

Martin Olsen

DM507 Projekt 2012
Del I

19. marts 2012 FOTO: Colourbox

1

Indhold

Indledning ... 2

Opgave 1 ... 2

Opgave 2 ... 2

Opgave 3 ... 2

Opgave 4 ... 3

Opgave 5 ... 4

Opgave 6 ... 5

Opgave 7 ... 6

Kildekode til SimpleInv.java .. 7

Kildekode til MergeSort.java .. 7

Kildekode til FastInv.java ... 8

2

Indledning

Dette projekt omhandler optælling af inversioner i en liste. En inversion kan beskrives som følger:

Givet en liste er parret ([] []) en inversion hvis og kun hvis [] []. Ingen har op-

lyst formået med optællingen, men hvad … Vi tæller løs alligevel med hjælp fra det forfærdelige

sprog Java. NB: I hele denne rapport benyttes nulbaseret indeksering.

Opgave 1

Implementeringen blev fuldført som dokumenteret i appendikset.

Opgave 2

Implementeringen blev fuldført som dokumenteret i appendikset.

Opgave 3

Vi vil tælle antallet af inversioner mellem de to delarrays A[p..q] og A[q+1..r] ved at tilføje

en smule kode til Merge-proceduren. Bemærk, at de to delarrays kopieres over i to nye arrays, hhv.

L og R, under tilføjelse af som sidste element i hvert array. Pseudokoden ser således ud:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Merge(A, p, q, r) {

 Copy subarray A[p..q] to array L, adding infinity as last element

 Copy subarray A[q+1..r] to array R, adding infinity as last element

 i = 0

 j = 0

 for k = p to r

 if L[i] <= R[j]

 A[k] = L[i]

 i = i + 1

 else

 A[k] = R[j]

 j = j + 1

}

Ideen er at tælle antallet af inversioner, et givet element i L eller R indgår i, hver gang vi, som en del

af sorteringsprocessen, kopierer dette element tilbage til A. På denne måde vil hvert element i de to

arrays (undtagen de sidste, som er , og som ikke kopieres over), blive behandlet præcis en gang.

Det er værd at notere, at når vi tæller antallet af inversioner, et givet element indgår i, er det kun de

af inversionerne, der stammer fra elementer, der ikke allerede er kopieret tilbage til A, vi skal tælle

med; en inversion mellem det givne element og et element, der allerede er kopieret over, vil allere-

de være talt med en gang. Hvis vi kopierer et element fra L over, vil dette element være mindre end

eller lig samtlige de elementer i R, der endnu ikke er kopieret tilbage til A. Da elementet fra L samti-

dig vil have et lavere indeks end nogen af disse, kan elementet, jf. definitionen på en inversion, ikke

indgå i en inversion med noget sådant element i R. Vi skal altså intet foretage os, hvis vi kopierer et

element fra L tilbage. Kopierer vi derimod et element fra R tilbage, vil dette element være mindre

end samtlige elementer fra L, der ikke er kopieret tilbage til A. Bemærk, at elementet vil være skarpt

mindre end samtlige førnævnte elementer. Dette skyldes, at ud af to elementer med samme størrel-

se, vil det altid være elementet fra L, der først tilbagekopieres. Når der tilbagekopieres et element

fra R, vil alle elementer af samme størrelse i L altså allerede være blevet kopieret. Da elementet fra

3

R vil være mindre end alle de endnu ikke tilbagekopierede elementer i L, men samtidig have et høje-

re indeks, må elementet indgå i inversioner med samtlige disse elementer. Disse er der på et givet

tidspunkt netop af; det mindste element fra L, der ikke er kopieret tilbage til A må

have indeks i, mens det andensidste element i L (idet ikke skal tælles med), må have indeks

L.length-2. Vi får således, at angiver antallet af elementer i delarrayet

L[i..L.length-2]. Eftersom samtlige elementer fra delarrayet A[p..q] blev kopieret over i

L, hvorefter elementet blev tilføjet, må længden af L være , hvorfor førnævnte antal af

elementer fås til . Til sidst akkumuleres inversionerne i variablen zCounter, hvoref-

ter værdien af denne returneres. Pseudokoden ser ud som følger:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

MergeNInvCount(A, p, q, r) {

 Copy subarray A[p..q] to array L, adding infinity as last element

 Copy subarray A[q+1..r] to array R, adding infinity as last element

 i = 0

 j = 0

 zCounter = 0

 for k = p to r

 if L[i] <= R[j]

 A[k] = L[i]

 i = i + 1

 else

 zCounter = zCounter + q - p - i + 1

 A[k] = R[j]

 j = j + 1

 return zCounter

}

Opgave 4

Beviset for algoritmens korrekthed forudsætter, at . Følgende invariant anvendes til at

vise, at antallet af inversioner udregnes korrekt:

Efter hver iteration af forløkken i linje 10, vil zCounter være lig fratrukket antallet af inversioner

mellem de to delarrays L[i..L.length-2] og R[j..R.length-2].

Efter iteration 0, dvs. før nogen iterationer har fundet sted, er invarianten tydeligvis sand; idet

 , får vi de to delarrays L[0..L.length-2] og R[0..R.length-2]. Disse svarer blot

til L og R, de to elementer med værdien fraregnet, og da netop var antallet af inversioner mel-

lem disse, må resultatet blive 0. Værdien for zCounter er altså i dette tilfælde korrekt. Vi viser nu,

at hvis invarianten er sand efter iteration , vil den også være sand efter iteration . Iteration

har to mulige udfald: Enten vil betingelsen L[i] <= R[j] i linje 11 være sand, og linje 12 og 13 vil

blive udført, eller også vil betingelsen være falsk, og linje 15-17 vil udføres. Hvis betingelsen er sand,

vil L[i] være mindre end eller lig R[j] og ditto for alle elementer i R med højere indeks end j.

Derfor kan L[i] ikke indgå i en inversion med noget element i R[j..R.length-2]. Vi kan der-

for trygt inkrementere i i linje 13, så elementet L[i] forsvinder fra L[i..L.length-2], uden

at tælle zCounter op. Havde tælleren den rigtige værdi før iterationen, vil den også have den rigti-

ge værdi efter. Er betingelsen i linje 11 derimod ikke sand, vil R[j] være mindre end L[i] og ditto

for alle elementer i L med indeks højere end i. R[j] vil derfor indgå i inversioner med samtlige

4

elementer i L[i..L.length-2]. Når vi fjerner R[j] fra R[j..R.length-2] ved at inkre-

mentere j, skal vi derfor sørge for, at inversionerne mellem R[j] og elementerne i

L[i..L.length-2] ikke længere fratrækkes zCounter, dvs. zCounter skal tælles op med

antallet af disse inversioner. Dette sker i linje 15 efter fremgangsmåden beskrevet i forrige afsnit.

Igen har vi, at hvis tælleren havde den rigtige værdi før iterationen, vil den også have den rigtige

værdi efter. Løkken terminerer, når , altså efter netop gennemløb. Da antallet af

elementer i L er , og antallet i R er , bliver det samlede antal elementer i de to

delarrays . Da de to elementer med værdien er størst, vil det være disse, der ikke be-

handles. Når løkken terminerer, må L[i] og R[j] derfor begge have værdien . Disse værdier

findes på indekserne L.length-1 og R.length-1. Fra invarianten ved vi, at zCounter nu er

fratrukket antallet af inversioner mellem de to delarrays L[L.length-1..L.length-2] og

R[R.length-1..R.length-2]. Da venstresiden for begge disse er større end højresiden, må

de være tomme. Der vil derfor ingen inversioner være mellem dem, og zCounter får derfor, helt

korrekt, værdien , som var det totale antal inversioner mellem de to delarrays. Vi kan altså konklu-

dere, at værdien returneret i linje 19, er korrekt.

MergeNInvCount indeholder en vis konstant mængde arbejde samt en løkke, også indeholdende

konstant arbejde, der gennemløbes gange. Antallet af gennemløb svarer netop til

antallet af elementer i de to delarrays A[p..q] og A[q+1..r], så det totale arbejde som funkti-

on af inputstørrelsen er givet ved () (). Algoritmen kører altså i linear tid.

Opgave 5

Algoritmen MergeSortNInvCount baseres på merge sort og den udvidede Merge-procedure,

MergeNInvCount. Som input lader vi algoritmen tage et array A samt to indekser p og r angiven-

de første hhv. sidste element i den del af arrayet, algoritmen skal tælle inversioner i. Som med den

klassiske Merge-procedure vil vi lade algoritmen opdele A[p..r] i to lige store dele (plus/minus et

element, hvis længden er ulige). Antallet af inversioner i A[p..r] må så bestå af antallet af inversi-

oner i de to delarrays samt antallet af inversioner hen over midten. Det er værd at bemærke, at det-

te antal ikke ændrer sig, selvom de to delarrays sorteres. Dette er let at indse; en sortering ændrer

ikke på, hvilket element i en inversion, der har det laveste indeks, idet ingen af elementerne kan

krydse grænsen mellem de to delarrays. Da en sortering ydermere ikke ændrer elementernes værdi,

må antallet af inversioner hen over midten være det samme som før sorteringen. Ud over antallet af

inversioner over midten, er det også nødvendigt at vide hvor mange inversioner, der er i hvert af de

to delarrays. Antallet af disse kan findes med to rekursive kald af MergeSortNInvCount med

indekserne på første og sidste element i det relevante delarray som input. Til sidst er blot tilbage at

addere værdierne returneret af disse kald med værdien returneret af MergeNInvCount og deref-

ter returnere summen. Kalder vi summen invs, kommer pseudokoden til at se ud som følger:

1

2

3

4

5

6

7

8

9

10

11

MergeSortNInvCount(A, p, r) {

 invs = 0

 if p < r

 q = floor((p+r) / 2)

 invs = invs + MergeSortNInvCount(A, p, q)

 invs = invs + MergeSortNInvCount(A, q+1, r)

 invs = invs + MergeNInvCount(A, p, q, r)

 return invs

}

5

Opgave 6

Beviset for korrektheden af den ovenfor beskrevne algoritme føres ved induktion over antallet

 af elementer i A, der behandles af algoritmen. Vi vil benævne dette antal inputstør-

relsen. Det vil i beviset forudsættes, at . Vi viser først, at algoritmen kører korrekt for basistil-

fældet . Idet linje 5-8 i dette tilfælde ikke vil udføres, vil værdien af invs, der i linje 2

blev sat til 0, ikke ændres. Det vil derfor være denne værdi, der bliver returneret i linje 10, hvilket er

korrekt, da delarrays med længder på 1 ingen inversioner indeholder. Bemærk, at argumentet også

viser, at algoritmen terminerer for . Vi viser nu, at algoritmen ligeledes kører korrekt for alle

 . Antag, at algoritmen kører korrekt for inputstørrelserne { }. Vi skal så vise,

at algoritmen også kører korrekt for . Vi ser, at linje 5-8 i dette tilfælde vil blive udført, da

 . I linje 5 sættes ⌊

⌋. Dermed bliver inputstørrelsen for det i linje 6, af in-

stansen med inputstørrelsen , udførte rekursive kald ⌊

⌋ . Idet vi har,

at , får vi, at

Da vi desuden ved, at , må vi ligeledes have, at

Vi når altså aldrig ned på inputstørrelser, der ikke dækkes af basistilfældet. For det rekursive kald i

linje 7 har vi inputstørrelsen ⌊

⌋. Vi får så følgende:

Hvis , får vi desuden, at

Igen ses det, at inputstørrelserne vil være dækket af basistilfældet. Jf. induktionsantagelsen returne-

rer de rekursive kald i linje 6 og 7 altså korrekte værdier. Ud over dette sorterer de også de to delar-

rays, de opererer på, men som argumenteret for tidligere, ændrer dette ikke ved antallet af inversi-

oner over midten. Dette antal gøres i næste linje op af MergeNInvCount, hvis korrekthed allerede

er bevist. Da de tre kald i linje 6-8 returnerer hhv. antallet af inversioner i de to delarrays A[p..q]

og A[q+1..r] samt antallet af inversioner mellem disse, og eftersom disse tal akkumuleres i

invs, der returneres i linje 10, må den returnerede værdi være korrekt, såfremt algoritmen termi-

nerer. At dette er tilfældet ses let af ovenstående ligninger, idet længden af de delarrays, der be-

handles i hvert rekursivt kald, falder, indtil basistilfældet nås.

Vi anvender mastersætningen til at bestemme køretiden. Rekursionsligningen er nøjagtig identisk

med ditto for merge sort: () (

) . Vi har to rekursive kald af (omtrentlig) halv størrelse

samt en mængde lineart arbejde fra MergeNInvCount. Ifølge mastersætningen gælder, at givet

6

rekursionsligningen () (

) () vil () () () (). I vores

tilfælde er og () , hvorfor ovenstående netop er tilfældet, idet vi har, at

 () () (). Dermed fås, at () ().

Opgave 7

Implementeringen blev fuldført som dokumenteret i appendikset.

FOTO: Sony Music Entertainment

7

Appendiks

Kildekode til SimpleInv.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import java.io.*;

import java.util.*;

public class SimpleInv {

 public static void main(String[] args) throws FileNotFoundException {

 Scanner sc = new Scanner(new File(args[0]));

 List<Integer> intArray = new ArrayList<Integer>();

 int zCounter = 0; // number of inversions

 /* convert input file to list of integers */

 while(sc.hasNextInt()) {

 intArray.add(sc.nextInt());

 }

 /* count number of inversions */

 for(int i = 0; i < intArray.size() - 1; i++) {

 for(int j = i + 1; j < intArray.size(); j++) {

 if(intArray.get(i) > intArray.get(j)) {

 zCounter++;

 }

 }

 }

 System.out.println(zCounter);

 }

}

Kildekode til MergeSort.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import java.io.*;

import java.util.*;

public class MergeSort {

 private static void Merge(List<Integer> A, int p, int q, int r) {

 int n1 = q - p + 1; // number of elements in A[p..q]

 int n2 = r - q; // number of elements in A[q+1..r]

 int[] L = new int[n1 + 1]; // copy of A[p..q] with last element being

infinity

 int[] R = new int[n2 + 1]; // copy of A[q+1..r] with last element being

infinity

 /* copy A[p..q] to subarray L[0..n1-1] */

 for(int i = 0; i < n1; i++) {

 L[i] = A.get(p + i);

 }

 /* copy A[q+1..r] to subarray R[0..n2-1] */

 for(int j = 0; j < n2; j++) {

 R[j] = A.get(q + j + 1);

 }

 /* add infinity as last element of L and R */

 L[n1] = Integer.MAX_VALUE;

 R[n2] = Integer.MAX_VALUE;

 int i = 0;

 int j = 0;

8

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

 /* merge L and R into A */

 for(int k = p; k <= r; k++) {

 if(L[i] <= R[j]) {

 A.set(k, L[i]);

 i++;

 } else {

 A.set(k, R[j]);

 j++;

 }

 }

 }

 private static void MergeSort(List<Integer> A, int p, int r) {

 if(p < r) {

 int q = (p+r) / 2;

 MergeSort(A, p, q);

 MergeSort(A, q+1, r);

 Merge(A, p, q, r);

 }

 }

 public static void main(String[] args) throws FileNotFoundException {

 Scanner sc = new Scanner(new File(args[0]));

 List<Integer> intArray = new ArrayList<Integer>();

 /* convert input file to list of integers */

 while(sc.hasNextInt()) {

 intArray.add(sc.nextInt());

 }

 MergeSort(intArray, 0, intArray.size() - 1);

 /* build string of sorted numbers separated by whitespace */

 StringBuilder sb = new StringBuilder();

 for (int i : intArray) {

 sb.append(i);

 sb.append(" ");

 }

 System.out.println(sb.toString().trim());

 }

}

Kildekode til FastInv.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

import java.io.*;

import java.util.*;

public class FastInv {

 private static int MergeNInvCount(List<Integer> A, int p, int q, int r) {

 int n1 = q - p + 1; // number of elements in A[p..q]

 int n2 = r - q; // number of elements in A[q+1..r]

 int[] L = new int[n1 + 1]; // copy of A[p..q] with last element being

infinity

 int[] R = new int[n2 + 1]; // copy of A[q+1..r] with last element being

infinity

 /* copy A[p..q] to subarray L[0..n1-1] */

 for(int i = 0; i < n1; i++) {

 L[i] = A.get(p + i);

 }

 /* copy A[q+1..r] to subarray R[0..n2-1] */

9

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

 for(int j = 0; j < n2; j++) {

 R[j] = A.get(q + j + 1);

 }

 /* add infinity as last element of L and R */

 L[n1] = Integer.MAX_VALUE;

 R[n2] = Integer.MAX_VALUE;

 int i = 0;

 int j = 0;

 int zCounter = 0; // number of inversions

 /* merge L and R into A and count number of inversions from L to R */

 for(int k = p; k <= r; k++) {

 if(L[i] <= R[j]) {

 A.set(k, L[i]);

 i++;

 } else {

 zCounter += q - p - i + 1;

 A.set(k, R[j]);

 j++;

 }

 }

 return zCounter;

 }

 private static int MergeSortNInvCount(List<Integer> A, int p, int r) {

 int invs = 0;

 if(p < r) {

 int q = (p+r) / 2;

 invs += MergeSortNInvCount(A, p, q);

 invs += MergeSortNInvCount(A, q+1, r);

 invs += MergeNInvCount(A, p, q, r);

 }

 return invs;

 }

 public static void main(String[] args) throws FileNotFoundException {

 Scanner sc = new Scanner(new File(args[0]));

 List<Integer> intArray = new ArrayList<Integer>();

 /* convert input file to list of integers */

 while(sc.hasNextInt()) {

 intArray.add(sc.nextInt());

 }

 int invs = MergeSortNInvCount(intArray, 0, intArray.size() - 1);

 System.out.println(invs);

 }

}

