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Dette projekt omhandler opteaelling af inversioner i en liste. En inversion kan beskrives som fglger:
Givet en liste L er parret (L[i], L[j]) en inversion hvis og kun hvis i < j A L[i] > L[j]. Ingen har op-
lyst formaet med optaellingen, men hvad ... Vi taller Igs alligevel med hjlp fra det forfeerdelige
sprog Java. NB: | hele denne rapport benyttes nulbaseret indeksering.

Implementeringen blev fuldfgrt som dokumenteret i appendikset.

Implementeringen blev fuldfgrt som dokumenteret i appendikset.

Vi vil teelle antallet z af inversioner mellem de to delarrays A[p..q] og A[g+1..r] ved at tilfgje
en smule kode til Merge-proceduren. Bemaerk, at de to delarrays kopieres over i to nye arrays, hhv.
L og R, under tilfgjelse af co som sidste element i hvert array. Pseudokoden ser saledes ud:

Merge (A, p, q, r) {
Copy subarray Alp..q] to array L, adding infinity as last element
Copy subarray A[g+l..r] to array R, adding infinity as last element

i =20
Jj 0
for k = p to r
if L[i] <= RI[]]
Alk] = LI[i]
i=1i+1
else
Alk] = R[j]
j=3+1

Ideen er at telle antallet af inversioner, et givet element i L eller R indgar i, hver gang vi, som en del
af sorteringsprocessen, kopierer dette element tilbage til A. P4 denne made vil hvert element i de to
arrays (undtagen de sidste, som er o, og som ikke kopieres over), blive behandlet preecis en gang.
Det er vaerd at notere, at nar vi taeller antallet af inversioner, et givet element indgar i, er det kun de
af inversionerne, der stammer fra elementer, der ikke allerede er kopieret tilbage til 2, vi skal tzelle
med; en inversion mellem det givne element og et element, der allerede er kopieret over, vil allere-
de vaere talt med en gang. Hvis vi kopierer et element fra L over, vil dette element vaere mindre end
eller lig samtlige de elementer i R, der endnu ikke er kopieret tilbage til 2. Da elementet fra L samti-
dig vil have et lavere indeks end nogen af disse, kan elementet, jf. definitionen pa en inversion, ikke
indga i en inversion med noget sadant element i R. Vi skal altsa intet foretage os, hvis vi kopierer et
element fra L tilbage. Kopierer vi derimod et element fra R tilbage, vil dette element vaere mindre
end samtlige elementer fra L, der ikke er kopieret tilbage til A. Bemeerk, at elementet vil vaere skarpt
mindre end samtlige fgrnaevnte elementer. Dette skyldes, at ud af to elementer med samme stgrrel-
se, vil det altid vaere elementet fra L, der fgrst tilbagekopieres. Nar der tilbagekopieres et element
fra R, vil alle elementer af samme stgrrelse i L altsa allerede veere blevet kopieret. Da elementet fra
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R vil veere mindre end alle de endnu ikke tilbagekopierede elementer i L, men samtidig have et hgje-
re indeks, ma elementet indga i inversioner med samtlige disse elementer. Disse er der pa et givet
tidspunkt netop p — q — i + 1 af; det mindste element fra L, der ikke er kopieret tilbage til A m3
have indeks i, mens det andensidste element i L (idet oo ikke skal taelles med), ma have indeks
L.length-2. Vi far sdledes, at L.length —i—1 angiver antallet af elementer i delarrayet
L[i..L.length-2]. Eftersom samtlige elementer fra delarrayet A [p. .q] blev kopieret over i
L, hvorefter elementet oo blev tilfgjet, ma leengden af 1. veere g — p + 2, hvorfor fgrnaevnte antal af
elementer fas til g —p — i + 1. Til sidst akkumuleres inversionerne i variablen zCounter, hvoref-
ter veerdien af denne returneres. Pseudokoden ser ud som fglger:

MergeNInvCount (A, p, 9, r) {

Copy subarray A[p..q] to array L, adding infinity as last element
Copy subarray A[gtl..r] to array R, adding infinity as last element

i=20
J =20
zCounter = 0
for k = p to r
if L[i] <= R[]]
Alk] = LI[1i]
i=1i+1
else
zCounter = zCounter + g - p - 1 + 1
A[k] = RI[3J]
J=3 + 1

return zCounter

Beviset for algoritmens korrekthed forudsaetter, at p < g < r. Fglgende invariant anvendes til at
vise, at antallet af inversioner udregnes korrekt:

Efter hver iteration af forlgkken i linje 10, vil zCounter veere lig z fratrukket antallet af inversioner
mellem de to delarrays L. [1i..L.length-2] ogR[j..R.length-2].

Efter iteration 0, dvs. fgr nogen iterationer har fundet sted, er invarianten tydeligvis sand; idet
i=j=0,farvidetodelarrays L[0..L.length-2] 0gR[0..R.length-2]. Disse svarer blot
til L. og R, de to elementer med veaerdien oo fraregnet, og da z netop var antallet af inversioner mel-
lem disse, ma resultatet blive 0. Vaerdien for zCounter er altsa i dette tilfaelde korrekt. Vi viser nu,
at hvis invarianten er sand efter iteration n — 1, vil den ogsa veere sand efter iteration n. Iteration n
har to mulige udfald: Enten vil betingelsen L[i] <= R[]] ilinje 11 vaere sand, og linje 12 og 13 vil
blive udfgrt, eller ogsa vil betingelsen vaere falsk, og linje 15-17 vil udfgres. Hvis betingelsen er sand,
vil L[i] veere mindre end eller lig R[j] og ditto for alle elementer i R med hgjere indeks end j.
Derfor kan L. [ 1] ikke indga i en inversion med noget elementi R[j..R.length-2]. Vi kan der-
for trygt inkrementere 1 i linje 13, sd elementet L. [i] forsvinder fra L[i..L.length-2], uden
at teelle zCounter op. Havde teelleren den rigtige veerdi fgr iterationen, vil den ogsa have den rigti-
ge veerdi efter. Er betingelsen i linje 11 derimod ikke sand, vilR[j] veere mindre end L. [ 1] og ditto
for alle elementer i L. med indeks hgjere end i. R[j] vil derfor indga i inversioner med samtlige
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elementer i L[i..L.length-2]. Nar vi fijerner R[j] fra R[J..R.length-2] ved at inkre-
mentere 7, skal vi derfor sgrge for, at inversionerne mellem R[j] og elementerne i
L[i..L.length-2] ikke laengere fratreekkes zCounter, dvs. zCounter skal telles op med
antallet af disse inversioner. Dette sker i linje 15 efter fremgangsmaden beskrevet i forrige afsnit.
Igen har vi, at hvis taelleren havde den rigtige vaerdi f@r iterationen, vil den ogsa have den rigtige
vaerdi efter. Lgkken terminerer, nar k = r + 1, altsa efter netop r — p + 1 gennemlgb. Da antallet af
elementeri L erq —p + 2, og antallet i R er r — g + 1, bliver det samlede antal elementer i de to
delarrays r — p + 3. Da de to elementer med vaerdien o er stgrst, vil det vaere disse, der ikke be-
handles. Nar Igkken terminerer, ma L[i] og R[J] derfor begge have vaerdien co. Disse vaerdier
findes pa indekserne L. length-1 og R.length-1. Fra invarianten ved vi, at zCounter nuer z
fratrukket antallet af inversioner mellem de to delarrays L[L.length-1..L.length-2] og
R[R.length-1..R.length-2]. Da venstresiden for begge disse er stgrre end hgjresiden, ma
de vaere tomme. Der vil derfor ingen inversioner veere mellem dem, og zCounter far derfor, helt
korrekt, vaerdien z, som var det totale antal inversioner mellem de to delarrays. Vi kan altsa konklu-
dere, at vaerdien returneret i linje 19, er korrekt.

MergeNInvCount indeholder en vis konstant maengde arbejde samt en Igkke, ogsa indeholdende
konstant arbejde, der gennemigbes n =r — p + 1 gange. Antallet af gennemlgb svarer netop til
antallet af elementer i de to delarrays A[p..g] og A[g+1..r], sa det totale arbejde som funkti-
on f af inputstgrrelsen n er givet ved f(n) = cn + k = O(n). Algoritmen kgrer altsa i linear tid.

Algoritmen MergeSortNInvCount baseres pa merge sort og den udvidede Merge-procedure,
MergeNInvCount. Som input lader vi algoritmen tage et array A samt to indekser p og r angiven-
de f@rste hhv. sidste element i den del af arrayet, algoritmen skal taelle inversioner i. Som med den
klassiske Me rge-procedure vil vi lade algoritmen opdele A [p. . r] ito lige store dele (plus/minus et
element, hvis lzengden er ulige). Antallet af inversioner i A [p. .r] ma sa besta af antallet af inversi-
oner i de to delarrays samt antallet af inversioner hen over midten. Det er vaerd at bemaerke, at det-
te antal ikke @ndrer sig, selvom de to delarrays sorteres. Dette er let at indse; en sortering @&ndrer
ikke pa, hvilket element i en inversion, der har det laveste indeks, idet ingen af elementerne kan
krydse graensen mellem de to delarrays. Da en sortering ydermere ikke sendrer elementernes veaerdi,
ma antallet af inversioner hen over midten vaere det samme som fgr sorteringen. Ud over antallet af
inversioner over midten, er det ogsa ngdvendigt at vide hvor mange inversioner, der er i hvert af de
to delarrays. Antallet af disse kan findes med to rekursive kald af MergeSortNInvCount med
indekserne pa fgrste og sidste element i det relevante delarray som input. Til sidst er blot tilbage at
addere veerdierne returneret af disse kald med veerdien returneret af MergeNInvCount og deref-
ter returnere summen. Kalder vi summen invs, kommer pseudokoden til at se ud som fglger:

MergeSortNInvCount (A, p, r) {
invs = 0

if p<r
q = floor((ptr) / 2)
invs = invs + MergeSortNInvCount (A, p, 9d)
invs = invs + MergeSortNInvCount (A, g+l, r)
invs = invs + MergeNInvCount (A, p, g, r)

return invs



Beviset for korrektheden af den ovenfor beskrevne algoritme fgres ved induktion over antallet
n=r —p+ 1 af elementer i A, der behandles af algoritmen. Vi vil benaevne dette antal inputstgr-
relsen. Det vil i beviset forudsaettes, at p < r. Vi viser fgrst, at algoritmen kgrer korrekt for basistil-
feeldetn = 1 = p = r. Idet linje 5-8 i dette tilfeelde ikke vil udfgres, vil vaerdien af invs, der i linje 2
blev sat til 0, ikke a&ndres. Det vil derfor veere denne vaerdi, der bliver returneret i linje 10, hvilket er
korrekt, da delarrays med laengder pa 1 ingen inversioner indeholder. Bemaerk, at argumentet ogsa
viser, at algoritmen terminerer for n = 1. Vi viser nu, at algoritmen ligeledes kgrer korrekt for alle
n > 1. Antag, at algoritmen kgrer korrekt for inputstgrrelserne n € {1,2,3, ..., k — 1}. Vi skal sa vise,

at algoritmen ogsa kegrer korrekt for n = k. Vi ser, at linje 5-8 i dette tilfaelde vil blive udfgrt, da
n>1=p<r.|linje 5 sxettes g = lpTHJ Dermed bliver inputstgrrelsen &, for det i linje 6, af in-
p+r

stansen med inputstgrrelsen k, udfgrte rekursive kald §, =qg—p+1 = ITJ —p + 1. Idet vi har,

atk=r—p+1,farvi at

k r—p+1 p+r 1 p+tr r—-p+2 k+1
2 2 g Ptl-zsé&s P+ 2 2

Davidesudenved,atk > 1 © k + 1 < 2k, ma vi ligeledes have, at

0<k< <k+1<k
2—5’(— 2 "

Vi nar altsa aldrig ned pa inputstgrrelser, der ikke deekkes af basistilfeeldet. For det rekursive kald i

linje 7 har vi inputstgrrelsen y, =r—q =1 — lpTHJ Vi far sa fglgende:

- 2 2 2 2

k-1 r—-p p+r p+r 1 r—p+1 k

Hvis k > 1, far vi desuden, at

0< u <xx < E <k
2 ~ M= T
Igen ses det, at inputstgrrelserne vil veere deekket af basistilfaldet. Jf. induktionsantagelsen returne-
rer de rekursive kald i linje 6 og 7 altsa korrekte veerdier. Ud over dette sorterer de ogsa de to delar-
rays, de opererer pa, men som argumenteret for tidligere, eendrer dette ikke ved antallet af inversi-
oner over midten. Dette antal ggres i naeste linje op af MergeNInvCount, hvis korrekthed allerede
er bevist. Da de tre kald i linje 6-8 returnerer hhv. antallet af inversioner i de to delarrays A[p. .q]
og A[g+1..r] samt antallet af inversioner mellem disse, og eftersom disse tal akkumuleres i
invs, der returneres i linje 10, ma den returnerede veerdi veere korrekt, safremt algoritmen termi-
nerer. At dette er tilfeeldet ses let af ovenstaende ligninger, idet laengden af de delarrays, der be-
handles i hvert rekursivt kald, falder, indtil basistilfaeldet nas.

Vi anvender mastersaetningen til at bestemme kgretiden. Rekursionsligningen er ngjagtig identisk
med ditto for merge sort: T(n) = 2T (g) + cn. Vi har to rekursive kald af (omtrentlig) halv stgrrelse
samt en mangde lineart arbejde fra MergeNInvCount. Ifglge mastersaetningen geelder, at givet
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rekursionsligningen T(n) = aT (%) + f(m) vil f(n) = @(nl"gba) =>TMn) = G)(nlogbalgn). | vores
tilfeelde er a =b =2 og f(n) = cn, hvorfor ovenstdende netop er tilfeldet, idet vi har, at
f(m)=cn=0(7n) = @(nl"gzz). Dermed fas, at T(n) = O(nlgn).

Opgave 7

Implementeringen blev fuldfgrt som dokumenteret i appendikset.

FOTO: Sony Music Entertainment



Appendiks

Kildekode til SimpleInv. java

1 import java.io.*;
2 import java.util.*;
3
4 public class SimpleInv {
5 public static void main (String[] args) throws FileNotFoundException {
o Scanner sc = new Scanner (new File (args([0]));
7 List<Integer> intArray = new ArraylList<Integer>();
8 int zCounter = 0; // number of inversions
9
10 /* convert input file to list of integers */
11 while (sc.hasNextInt ()) {
12 intArray.add(sc.nextInt ());
13 }
14
15 /* count number of inversions */
16 for(int i = 0; i1 < intArray.size() 1; i++) {
17 for(int j = 1 + 1; j < intArray.size(); j++) {
18 if (intArray.get (i) > intArray.get(j)) |
19 zCounter++;
20 }
21 }
22 }
23
24 System.out.println (zCounter);
25 }
26 }
Kildekode til MergeSort. java
1 import java.io.*;
2 import java.util.¥*;
3
4 public class MergeSort {
5 private static void Merge (List<Integer> A, int p, int g, int r) {
6 int n1 = g - p + 1; // number of elements in A[p..q]
7 int n2 = r - q; // number of elements in A[g+l..r]
8 int[] L = new int[nl + 1]; // copy of A[p..g] with last element being
infinity
9 int[] R = new int[n2 + 1]; // copy of A[g+l..r] with last element being
infinity
10
11 /* copy A[p..q] to subarray L[0..nl-1] */
12 for(int i = 0; 1 < nl; 1i++) {
13 L[i] = A.get(p + 1);
14 }
15
16 /* copy A[g+l..r] to subarray R[0..n2-1] */
17 for(int j = 0; J < n2; Jj++) {
18 R[j] = A.get(g + 7 + 1);
19 }
20
21 /* add infinity as last element of L and R */
22 L[nl] = Integer.MAX VALUE;
23 R[n2] = Integer.MAX VALUE;
24
25 int 1 = 0;
26 int § = 0;
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/* merge L and R into A */
for(int k = p; k <= r; kt++) {
if (L[i] <= RI[J]) |
A.set(k, L[i]);
i++;
} else {
A.set(k, R[J]);
g+

}

private static void MergeSort (List<Integer> A, int p, int r) {
if(p < r) {
int g = (p+r) / 2;
MergeSort (A, p, q);
MergeSort (A, gtl, r);
Merge (A, p, 49, )7

}

public static void main (String[] args) throws FileNotFoundException {
Scanner sc = new Scanner (new File (args([0]));
List<Integer> intArray = new ArraylList<Integer>();

/* convert input file to list of integers */

while (sc.hasNextInt ()) {
intArray.add(sc.nextInt ());

}

MergeSort (intArray, 0, intArray.size() - 1);

/* build string of sorted numbers separated by whitespace */
StringBuilder sb = new StringBuilder();

for (int i : intArray) {
sb.append (i) ;
sb.append (" ") ;

}

System.out.println(sb.toString() .trim());

Kildekode til FastInv. java

import java.io.*;
import java.util.*;

public class FastInv {
private static int MergeNInvCount (List<Integer> A, int p, int g, int r) {
int n1 = g - p + 1; // number of elements in A[p..q]

int n2 = r - q; // number of elements in A[g+l..r]
int[] L = new int[nl + 1]; // copy of A[p..g] with last element being
infinity

int[] R = new int[n2 + 1]; // copy of Algt+l..r] with last element being
infinity

/* copy A[p..q] to subarray L[0..nl-1] */
for(int i = 0; i < nl; i++) {

L[i] = A.get(p + 1);
}

/* copy A[g+l..r] to subarray R[0..n2-1] */
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for(int j = 0; j < n2; j++) {
R[j] = A.get(g + 7 + 1);
}

/* add infinity as last element of L and R */

L[nl] = Integer.MAX VALUE;

R[n2] = Integer.MAX VALUE;

int i = 0;

int § = 0;

int zCounter = 0; // number of inversions

/* merge L and R into A and count number of inversions from L to R */
for(int k = p; k <= r; k++) {
if (L{i] <= R[3]) {
A.set (k, L[i]);
i++;
} else {
zCounter += g - p - 1 + 1;
A.set(k, R[J]);
J++;
}
}

return zCounter;

}

private static int MergeSortNInvCount (List<Integer> A, int p, int r) {
int invs = 0;

if(p < 1) {
int q = (p+r) / 2;
invs += MergeSortNInvCount (A, p, J);
invs += MergeSortNInvCount (A, g+l, r);
invs += MergeNInvCount (A, p, g, Ir);

}

return invs;

}

public static void main (String[] args) throws FileNotFoundException {
Scanner sc = new Scanner (new File (args([0]));
List<Integer> intArray = new ArraylList<Integer>();

/* convert input file to list of integers */
while (sc.hasNextInt ()) {

intArray.add(sc.nextInt ());
}

int invs = MergeSortNInvCount (intArray, 0, intArray.size() - 1);

System.out.println(invs);



