root) {

% v = v.p;

% }

% ...

% }

%}

%

public void FingerInsert(RBnode z) {

RBnode y = this.nil;

4

Esben H. Christensen SDU Odense

if (z.key >= this.max.key) {

y = this.max;

this.max = z;

} else {

RBnode v = this.max;

while (z.key < v.key && v != this.root) {

v = v.p;

}

...

}

}

The search for insertionpoint in the else statement after going upwards in the tree is

executed by a while loop which implements a simple binary search and we will remember

the last node before we hit the nil node:

public void FingerInsert(RBnode z) {

...

else {

while (v != this.nil) {

y = v;

if (z.key < v.key) {

v = v.left;

} else {

v = v.right;

}

}

}

z.p = y;

...

}

With the search we have found the parent of the new node so we can now replace the leaf

with the node depending only on the relationship between the keys of the parent and the

node:

public void FingerInsert(RBnode z) {

...

if (y == this.nil) {

this.root = z;

this.max = z;

5

Esben H. Christensen SDU Odense

} else if (z.key < y.key) {

y.left = z;

} else {

y.right = z;

}

z.left = this.nil;

z.right = this.nil;

z.color = false; // RED

RBInsertFixup(z);

}

Notice that if the parent of the node is the nil node then we originally have an empty

tree and the new node should be both the root and the max node. And �nally we use

the method RBInsertFixup from the second part of the project to rebalance the tree.

MergeSort and InsertionSort has been implemented as separate methods in my program

which will measure runtime and the implementation can be found in the appendix of

Time.java. MergeSort has been implemented as in the �rst part of the project along with

FastInv which will count the number of inversions, and InsertionSort was implemented

in an exercise session.

5 Task 5

In this task I will compare runtimes of the three search algorithms of Task 4. I have

written a program with a main method where the user will be prompted to choose which

algorithm it should use and will at the end output a �le with the given runtimes measured

and inversions counted for a given k as described in the task desription. My computer

used with MergeSort about one second to sort the array with input size 8 million. I have

then calculated largest i so k = 2i is not larger than 8 million which is calculated by:

i:max = log2
�
8 � 106

�
= 22:9316 < 23

) i:max = 22

I will use a switch statement for each algorithm so I only run one of the algorithms

at each run. Since InsertionSort will take a very long time to sort an array with many

inversions the max value of i will in this case be 12 as it will take about half of a minute

with InsertionSort. With a for-loop going from 0 to i:max the programwill generate input

with the given method generateInput, count the number of inversions with FastInv on a

copy of the generated input and sort the input with the given algorithm where we measure

6

Esben H. Christensen SDU Odense

the time by the di¤erence of the current time found with System.currentTimemillis(). The

program will print both the inversions and time used in the command window but will

also add these to a �le which can then be used to make a graph of the runtimes.

When running the program for the three di¤erent algorithms I am able to get the

following graph with time on the second axis and log(INV
n
) on the �rst axis which will

give a graph where the three algorithms all depend on the number of inversions relative

to the input size and in logarithm:

1

We see that InsertionSort is fastest when sorting an array with few inversions relative

to the input size but when the number of inversions increase it begins to take longer and

longer to sort the input. We also notice that MergeSort is as suspected constant and does

not depend on the number of inversions. FingerTreeSort is steady with a growing number

of inversions but when we get close to the limit of inversions (n2) it starts to increase

but not as much as InsertionSort. I did not however get the result that FingerTreeSort

is better than MergeSort with any number of inversions which should have been the case

according to Task 3, but this might be because the tree from the implementation takes

up a lot of memory along with the fact that the original array still is in the memory, but

I am not sure of this.

1The graph has been made using the program R and the script used has also been added to the
appendix.

7

Esben H. Christensen SDU Odense

6 Appendix

6.1 Time.java

import java.io.*;

import java.util.*;

import java.lang.*;

public class Time {

public static void main(String[] args) throws IOException {

// size of input

int n = 8000000;

Scanner sc = new Scanner(System.in);

System.out.println("Which algorithm shoud be used? \n 1: MergeSort \n 2: FingerTreeSort \n 3: InsertionSort");

// 1: MergeSort \n 2: FingerTreeSort \n 3: InsertionSort

int Alg = sc.nextInt();

int max = 22; // = floor(lg2(8000000))

if (Alg == 3) {

max = 12;

}

File f; // file which will hold inversions and runtime

switch (Alg) {

case 1: {

f = new File("MergeSortTime.txt");

if(!f.exists()){

f.createNewFile();

}

break;}

case 2: {

f = new File("FingerTreeSortTime.txt");

if(!f.exists()){

f.createNewFile();

}

8

Esben H. Christensen SDU Odense

break;}

case 3: {

f = new File("InsertionSortTime.txt");

if(!f.exists()){

f.createNewFile();

}

break;}

default: {

f = new File("Invalid Algorithm.txt");

System.out.println("Invalid Algorithm!!");

break;}

}

Writer out = new FileWriter(f, /*append = */true);

out.write("Inversions Time\n");

out.close();

for (int i = 0; i <= max; i++) {

int k = (int) Math.pow(2,i);

int[] A = generateInput(n,k);

int[] Acopy = new int[A.length];

// Create a copy of the input

for (int j = 0; j < A.length; j++) {

Acopy[j] = A[j];

}

/* Count inversions which will be stored in a long

because int cannot hold the larger number of inversions*/

long INV = FastInv(Acopy);

long time = 0;

int[] Asorted;

switch (Alg) {

case 1: {

long t1 = System.currentTimeMillis();

Asorted = MergeSort(A,0,A.length-1);

long t2 = System.currentTimeMillis();

9

Esben H. Christensen SDU Odense

time = t2-t1;

break;}

case 2: {

long t1 = System.currentTimeMillis();

ArrayList<Integer> ASorted = FingerTreeSort(A);

long t2 = System.currentTimeMillis();

time = t2-t1;

break;}

case 3: {

long t1 = System.currentTimeMillis();

Asorted = InsertionSort(A);

long t2 = System.currentTimeMillis();

time = t2 - t1;

break;}

}

System.out.println(" Inversions: " + INV + "\n Time: " + time);

out = new FileWriter(f, /*append = */true);

out.write(INV + " " + time + "\n");

out.close();

}

}

public static long FastInv(int[] A) {

return MergeSortINV(A,0,A.length-1);

}

public static long MergeSortINV(int[] A, int p, int r) {

if (p < r) {

int q = (p+r)/2;

long z = MergeSortINV(A,p,q) + MergeSortINV(A,q+1,r);

z =+ MergeINV(A,p,q,r);

return z;

} else {

return 0;

10

Esben H. Christensen SDU Odense

}

}

public static long MergeINV(int[] A, int p, int q, int r) {

int n1 = q - p + 1;

int n2 = r - q;

int[] L = new int[n1+1];

int[] R = new int[n2+1];

for (int i = 0; i < n1; i++) {

L[i] = A[p+i];

}

for (int j = 0; j < n2; j++) {

R[j] = A[q+j+1];

}

L[n1] = Integer.MAX_VALUE;

R[n2] = Integer.MAX_VALUE;

int i = 0;

int j = 0;

long zCounter = 0;

for (int k = p; k <= r; k++) {

if (L[i] <= R[j]) {

A[k] = L[i];

i++;

} else {

A[k] = R[j];

j++;

/* When we enter the else then we know that the j�th position

in R is smaller than the rest of L so the count will increase

with the number of slots in L that has not been checked */

zCounter = zCounter + L.length-1-i;

}

}

return zCounter;

11

Esben H. Christensen SDU Odense

}

public static int[] MergeSort(int[] A, int p, int r) {

if (p < r) {

int q = (p+r)/2;

A = MergeSort(A,p,q);

A = MergeSort(A,q+1,r);

A = Merge(A,p,q,r);

}

return A;

}

public static int[] Merge(int[] A, int p, int q, int r) {

int n1 = q - p + 1;

int n2 = r - q;

int[] L = new int[n1+1];

int[] R = new int[n2+1];

for (int i = 0; i < n1; i++) {

L[i] = A[p+i];

}

for (int j = 0; j < n2; j++) {

R[j] = A[q+j+1];

}

L[n1] = Integer.MAX_VALUE;

R[n2] = Integer.MAX_VALUE;

int i = 0;

int j = 0;

for (int k = p; k <= r; k++) {

if (L[i] <= R[j]) {

A[k] = L[i];

i++;

} else {

A[k] = R[j];

j++;

}

}

12

Esben H. Christensen SDU Odense

return A;

}

public static ArrayList<Integer> FingerTreeSort(int[] A) {

RBTree T = new RBT();

for (int j = 0; j < A.length; j++) {

T.insert(A[j]);

}

return T.inOrderTraversal();

}

public static int[] InsertionSort(int[] A) {

for (int j = 1; j < A.length; j++) {

int key = A[j];

int i = j-1;

while (i >= 0 && A[i] > key) {

A[i+1] = A[i];

i = i-1;

}

A[i+1] = key;

}

return A;

}

private static int[] generateInput(int n, int k){

// Create array of length n

int[] array = new int[n];

// Fill array with sorted numbers

for (int i = 0; i<n; i++){

array[i] = i;

}

// Now k times swap a random pair

Random randomGenerator = new Random();

int k1, k2;

int temp;

13

Esben H. Christensen SDU Odense

for (int j = 0; j<k; j++){

k1 = randomGenerator.nextInt(n);

k2 = randomGenerator.nextInt(n);

temp = array[k1];

array[k1] = array[k2];

array[k2] = temp;

}

// Return resulting array

return array;

}

}

6.2 RBT.java

import java.util.*;

public class RBT implements RBTree {

// the three attributes of RBT objects

private RBnode nil;

private RBnode root;

private RBnode max;

// the constructor of RB-trees which takes no arguments

public RBT() {

this.nil = new RBnode(0,nil);

this.root = this.nil;

this.max = this.nil;

}

private class RBnode { // class for creating the nodes

public int key;

public RBnode p;

public RBnode left;

public RBnode right;

public boolean color;

14

Esben H. Christensen SDU Odense

public RBnode(int key, RBnode nil) {

this.key = key;

this.p = nil;

this.left = nil;

this.right = nil;

this.color = true; // color is a boolean where true

// means black and false means red

}

}

/* The search method as specified in the interface which

will call my own method TreeSearch which is recursive

and it will start at the root */

public boolean search(int k) {

RBnode x = this.root;

return TreeSearch(x,k);

}

// TreeSearch as in the book where everything is trivial

private boolean TreeSearch(RBnode x, int k) {

if (x == this.nil) {

return false;

} else if (k == x.key) {

return true;

} else if (k < x.key) {

return TreeSearch(x.left, k);

} else {

return TreeSearch(x.right,k);

}

}

/* the insert method as specified in the interface which

will call the method FingerInsert with a node which has

been created with the specified key and the nil object of

the tree as parent and both children */

public void insert(int k) {

RBnode z = new RBnode(k,this.nil);

FingerInsert(z);

15

Esben H. Christensen SDU Odense

}

public void FingerInsert(RBnode z) {

RBnode y = this.nil;

if (z.key >= this.max.key) {

// new node is larger than all other nodes

y = this.max;

this.max = z;

} else {

RBnode v = this.max;

while (z.key < v.key && v != this.root) {

// search upwards

v = v.p;

}

while (v != this.nil) {

// search downwards

y = v;

if (z.key < v.key) {

v = v.left;

} else {

v = v.right;

}

}

}

// Insert new node at correct position

z.p = y;

if (y == this.nil) {

this.root = z;

this.max = z;

} else if (z.key < y.key) {

y.left = z;

} else {

y.right = z;

}

// set appropriate attributes according to RB-tree

z.left = this.nil;

z.right = this.nil;

z.color = false; // RED

16

Esben H. Christensen SDU Odense

RBInsertFixup(z);

}

/* This is the method which will make sure that the tree after

insertion will be a RB-tree again and is the same as the pseudo

code in the book */

private void RBInsertFixup(RBnode z) {

while (z.p.color == false) {

if (z.p == z.p.p.left) { // if z�s parent is a left child

RBnode y = z.p.p.right;

if (y.color == false) { // Case 1

z.p.color = true; // Case 1

y.color = true; // Case 1

z.p.p.color = false; // Case 1

z = z.p.p; // Case 1

} else {

if (z == z.p.right) { // Case 2

z = z.p; // Case 2

LeftRotate(z); // Case 2

}

z.p.color = true; // Case 3

z.p.p.color = false; // Case 3

RightRotate(z.p.p); // Case 3

}

} else { // if z�s parent is a right child

RBnode y = z.p.p.left;

if (y.color == false) { // Case 1

z.p.color = true; // Case 1

y.color = true; // Case 1

z.p.p.color = false; // Case 1

z = z.p.p; // Case 1

} else {

if (z == z.p.left) { // Case 2

z = z.p; // Case 2

RightRotate(z); // Case 2

}

17

Esben H. Christensen SDU Odense

z.p.color = true; // Case 3

z.p.p.color = false; // Case 3

LeftRotate(z.p.p); // Case 3

}

}

}

this.root.color = true;

}

/* Both LeftRotate is as in the book and RightRotate is symmetric

to RightRotate and it is created with figure 13.2 as background */

private void LeftRotate(RBnode x) {

RBnode y = x.right;

x.right = y.left;

if (y.left != this.nil) {

y.left.p = x;

}

y.p = x.p;

if (x.p == this.nil) {

this.root = y;

} else if (x == x.p.left) {

x.p.left = y;

} else {

x.p.right = y;

}

y.left = x;

x.p = y;

}

private void RightRotate(RBnode y) {

RBnode x = y.left;

y.left = x.right;

if (x.right != this.nil) {

x.right.p = y;

}

x.p = y.p;

if (y.p == this.nil) {

this.root = x;

} else if (y == y.p.right) {

18

Esben H. Christensen SDU Odense

y.p.right = x;

} else {

y.p.left = x;

}

x.right = y;

y.p = x;

}

/* The method inorderTraversal as specified in the interface which

will call the method inorderTreeWalk where I use an ArrayList where

the length isn�t fixed, so we do not need to know the size before hand.

*/

public ArrayList<Integer> inOrderTraversal() {

ArrayList<Integer> A = new ArrayList<Integer>();

// We start at the root

return inorderTreeWalk(this.root, A);

}

/* My own method inorderTreeWalk as in the book except instead of

printing the key it will save the key in the ArrayList with the add

method of ArrayList */

private ArrayList<Integer> inorderTreeWalk(RBnode x, ArrayList<Integer> A) {

if (x != this.nil) {

A = inorderTreeWalk(x.left,A);

A.add(x.key);

A = inorderTreeWalk(x.right, A);

}

return A;

}

/* The method isRedBlack as specified in the interface. This method

along with BlackHeight and TwoRedsInRow have been implemented using

the pseudo code from the appendix of the problem description */

public boolean isRedBlack(){

/* Because this.root.color is a boolean where black means true

I do not need to write this.root.color == true */

return (this.root.color && BlackHeight(this.root) >= 0 &&

(! TwoRedsInRow(this.root)));

19

Esben H. Christensen SDU Odense

}

private int BlackHeight(RBnode v) {

if (v == this.nil) {

return 0;

} else {

int h1 = BlackHeight(v.left);

int h2 = BlackHeight(v.right);

if (h1 != h2 || h1 == -1) {

return -1;

} else if (v.color == true) {

return h1 + 1;

} else {

return h1;

}

}

}

private boolean TwoRedsInRow(RBnode v) {

if (v == this.nil) {

return false;

} else if (v.color == false &&

(v.left.color == false || v.right.color == false)) {

return true;

} else {

return (TwoRedsInRow(v.left) || TwoRedsInRow(v.right));

}

}

}

6.3 RBTree.java

import java.util.*;

public interface RBTree {

public boolean search(int k);

public void insert(int k);

public ArrayList<Integer> inOrderTraversal();

public boolean isRedBlack();

20

Esben H. Christensen SDU Odense

}

6.4 InversionTimeGraph.R

DM507 Project del III

n = 8000000

Ins.df <- read.table("InsertionSortTime.txt", header = TRUE)

INVI <- Ins.df$Inversions

TimeI <- Ins.df$Time

Fin.df <- read.table("FingerTreeSortTime.txt", header = TRUE)

INVF <- Fin.df$Inversions

TimeF <- Fin.df$Time

Mer.df <- read.table("MergeSortTime.txt", header = TRUE)

INVM <- Mer.df$Inversions

TimeM <- Mer.df$Time

plot(TimeI~log(INVI/n+1), type = "l",

xlim = c(0,max(log(INVF/n+1))), main = "Time Graph for the three algorithms",

xlab = "Number of Inversions", ylab = "Sorting time")

lines(TimeI~log(INVI/n+1), col = "red", lty = 1)

lines(TimeF~log(INVF/n+1), col = "green", lty = 2)

lines(TimeM~log(INVM/n+1), col = "blue", lty = 3)

legend(0, 30000, c("InversionSort","FingerTreeSort","MergeSort"), cex=0.8,

col=c("red","green","blue"), lty=1:3)

21

	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Appendix
	Time.java
	RBT.java
	RBTree.java
	InversionTimeGraph.R

